overview of functions provided#
// typedefs typedef float spc_; typedef double rpc_; typedef int ipc_; // structs struct slls_control_type; struct slls_inform_type; struct slls_time_type; // function calls void slls_initialize( void **data, struct slls_control_type* control, ipc_ *status ); void slls_read_specfile( struct slls_control_type* control, const char specfile[] ); void slls_import( struct slls_control_type* control, void **data, ipc_ *status, ipc_ n, ipc_ o, const char A_type[], ipc_ Ao_ne, const ipc_ Ao_row[], const ipc_ Ao_col[], ipc_ Ao_ptr_ne, const ipc_ Ao_ptr[] ); void slls_import_without_a( struct slls_control_type* control, void **data, ipc_ *status, ipc_ n, ipc_ m ); void slls_reset_control( struct slls_control_type* control, void **data, ipc_ *status ); void slls_solve_given_a( void **data, void *userdata, ipc_ *status, ipc_ n, ipc_ o, ipc_ Ao_ne, const rpc_ Ao_val[], const rpc_ b[], rpc_ x[], rpc_ z[], rpc_ r[], rpc_ g[], ipc_ x_stat[], const rpc_ w[], ipc_(*)(ipc_, const rpc_[], rpc_[], const void*) eval_prec ); void slls_solve_reverse_a_prod( void **data, ipc_ *status, ipc_ *eval_status, ipc_ n, ipc_ o, const rpc_ b[], const rpc_ x_l[], const rpc_ x_u[], rpc_ x[], rpc_ z[], rpc_ r[], rpc_ g[], ipc_ x_stat[], rpc_ v[], const rpc_ p[], ipc_ nz_v[], ipc_ *nz_v_start, ipc_ *nz_v_end, const ipc_ nz_p[], ipc_ nz_p_end, const rpc_ w[] ); void slls_information(void **data, struct slls_inform_type* inform, ipc_ *status); void slls_terminate( void **data, struct slls_control_type* control, struct slls_inform_type* inform );
typedefs#
typedef float spc_
spc_
is real single precision
typedef double rpc_
rpc_
is the real working precision used, but may be changed to float
by
defining the preprocessor variable REAL_32
or (if supported) to
__real128
using the variable REAL_128
.
typedef int ipc_
ipc_
is the default integer word length used, but may be changed to
int64_t
by defining the preprocessor variable INTEGER_64
.
function and structure names#
The function and structure names described below are appropriate for the
default real working precision (double
) and integer word length
(int32_t
). To use the functions and structures with different precisions
and integer word lengths, an additional suffix must be added to their names
(and the arguments set accordingly). The appropriate suffices are:
_s
for single precision (float
) reals and
standard 32-bit (int32_t
) integers;
_q
for quadruple precision (__real128
) reals (if supported) and
standard 32-bit (int32_t
) integers;
_64
for standard precision (double
) reals and
64-bit (int64_t
) integers;
_s_64
for single precision (float
) reals and
64-bit (int64_t
) integers; and
_q_64
for quadruple precision (__real128
) reals (if supported) and
64-bit (int64_t
) integers.
Thus a call to slls_initialize
below will instead be
void slls_initialize_s_64(void **data, struct slls_control_type_s_64* control, int64_t *status)
if single precision (float
) reals and 64-bit (int64_t
) integers are
required. Thus it is possible to call functions for this package
with more that one precision and/or integer word length at same time. An
example is provided for the package expo
,
and the obvious modifications apply equally here.
function calls#
void slls_initialize( void **data, struct slls_control_type* control, ipc_ *status )
Set default control values and initialize private data
Parameters:
data |
holds private internal data |
control |
is a struct containing control information (see slls_control_type) |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are (currently):
|
void slls_read_specfile( struct slls_control_type* control, const char specfile[] )
Read the content of a specification file, and assign values associated with given keywords to the corresponding control parameters. An in-depth discussion of specification files is available, and a detailed list of keywords with associated default values is provided in $GALAHAD/src/slls/SLLS.template. See also Table 2.1 in the Fortran documentation provided in $GALAHAD/doc/slls.pdf for a list of how these keywords relate to the components of the control structure.
