GALAHAD LLSR package#
purpose#
Given a real \(m\) by \(n\) model matrix \(A\), a real \(n\) by \(n\) symmetric
diagonally-dominant matrix \(S\), a real \(m\) vector of observations \(b\)
and scalars \(\sigma>0\) and \(p \geq 2\), the llsr
package finds a
minimizer of the regularized linear least-squares objective function
Factorization of matrices of the form
lsrt
may be preferred.
See Section 4 of $GALAHAD/doc/llsr.pdf for additional details.
method#
The required solution \(x_*\) necessarily satisfies the optimality condition \(A^T A x_* + \lambda_* S x_* = A^T b\), where \(\lambda_* = \sigma \|x_*\|^{p-2}\).
The method is iterative, and proceeds in two phases. Firstly, lower and upper bounds, \(\lambda_L\) and \(\lambda_U\), on \(\lambda_*\) are computed using Gershgorin’s theorems and other eigenvalue bounds, including those that may involve the Cholesky factorization of \(S\) The first phase of the computation proceeds by progressively shrinking the bound interval \([\lambda_L,\lambda_U]\) until a value \(\lambda\) for which \(\|x(\lambda)\|_{M} \geq \sigma \|x(\lambda)\|_S^{p-2}\) is found. Here \(x(\lambda)\) and its companion \(y(\lambda)\) are defined to be a solution of
The dominant cost is the requirement that we solve a sequence of linear systems (2). This may be rewritten as
reference#
The method is the obvious adaptation to the linear least-squares problem of that described in detail in
H. S. Dollar, N. I. M. Gould and D. P. Robinson. ``On solving trust-region and other regularised subproblems in optimization’’. Mathematical Programming Computation 2(1) (2010) 21–57.
matrix storage#
The unsymmetric \(m\) by \(n\) model matrix \(A\) may be presented and stored in a variety of convenient input formats.
Dense storage format: The matrix \(A\) is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are stored in order within an appropriate real one-dimensional array. In this case, component \(n \ast i + j\) of the storage array A_val will hold the value \(A_{ij}\) for \(0 \leq i \leq m-1\), \(0 \leq j \leq n-1\). The string A_type = ‘dense’ should be specified.
Dense by columns storage format: The matrix \(A\) is stored as a compact dense matrix by columns, that is, the values of the entries of each column in turn are stored in order within an appropriate real one-dimensional array. In this case, component \(m \ast j + i\) of the storage array A_val will hold the value \(A_{ij}\) for \(0 \leq i \leq m-1\), $0 \leq j \leq n-1 The string A_type = ‘dense_by_columns’ should be specified.
Sparse co-ordinate storage format: Only the nonzero entries of the matrices are stored. For the \(l\)-th entry, \(0 \leq l \leq ne-1\), of \(A\), its row index i, column index j and value \(A_{ij}\), \(0 \leq i \leq m-1\), \(0 \leq j \leq n-1\), are stored as the \(l\)-th components of the integer arrays A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = \(ne\). The string A_type = ‘coordinate’should be specified.
Sparse row-wise storage format: Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before those in row i+1. For the i-th row of \(A\) the i-th component of the integer array A_ptr holds the position of the first entry in this row, while A_ptr(m) holds the total number of entries. The column indices j, \(0 \leq j \leq n-1\), and values \(A_{ij}\) of the nonzero entries in the i-th row are stored in components l = A_ptr(i), \(\ldots\), A_ptr(i+1)-1, \(0 \leq i \leq m-1\), of the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme almost always requires less storage than its predecessor. The string A_type = ‘sparse_by_rows’ should be specified.
Sparse column-wise storage format: Once again only the nonzero entries are stored, but this time they are ordered so that those in column j appear directly before those in column j+1. For the j-th column of \(A\) the j-th component of the integer array A_ptr holds the position of the first entry in this column, while A_ptr(n) holds the total number of entries. The row indices i, \(0 \leq i \leq m-1\), and values \(A_{ij}\) of the nonzero entries in the j-th columnsare stored in components l = A_ptr(j), \(\ldots\), A_ptr(j+1)-1, \(0 \leq j \leq n-1\), of the integer array A_row, and real array A_val, respectively. As before, for sparse matrices, this scheme almost always requires less storage than the co-ordinate format. The string A_type = ‘sparse_by_columns’ should be specified.
The symmetric \(n\) by \(n\) scaing matrix \(S\) may also be presented and stored in a variety of formats. But crucially symmetry is exploited by only storing values from the lower triangular part (i.e, those entries that lie on or below the leading diagonal).
Dense storage format: The matrix \(S\) is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are stored in order within an appropriate real one-dimensional array. Since \(S\) is symmetric, only the lower triangular part (that is the part \(S_{ij}\) for \(0 \leq j \leq i \leq n-1\)) need be held. In this case the lower triangle should be stored by rows, that is component \(i * i / 2 + j\) of the storage array S_val will hold the value \(S_{ij}\) (and, by symmetry, \(S_{ji}\)) for \(0 \leq j \leq i \leq n-1\). The string S_type = ‘dense’ should be specified.
Sparse co-ordinate storage format: Only the nonzero entries of the matrices are stored. For the \(l\)-th entry, \(0 \leq l \leq ne-1\), of \(S\), its row index i, column index j and value \(S_{ij}\), \(0 \leq j \leq i \leq n-1\), are stored as the \(l\)-th components of the integer arrays S_row and S_col and real array S_val, respectively, while the number of nonzeros is recorded as S_ne = \(ne\). Note that only the entries in the lower triangle should be stored. The string S_type = ‘coordinate’ should be specified.
Sparse row-wise storage format: Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before those in row i+1. For the i-th row of \(S\) the i-th component of the integer array S_ptr holds the position of the first entry in this row, while S_ptr(n) holds the total number of entries. The column indices j, \(0 \leq j \leq i\), and values \(S_{ij}\) of the entries in the i-th row are stored in components l = S_ptr(i), …, S_ptr(i+1)-1 of the integer array S_col, and real array S_val, respectively. Note that as before only the entries in the lower triangle should be stored. For sparse matrices, this scheme almost always requires less storage than its predecessor. The string S_type = ‘sparse_by_rows’ should be specified.
Diagonal storage format: If \(S\) is diagonal (i.e., \(S_{ij} = 0\) for all \(0 \leq i \neq j \leq n-1\)) only the diagonals entries \(S_{ii}\), \(0 \leq i \leq n-1\) need be stored, and the first n components of the array S_val may be used for the purpose. The string S_type = ‘diagonal’ should be specified.
Multiples of the identity storage format: If \(S\) is a multiple of the identity matrix, (i.e., \(H = \alpha I\) where \(I\) is the n by n identity matrix and \(\alpha\) is a scalar), it suffices to store \(\alpha\) as the first component of S_val. The string S_type = ‘scaled_identity’ should be specified.
The identity matrix format: If \(S\) is the identity matrix, no values need be stored. The string S_type = ‘identity’ should be specified. Strictly this is not required as \(S\) will be assumed to be \(I\) if it is not explicitly provided.
The zero matrix format: The same is true if \(S\) is the zero matrix, but now the string S_type = ‘zero’ or ‘none’ should be specified.
introduction to function calls#
To solve a given problem, functions from the llsr package must be called in the following order:
llsr_initialize - provide default control parameters and set up initial data structures
llsr_read_specfile (optional) - override control values by reading replacement values from a file
llsr_import - set up problem data structures and fixed values
llsr_import_scaling (optional) - set up problem data structures for \(S\) if required
llsr_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved
llsr_solve_problem - solve the regularization problem
llsr_information (optional) - recover information about the solution and solution process
llsr_terminate - deallocate data structures
See the examples section for illustrations of use.