Parameters:
control |
is a struct containing control information (see slls_control_type) |
specfile |
is a character string containing the name of the specification file |
void slls_import( struct slls_control_type* control, void **data, ipc_ *status, ipc_ n, ipc_ o, const char Ao_type[], ipc_ Ao_ne, const ipc_ Ao_row[], const ipc_ Ao_col[], ipc_ Ao_ptr_ne, const ipc_ Ao_ptr[] )
Import problem data into internal storage prior to solution.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see slls_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
n |
is a scalar variable of type ipc_, that holds the number of variables. |
o |
is a scalar variable of type ipc_, that holds the number of residuals. |
Ao_type |
is a one-dimensional array of type char that specifies the symmetric storage scheme used for the design matrix \(A_o\). It should be one of ‘coordinate’, ‘sparse_by_rows’, ‘sparse_by_columns’, ‘dense_by_rows’, or ‘dense_by_columns’; lower or upper case variants are allowed. |
Ao_ne |
is a scalar variable of type ipc_, that holds the number of entries in \(A_o\) in the sparse co-ordinate storage scheme. It need not be set for any of the other schemes. |
Ao_row |
is a one-dimensional array of size Ao_ne and type ipc_, that holds the row indices of \(A_o\) in the sparse co-ordinate or sparse column-wise storage scheme. It need not be set for any of the other schemes, and in this case can be NULL. |
Ao_col |
is a one-dimensional array of size Ao_ne and type ipc_, that holds the column indices of \(A_o\) in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be set for any of the other schemes, and in this case can be NULL. |
Ao_ptr_ne |
is a scalar variable of type ipc_, that holds the length of the pointer array if sparse row or column storage scheme is used for \(A_o\). For the sparse row scheme, Ao_ptr_ne should be at least o+1, while for the sparse column scheme, it should be at least n+1, It need not be set when the other schemes are used. |
Ao_ptr |
is a one-dimensional array of size Ao_ptr_ne and type ipc_, that holds the starting position of each row of \(A_o\), as well as the total number of entries, in the sparse row-wise storage scheme. By contrast, it holds the starting position of each column of \(A_o\), as well as the total number of entries, in the sparse column-wise storage scheme. It need not be set when the other schemes are used, and in this case can be NULL. |
void slls_import_without_a( struct slls_control_type* control, void **data, ipc_ *status, ipc_ n, ipc_ o )
Import problem data into internal storage prior to solution.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see slls_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
n |
is a scalar variable of type ipc_, that holds the number of variables. |
o |
is a scalar variable of type ipc_, that holds the number of residuals. |
void slls_reset_control( struct slls_control_type* control, void **data, ipc_ *status )
Reset control parameters after import if required.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see slls_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
void slls_solve_given_a( void **data, void *userdata, ipc_ *status, ipc_ n, ipc_ o, ipc_ Ao_ne, const rpc_ Ao_val[], const rpc_ b[], rpc_ x[], rpc_ z[], rpc_ r[], rpc_ g[], ipc_ x_stat[], const rpc_ w[], ipc_(*)(ipc_, const rpc_[], rpc_[], const void*) eval_prec )
Solve the simplex-constrained linear least-squares problem when the design matrix \(A_o\) is available.
Parameters:
data |
holds private internal data |
userdata |
is a structure that allows data to be passed into the function and derivative evaluation programs. |
status |
is a scalar variable of type ipc_, that gives the entry and exit status from the package. On initial entry, status must be set to 1. Possible exit values are:
|
n |
is a scalar variable of type ipc_, that holds the number of variables |
o |
is a scalar variable of type ipc_, that holds the number of residuals. |
Ao_ne |
is a scalar variable of type ipc_, that holds the number of entries in the design matrix \(A_o\). |
Ao_val |
is a one-dimensional array of size Ao_ne and type rpc_, that holds the values of the entries in the design matrix \(A_o\) in any of the available storage schemes. |
b |
is a one-dimensional array of size o and type rpc_, that holds the constant term \(b\) in the residuals. The i-th component of b, i = 0, … , o-1, contains \(b_i\). |
x |
is a one-dimensional array of size n and type rpc_, that holds the values \(x\) of the optimization variables. The j-th component of x, j = 0, … , n-1, contains \(x_j\). |
z |
is a one-dimensional array of size n and type rpc_, that holds the values \(z\) of the dual variables. The j-th component of z, j = 0, … , n-1, contains \(z_j\). |
r |
is a one-dimensional array of size o and type rpc_, that holds the values of the residuals \(r = A_o x - b\). The i-th component of r, i = 0, … , o-1, contains \(r_i\). |
g |
is a one-dimensional array of size n and type rpc_, that holds the values of the gradient \(g = A^T c\). The j-th component of g, j = 0, … , n-1, contains \(g_j\). |
x_stat |
is a one-dimensional array of size n and type ipc_, that gives the optimal status of the problem variables. If x_stat(j) is negative, the variable \(x_j\) most likely lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its bounds. |
eval_prec |
is an optional user-supplied function that may be NULL. If non-NULL, it must have the following signature: ipc_ eval_prec( ipc_ n, const rpc_ v[], rpc_ p[], const void *userdata ) The product \(p = P^{-1} v\) involving the user’s preconditioner \(P\) with the vector v = \(v\), the result \(p\) must be retured in p, and the function return value set to 0. If the evaluation is impossible, return should be set to a nonzero value. Data may be passed into |
void slls_solve_reverse_a_prod( void **data, ipc_ *status, ipc_ *eval_status, ipc_ n, ipc_ o, const rpc_ b[], const rpc_ x_l[], const rpc_ x_u[], rpc_ x[], rpc_ z[], rpc_ r[], rpc_ g[], ipc_ x_stat[], rpc_ v[], const rpc_ p[], ipc_ nz_v[], ipc_ *nz_v_start, ipc_ *nz_v_end, const ipc_ nz_p[], ipc_ nz_p_end, const rpc_ w[] )
Solve the bound-constrained linear least-squares problem when the products of the Jacobian \(A_o\) and its transpose with specified vectors may be computed by the calling program.