callable functions#
overview of functions provided#
// typedefs typedef float spc_; typedef double rpc_; typedef int ipc_; // structs struct llsr_control_type; struct llsr_history_type; struct llsr_inform_type; struct llsr_time_type; // global functions void llsr_initialize( void **data, struct llsr_control_type* control, ipc_ *status ); void llsr_read_specfile( struct llsr_control_type* control, const char specfile[] ); void llsr_import( struct llsr_control_type* control, void **data, ipc_ *status, ipc_ m, ipc_ n, const char A_type[], ipc_ A_ne, const ipc_ A_row[], const ipc_ A_col[], const ipc_ A_ptr[] ); void llsr_import_scaling( struct llsr_control_type* control, void **data, ipc_ *status, ipc_ n, const char S_type[], ipc_ S_ne, const ipc_ S_row[], const ipc_ S_col[], const ipc_ S_ptr[] ); void llsr_reset_control( struct llsr_control_type* control, void **data, ipc_ *status ); void llsr_solve_problem( void **data, ipc_ *status, ipc_ m, ipc_ n, const rpc_ power, const rpc_ weight, ipc_ A_ne, const rpc_ A_val[], const rpc_ b[], rpc_ x[], ipc_ S_ne, const rpc_ S_val[] ); void llsr_information(void **data, struct llsr_inform_type* inform, ipc_ *status); void llsr_terminate( void **data, struct llsr_control_type* control, struct llsr_inform_type* inform );
typedefs#
typedef float spc_
spc_
is real single precision
typedef double rpc_
rpc_
is the real working precision used, but may be changed to float
by
defining the preprocessor variable SINGLE
.
typedef int ipc_
ipc_
is the default integer word length used, but may be changed to
int64_t
by defining the preprocessor variable INTEGER_64
.
function calls#
void llsr_initialize( void **data, struct llsr_control_type* control, ipc_ *status )
Set default control values and initialize private data
Parameters:
data |
holds private internal data |
control |
is a struct containing control information (see llsr_control_type) |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are (currently):
|
void llsr_read_specfile( struct llsr_control_type* control, const char specfile[] )
Read the content of a specification file, and assign values associated with given keywords to the corresponding control parameters. An in-depth discussion of specification files is available, and a detailed list of keywords with associated default values is provided in $GALAHAD/src/llsr/LLSR.template. See also Table 2.1 in the Fortran documentation provided in $GALAHAD/doc/llsr.pdf for a list of how these keywords relate to the components of the control structure.
Parameters:
control |
is a struct containing control information (see llsr_control_type) |
specfile |
is a character string containing the name of the specification file |
void llsr_import( struct llsr_control_type* control, void **data, ipc_ *status, ipc_ m, ipc_ n, const char A_type[], ipc_ A_ne, const ipc_ A_row[], const ipc_ A_col[], const ipc_ A_ptr[] )
Import problem data into internal storage prior to solution.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see llsr_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
m |
is a scalar variable of type ipc_, that holds the number of residuals, i.e., the number of rows of \(A\). m must be positive. |
n |
is a scalar variable of type ipc_, that holds the number of variables, i.e., the number of columns of \(A\). n must be positive. |
A_type |
is a one-dimensional array of type char that specifies the unsymmetric storage scheme used for the constraint Jacobian, \(A\) if any. It should be one of ‘coordinate’, ‘sparse_by_rows’ or ‘dense’; lower or upper case variants are allowed. |
A_ne |
is a scalar variable of type ipc_, that holds the number of entries in \(A\), if used, in the sparse co-ordinate storage scheme. It need not be set for any of the other schemes. |
A_row |
is a one-dimensional array of size A_ne and type ipc_, that holds the row indices of \(A\) in the sparse co-ordinate storage scheme. It need not be set for any of the other schemes, and in this case can be NULL. |
A_col |
is a one-dimensional array of size A_ne and type ipc_, that holds the column indices of \(A\) in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be set when the dense or diagonal storage schemes are used, and in this case can be NULL. |
A_ptr |
is a one-dimensional array of size n+1 and type ipc_, that holds the starting position of each row of \(A\), as well as the total number of entries, in the sparse row-wise storage scheme. It need not be set when the other schemes are used, and in this case can be NULL. |
void llsr_import_scaling( struct llsr_control_type* control, void **data, ipc_ *status, ipc_ n, const char S_type[], ipc_ S_ne, const ipc_ S_row[], const ipc_ S_col[], const ipc_ S_ptr[] )
Import the scaling matrix \(S\) into internal storage prior to solution. Thus must have been preceeded by a call to llsr_import.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see llsr_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
n |
is a scalar variable of type ipc_, that holds the number of variables, i.e., the number of rows and columns of \(S\). n must be positive. |
S_type |
is a one-dimensional array of type char that specifies the symmetric storage scheme used for the matrix \(S\). It should be one of ‘coordinate’, ‘sparse_by_rows’, ‘dense’ or ‘diagonal’; lower or upper case variants are allowed. |
S_ne |
is a scalar variable of type ipc_, that holds the number of entries in the lower triangular part of \(S\) in the sparse co-ordinate storage scheme. It need not be set for any of the other schemes. |
S_row |
is a one-dimensional array of size S_ne and type ipc_, that holds the row indices of the lower triangular part of \(S\) in the sparse co-ordinate storage scheme. It need not be set for any of the other three schemes, and in this case can be NULL. |
S_col |
is a one-dimensional array of size S_ne and type ipc_, that holds the column indices of the lower triangular part of \(S\) in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be set when the dense, diagonal or (scaled) identity storage schemes are used, and in this case can be NULL. |
S_ptr |
is a one-dimensional array of size n+1 and type ipc_, that holds the starting position of each row of the lower triangular part of \(S\), as well as the total number of entries, in the sparse row-wise storage scheme. It need not be set when the other schemes are used, and in this case can be NULL. |
void llsr_reset_control( struct llsr_control_type* control, void **data, ipc_ *status )
Reset control parameters after import if required.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see llsr_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
void llsr_solve_problem( void **data, ipc_ *status, ipc_ m, ipc_ n, const rpc_ power, const rpc_ weight, ipc_ A_ne, const rpc_ A_val[], const rpc_ b[], rpc_ x[], ipc_ S_ne, const rpc_ S_val[] )
Solve the regularization-region problem.
Parameters:
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the entry and exit status from the package. Possible exit values are:
|
m |
is a scalar variable of type ipc_, that holds the number of residuals |
n |
is a scalar variable of type ipc_, that holds the number of variables |
power |
is a scalar of type rpc_, that holds the regularization power, \(p\), used. power must be greater than or equal to two. |
weight |
is a scalar of type rpc_, that holds the regularization power, \(\sigma\), used. weight must be strictly positive |
A_ne |
is a scalar variable of type ipc_, that holds the number of entries in the observation matrix \(A\). |
A_val |
is a one-dimensional array of size A_ne and type rpc_, that holds the values of the entries of the observation matrix \(A\) in any of the available storage schemes. |
b |
is a one-dimensional array of size m and type rpc_, that holds the values \(b\) of observations. The i-th component of b, i = 0, … , m-1, contains \(b_i\). |
x |
is a one-dimensional array of size n and type rpc_, that holds the values \(x\) of the optimization variables. The j-th component of x, j = 0, … , n-1, contains \(x_j\). |
S_ne |
is a scalar variable of type ipc_, that holds the number of entries in the scaling matrix \(S\) if it not the identity matrix. |
S_val |
is a one-dimensional array of size S_ne and type rpc_, that holds the values of the entries of the scaling matrix \(S\) in any of the available storage schemes. If S_val is NULL, \(S\) will be taken to be the identity matrix. |
void llsr_information(void **data, struct llsr_inform_type* inform, ipc_ *status)
Provides output information
Parameters:
data |
holds private internal data |
inform |
is a struct containing output information (see llsr_inform_type) |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are (currently):
|
void llsr_terminate( void **data, struct llsr_control_type* control, struct llsr_inform_type* inform )
Deallocate all internal private storage
Parameters:
data |
holds private internal data |
control |
is a struct containing control information (see llsr_control_type) |
inform |
is a struct containing output information (see llsr_inform_type) |
available structures#
llsr_control_type structure#
#include <galahad_llsr.h> struct llsr_control_type { // fields bool f_indexing; ipc_ error; ipc_ out; ipc_ print_level; ipc_ new_a; ipc_ new_s; ipc_ max_factorizations; ipc_ taylor_max_degree; rpc_ initial_multiplier; rpc_ lower; rpc_ upper; rpc_ stop_normal; bool use_initial_multiplier; bool space_critical; bool deallocate_error_fatal; char definite_linear_solver[31]; char prefix[31]; struct sbls_control_type sbls_control; struct sls_control_type sls_control; struct ir_control_type ir_control; };
detailed documentation#
control derived type as a C struct
components#
bool f_indexing
use C or Fortran sparse matrix indexing
ipc_ error
unit for error messages
ipc_ out
unit for monitor output
ipc_ print_level
controls level of diagnostic output
ipc_ new_a
how much of \(A\) has changed since the previous call. Possible values are
0 unchanged
1 values but not indices have changed
2 values and indices have changed
ipc_ new_s
how much of \(S\) has changed since the previous call. Possible values are
0 unchanged
1 values but not indices have changed
2 values and indices have changed
ipc_ max_factorizations
the maximum number of factorizations (=iterations) allowed. -ve implies no limit
ipc_ taylor_max_degree
maximum degree of Taylor approximant allowed (<= 3)
rpc_ initial_multiplier
initial estimate of the Lagrange multipler
rpc_ lower
lower and upper bounds on the multiplier, if known
rpc_ upper
see lower
rpc_ stop_normal
stop when \(| \|x\| - (\lambda/\sigma)^{1/(p-2)| \leq\) stop_normal \* max( 1, \(\|x\|\))
bool use_initial_multiplier
ignore initial_multiplier?