Parameters:
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the entry and exit status from the package. Possible exit values are:
|
eval_status |
is a scalar variable of type ipc_, that is used to indicate if the matrix products can be provided (see |
n |
is a scalar variable of type ipc_, that holds the number of variables |
o |
is a scalar variable of type ipc_, that holds the number of residuals. |
b |
is a one-dimensional array of size o and type rpc_, that holds the constant term \(b\) in the residuals. The i-th component of b, i = 0, … , o-1, contains \(b_i\). |
x_l |
is a one-dimensional array of size n and type rpc_, that holds the lower bounds \(x^l\) on the variables \(x\). The j-th component of x_l, j = 0, … , n-1, contains \(x^l_j\). |
x_u |
is a one-dimensional array of size n and type rpc_, that holds the upper bounds \(x^l\) on the variables \(x\). The j-th component of x_u, j = 0, … , n-1, contains \(x^l_j\). |
x |
is a one-dimensional array of size n and type rpc_, that holds the values \(x\) of the optimization variables. The j-th component of x, j = 0, … , n-1, contains \(x_j\). |
r |
is a one-dimensional array of size m and type rpc_, that holds the values of the residuals \(r = A x - b\). The i-th component of r, i = 0, … , o-1, contains \(r_i\). |
g |
is a one-dimensional array of size n and type rpc_, that holds the values of the gradient \(g = A^T W r\). The j-th component of g, j = 0, … , n-1, contains \(g_j\). |
z |
is a one-dimensional array of size n and type rpc_, that holds the values \(z\) of the dual variables. The j-th component of z, j = 0, … , n-1, contains \(z_j\). |
x_stat |
is a one-dimensional array of size n and type ipc_, that gives the optimal status of the problem variables. If x_stat(j) is negative, the variable \(x_j\) most likely lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its bounds. |
v |
is a one-dimensional array of size n and type rpc_, that is used for reverse communication (see status=2-4 above for details). |
p |
is a one-dimensional array of size n and type rpc_, that is used for reverse communication (see status=2-4 above for details). |
nz_v |
is a one-dimensional array of size n and type ipc_, that is used for reverse communication (see status=3-4 above for details). |
nz_v_start |
is a scalar of type ipc_, that is used for reverse communication (see status=3-4 above for details). |
nz_v_end |
is a scalar of type ipc_, that is used for reverse communication (see status=3-4 above for details). |
nz_p |
is a one-dimensional array of size n and type ipc_, that is used for reverse communication (see status=4 above for details). |
nz_p_end |
is a scalar of type ipc_, that is used for reverse communication (see status=4 above for details). |
w |
is an optional one-dimensional array of size m and type rpc_, that holds the values \(w\) of the weights on the residuals in the least-squares objective function. It need not be set if the weights are all ones, and in this case can be NULL. |
void slls_information(void **data, struct slls_inform_type* inform, ipc_ *status)
Provides output information
Parameters:
data |
holds private internal data |
inform |
is a struct containing output information (see slls_inform_type) |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are (currently):
|
void slls_terminate( void **data, struct slls_control_type* control, struct slls_inform_type* inform )
Deallocate all internal private storage
Parameters:
data |
holds private internal data |
control |
is a struct containing control information (see slls_control_type) |
inform |
is a struct containing output information (see slls_inform_type) |