bool space_critical
if space is critical, ensure allocated arrays are no bigger than needed
bool deallocate_error_fatal
exit if any deallocation fails
char definite_linear_solver[31]
the name of the definite linear equation solver used. Possible choices are currently: ‘sils’, ‘ma27’, ‘ma57’, ‘ma77’, ‘ma86’, ‘ma87’, ‘ma97’, ‘ssids’, ‘mumps’, ‘pardiso’, ‘mkl_pardiso’, ‘pastix’, ‘wsmp’, ‘potr’, ‘sytr’ and ‘pbtr’, although only ‘potr’, ‘sytr’, ‘pbtr’ and, for OMP 4.0-compliant compilers, ‘ssids’ are installed by default; others are easily installed (see README.external). More details of the capabilities of each solver are provided in the documentation for galahad_sls.
char prefix[31]
all output lines will be prefixed by prefix(2:LEN(TRIM(.prefix))-1) where prefix contains the required string enclosed in quotes, e.g. “string” or ‘string’
struct sbls_control_type sbls_control
control parameters for the symmetric factorization and related linear solves (see sbls_c documentation)
struct sls_control_type sls_control
control parameters for the factorization of S and related linear solves (see sls_c documentation)
struct ir_control_type ir_control
control parameters for iterative refinement for definite system solves (see ir_c documentation)
llsr_time_type structure#
#include <galahad_llsr.h> struct llsr_time_type { // fields rpc_ total; rpc_ assemble; rpc_ analyse; rpc_ factorize; rpc_ solve; rpc_ clock_total; rpc_ clock_assemble; rpc_ clock_analyse; rpc_ clock_factorize; rpc_ clock_solve; };
detailed documentation#
time derived type as a C struct
components#
rpc_ total
total CPU time spent in the package
rpc_ assemble
CPU time assembling \(K(\lambda)\) in (1)
rpc_ analyse
CPU time spent analysing \(K(\lambda)\).
rpc_ factorize
CPU time spent factorizing \(K(\lambda)\).
rpc_ solve
CPU time spent solving linear systems inolving \(K(\lambda)\).
rpc_ clock_total
total clock time spent in the package
rpc_ clock_assemble
clock time assembling \(K(\lambda)\)
rpc_ clock_analyse
clock time spent analysing \(K(\lambda)\)
rpc_ clock_factorize
clock time spent factorizing \(K(\lambda)\)
rpc_ clock_solve
clock time spent solving linear systems inolving \(K(\lambda)\)
llsr_history_type structure#
#include <galahad_llsr.h> struct llsr_history_type { // fields rpc_ lambda; rpc_ x_norm; rpc_ r_norm; };
detailed documentation#
history derived type as a C struct
components#
rpc_ lambda
the value of \(\lambda\)
rpc_ x_norm
the corresponding value of \(\|x(\lambda)\|_M\)
rpc_ r_norm
the corresponding value of \(\|A x(\lambda) - b\|_2\)
llsr_inform_type structure#
#include <galahad_llsr.h> struct llsr_inform_type { // fields ipc_ status; ipc_ alloc_status; ipc_ factorizations; ipc_ len_history; rpc_ r_norm; rpc_ x_norm; rpc_ multiplier; char bad_alloc[81]; struct llsr_time_type time; struct llsr_history_type history[100]; struct sbls_inform_type sbls_inform; struct sls_inform_type sls_inform; struct ir_inform_type ir_inform; };
detailed documentation#
inform derived type as a C struct
components#
ipc_ status
reported return status:
0
the solution has been found
-1
an array allocation has failed
-2
an array deallocation has failed
-3
n and/or Delta is not positive
-10
the factorization of \(K(\lambda)\) failed
-15
\(S\) does not appear to be strictly diagonally dominant
-16
ill-conditioning has prevented furthr progress
ipc_ alloc_status
STAT value after allocate failure.
ipc_ factorizations
the number of factorizations performed
ipc_ len_history
the number of (\(\|x\|_S\), \(\lambda\)) pairs in the history
rpc_ r_norm
corresponding value of the two-norm of the residual, \(\|A x(\lambda) - b\|\)
rpc_ x_norm
the S-norm of x, \(\|x\|_S\)
rpc_ multiplier
the multiplier corresponding to the regularization term
char bad_alloc[81]
name of array which provoked an allocate failure
struct llsr_time_type time
time information
struct llsr_history_type history[100]
history information
struct sbls_inform_type sbls_inform
information from the symmetric factorization and related linear solves (see sbls_c documentation)
struct sls_inform_type sls_inform
information from the factorization of S and related linear solves (see sls_c documentation)
struct ir_inform_type ir_inform
information from the iterative refinement for definite system solves (see ir_c documentation)
example calls#
This is an example of how to use the package to solve a regularized linear least-squares subproblem; the code is available in $GALAHAD/src/llsr/C/llsrt.c . A variety of supported Hessian and constraint matrix storage formats are shown.
Notice that C-style indexing is used, and that this is flagged by setting
control.f_indexing
to false
. The floating-point type rpc_
is set in galahad_precision.h
to double
by default, but to float
if the preprocessor variable SINGLE
is defined. Similarly, the integer
type ipc_
from galahad_precision.h
is set to int
by default,
but to int64_t
if the preprocessor variable INTEGER_64
is defined.
/* llsrtf.c */
/* Full test for the LLSR C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_llsr.h"
int main(void) {
// Derived types
void *data;
struct llsr_control_type control;
struct llsr_inform_type inform;
ipc_ i, l;
// Set problem data
// set dimensions
ipc_ m = 100;
ipc_ n = 2*m+1;
// A = ( I : Diag(1:n) : e )
ipc_ A_ne = 3*m;
ipc_ A_row[A_ne];
ipc_ A_col[A_ne];
ipc_ A_ptr[m+1];
rpc_ A_val[A_ne];
// store A in sparse formats
l=0;
for( i=0; i < m; i++){
A_ptr[i] = l;
A_row[l] = i;
A_col[l] = i;
A_val[l] = 1.0;
l++;
A_row[l] = i;
A_col[l] = m+i;
A_val[l] = i+1;
l++;
A_row[l] = i;
A_col[l] = n-1;
A_val[l] = 1.0;
l++;
}
A_ptr[m] = l;
// store A in dense format
ipc_ A_dense_ne = m * n;
rpc_ A_dense_val[A_dense_ne];
for( i=0; i < A_dense_ne; i++) A_dense_val[i] = 0.0;
l=-1;
for( i=1; i <= m; i++){
A_dense_val[l+i] = 1.0;
A_dense_val[l+m+i] = i;
A_dense_val[l+n] = 1.0;
l=l+n;
}
// S = diag(1:n)**2
ipc_ S_ne = n;
ipc_ S_row[S_ne];
ipc_ S_col[S_ne];
ipc_ S_ptr[n+1];
rpc_ S_val[S_ne];
// store S in sparse formats
for( i=0; i < n; i++){
S_row[i] = i;
S_col[i] = i;
S_ptr[i] = i;
S_val[i] = (i+1)*(i+1);
}
S_ptr[n] = n;
// store S in dense format
ipc_ S_dense_ne = n*(n+1)/2;
rpc_ S_dense_val[S_dense_ne];
for( i=0; i < S_dense_ne; i++) S_dense_val[i] = 0.0;
l=-1;
for( i=1; i <= n; i++){
S_dense_val[l+i] = i*i;
l=l+i;
}
// b is a vector of ones
rpc_ b[m]; // observations
for( i=0; i < m; i++){
b[i] = 1.0;
}
// cubic regularization, weight is one
rpc_ power = 3.0;
rpc_ weight = 1.0;
// Set output storage
rpc_ x[n]; // solution
char st = ' ';
ipc_ status;
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of problem storage formats\n\n");
// loop over storage formats
for( ipc_ d=1; d<=4; d++){
// Initialize LLSR
llsr_initialize( &data, &control, &status );
strcpy(control.definite_linear_solver, "potr ") ;
strcpy(control.sbls_control.symmetric_linear_solver, "sytr ") ;
strcpy(control.sbls_control.definite_linear_solver, "potr ") ;
// control.print_level = 1;
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// use s or not (1 or 0)
for( ipc_ use_s=0; use_s<=1; use_s++){
switch(d){
case 1: // sparse co-ordinate storage
st = 'C';
llsr_import( &control, &data, &status, m, n,
"coordinate", A_ne, A_row, A_col, NULL );
if(use_s == 0){
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, 0, NULL );
}else{
llsr_import_scaling( &control, &data, &status, n,
"coordinate", S_ne, S_row,
S_col, NULL );
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, S_ne, S_val );
}
break;
case 2: // sparse by rows
st = 'R';
llsr_import( &control, &data, &status, m, n,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );
if(use_s == 0){
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, 0, NULL );
}else{
llsr_import_scaling( &control, &data, &status, n,
"sparse_by_rows", S_ne, NULL,
S_col, S_ptr );
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, S_ne, S_val );
}
break;
case 3: // dense
st = 'D';
llsr_import( &control, &data, &status, m, n,
"dense", A_dense_ne, NULL, NULL, NULL );
if(use_s == 0){
llsr_solve_problem( &data, &status, m, n, power, weight,
A_dense_ne, A_dense_val, b, x,
0, NULL );
}else{
llsr_import_scaling( &control, &data, &status, n,
"dense", S_dense_ne,
NULL, NULL, NULL );
llsr_solve_problem( &data, &status, m, n, power, weight,
A_dense_ne, A_dense_val, b, x,
S_dense_ne, S_dense_val );
}
break;
case 4: // diagonal
st = 'I';
llsr_import( &control, &data, &status, m, n,
"coordinate", A_ne, A_row, A_col, NULL );
if(use_s == 0){
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, 0, NULL );
}else{
llsr_import_scaling( &control, &data, &status, n,
"diagonal", S_ne, NULL, NULL, NULL );
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, S_ne, S_val );
}
break;
}
llsr_information( &data, &inform, &status );
if(inform.status == 0){
printf("storage type %c%1" i_ipc_ ": status = %1" i_ipc_ ", ||r|| = %5.2f\n",
st, use_s, inform.status, inform.r_norm );
}else{
printf("storage type %c%1" i_ipc_ ": LLSR_solve exit status = %1" i_ipc_ "\n",
st, use_s, inform.status);
}
}
//printf("x: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
// Delete internal workspace
llsr_terminate( &data, &control, &inform );
}
}
This is the same example, but now fortran-style indexing is used; the code is available in $GALAHAD/src/llsr/C/llsrtf.c .
/* llsrtf.c */
/* Full test for the LLSR C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_llsr.h"
int main(void) {
// Derived types
void *data;
struct llsr_control_type control;
struct llsr_inform_type inform;
ipc_ i, l;
// Set problem data
// set dimensions
ipc_ m = 100;
ipc_ n = 2*m+1;
// A = ( I : Diag(1:n) : e )
ipc_ A_ne = 3*m;
ipc_ A_row[A_ne];
ipc_ A_col[A_ne];
ipc_ A_ptr[m+1];
rpc_ A_val[A_ne];
// store A in sparse formats
l=0;
for( i=1; i <= m; i++){
A_ptr[i-1] = l+1;
A_row[l] = i;
A_col[l] = i;
A_val[l] = 1.0;
l++;
A_row[l] = i;
A_col[l] = m+i;
A_val[l] = i;
l++;
A_row[l] = i;
A_col[l] = n;
A_val[l] = 1.0;
l++;
}
A_ptr[m] = l+1;
// store A in dense format
ipc_ A_dense_ne = m * n;
rpc_ A_dense_val[A_dense_ne];
for( i=0; i < A_dense_ne; i++) A_dense_val[i] = 0.0;
l=-1;
for( i=1; i <= m; i++){
A_dense_val[l+i] = 1.0;
A_dense_val[l+m+i] = i;
A_dense_val[l+n] = 1.0;
l=l+n;
}
// S = diag(1:n)**2
ipc_ S_ne = n;
ipc_ S_row[S_ne];
ipc_ S_col[S_ne];
ipc_ S_ptr[n+1];
rpc_ S_val[S_ne];
// store S in sparse formats
for( i=0; i < n; i++){
S_row[i] = i+1;
S_col[i] = i+1;
S_ptr[i] = i+1;
S_val[i] = (i+1)*(i+1);
}
S_ptr[n] = n+1;
// store S in dense format
ipc_ S_dense_ne = n*(n+1)/2;
rpc_ S_dense_val[S_dense_ne];
for( i=0; i < S_dense_ne; i++) S_dense_val[i] = 0.0;
l=-1;
for( i=1; i <= n; i++){
S_dense_val[l+i] = i*i;
l=l+i;
}
// b is a vector of ones
rpc_ b[m]; // observations
for( i=0; i < m; i++){
b[i] = 1.0;
}
// cubic regularization, weight is one
rpc_ power = 3.0;
rpc_ weight = 1.0;
// Set output storage
rpc_ x[n]; // solution
char st = ' ';
ipc_ status;
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of problem storage formats\n\n");
// loop over storage formats
for( ipc_ d=1; d<=4; d++){
// Initialize LLSR
llsr_initialize( &data, &control, &status );
strcpy(control.definite_linear_solver, "potr ") ;
strcpy(control.sbls_control.symmetric_linear_solver, "sytr ") ;
strcpy(control.sbls_control.definite_linear_solver, "potr ") ;
// control.print_level = 1;
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
// use s or not (1 or 0)
for( ipc_ use_s=0; use_s<=1; use_s++){
switch(d){
case 1: // sparse co-ordinate storage
st = 'C';
llsr_import( &control, &data, &status, m, n,
"coordinate", A_ne, A_row, A_col, NULL );
if(use_s == 0){
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, 0, NULL );
}else{
llsr_import_scaling( &control, &data, &status, n,
"coordinate", S_ne, S_row,
S_col, NULL );
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, S_ne, S_val );
}
break;
case 2: // sparse by rows
st = 'R';
llsr_import( &control, &data, &status, m, n,
"sparse_by_rows", A_ne, NULL, A_col, A_ptr );
if(use_s == 0){
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, 0, NULL );
}else{
llsr_import_scaling( &control, &data, &status, n,
"sparse_by_rows", S_ne, NULL,
S_col, S_ptr );
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, S_ne, S_val );
}
break;
case 3: // dense
st = 'D';
llsr_import( &control, &data, &status, m, n,
"dense", A_dense_ne, NULL, NULL, NULL );
if(use_s == 0){
llsr_solve_problem( &data, &status, m, n, power, weight,
A_dense_ne, A_dense_val, b, x,
0, NULL );
}else{
llsr_import_scaling( &control, &data, &status, n,
"dense", S_dense_ne,
NULL, NULL, NULL );
llsr_solve_problem( &data, &status, m, n, power, weight,
A_dense_ne, A_dense_val, b, x,
S_dense_ne, S_dense_val );
}
break;
case 4: // diagonal
st = 'I';
llsr_import( &control, &data, &status, m, n,
"coordinate", A_ne, A_row, A_col, NULL );
if(use_s == 0){
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, 0, NULL );
}else{
llsr_import_scaling( &control, &data, &status, n,
"diagonal", S_ne, NULL, NULL, NULL );
llsr_solve_problem( &data, &status, m, n, power, weight,
A_ne, A_val, b, x, S_ne, S_val );
}
break;
}
llsr_information( &data, &inform, &status );
if(inform.status == 0){
printf("storage type %c%1" i_ipc_ ": status = %1" i_ipc_ ", ||r|| = %5.2f\n",
st, use_s, inform.status, inform.r_norm );
}else{
printf("storage type %c%1" i_ipc_ ": LLSR_solve exit status = %1" i_ipc_ "\n",
st, use_s, inform.status);
}
}
//printf("x: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
// Delete internal workspace
llsr_terminate( &data, &control, &inform );
}
}