GALAHAD SLLS package#
purpose#
The slls
package uses a preconditioned project-gradient method to solve
a given simplex-constrained linear least-squares problem.
The aim is to minimize the (regularized) least-squares objective function
See Section 4 of $GALAHAD/doc/slls.pdf for additional details.
terminology#
Any required solution \(x\) necessarily satisfies the primal optimality conditions
method#
Projected-gradient methods iterate towards a point that satisfies these optimality conditions by ultimately aiming to satisfy \(A_o^T ( A_o x - b) + \sigma x = \lambda e + z\), while ensuring that the remaining conditions are satisfied at each stage. Appropriate norms of the amounts by which the optimality conditions fail to be satisfied are known as the primal and dual infeasibility, and the violation of complementary slackness, respectively.
The method is iterative. Each iteration proceeds in two stages. Firstly, a search direction \(s\) from the current estimate of the solution \(x\) is computed. This may be in a scaled steepest-descent direction, or, if the working set of variables on bounds has not changed dramatically, in a direction that provides an approximate minimizer of the objective over a subspace comprising the currently free-variables. The latter is computed either using an appropriate sparse factorization by the galahad package SBLS, or by the conjugate-gradient least-squares (CGLS) method; tt may be necessary to regularize the subproblem very slightly to avoid a ill-posedness. Thereafter, a piecewise linesearch (arc search) is carried out along the arc \(x(\alpha) = P( x + \alpha s)\) for \(\alpha > 0\), where the projection operator \(P(v)\) gives the nearest point to \(v\) within the regular simplex; thus this arc bends the search direction into the feasible region. The arc search is performed either exactly, by passing through a set of increasing breakpoints at which it changes direction, or inexactly, by evaluating a sequence of different \(\alpha\) on the arc. All computation is designed to exploit sparsity in \(A_o\).
reference#
Full details are provided in
N. I. M. Gould (2023). ``Linear least-squares over the unit simplex’’. STFC-Rutherford Appleton Laboratory Computational Mathematics Group Internal Report 2023-2.
matrix storage#
The unsymmetric \(o\) by \(n\) matrix \(A_o\) may be presented and stored in a variety of convenient input formats.
Dense storage format: The matrix \(A_o\) is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are stored in order within an appropriate real one-dimensional array. In this case, component \(n \ast i + j\) of the storage array Ao_val will hold the value \(A_{o\,ij}\) for \(0 \leq i \leq o-1\), \(0 \leq j \leq n-1\). The string Ao_type = ‘dense’ should be specified.
Dense by columns storage format: The matrix \(A_o\) is stored as a compact dense matrix by columns, that is, the values of the entries of each column in turn are stored in order within an appropriate real one-dimensional array. In this case, component \(o \ast j + i\) of the storage array Ao_val will hold the value \(A_{o\,ij}\) for \(0 \leq i \leq o-1\), \(0 \leq j \leq n-1\). The string Ao_type = ‘dense_by_columns’ should be specified.
Sparse co-ordinate storage format: Only the nonzero entries of the matrices are stored. For the \(l\)-th entry, \(0 \leq l \leq ne-1\), of \(A_o\), its row index i, column index j and value \(A_{o\,ij}\), \(0 \leq i \leq o-1\), \(0 \leq j \leq n-1\), are stored as the \(l\)-th components of the integer arrays Ao_row and Ao_col and real array Ao_val, respectively, while the number of nonzeros is recorded as Ao_ne = \(ne\). The string Ao_type = ‘coordinate’should be specified.
Sparse row-wise storage format: Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before those in row i+1. For the i-th row of \(A_o\) the i-th component of the integer array Ao_ptr holds the position of the first entry in this row, while A_ptr(o) holds the total number of entries. The column indices j, \(0 \leq j \leq n-1\), and values \(A_{o\,ij}\) of the nonzero entries in the i-th row are stored in components l = Ao_ptr(i), \(\ldots\), Ao_ptr(i+1)-1, \(0 \leq i \leq o-1,\) of the integer array Ao_col, and real array Ao_val, respectively. For sparse matrices, this scheme almost always requires less storage than its predecessor. The string Ao_type = ‘sparse_by_rows’ should be specified.
Sparse column-wise storage format: Once again only the nonzero entries are stored, but this time they are ordered so that those in column j appear directly before those in column j+1. For the j-th column of \(A_o\) the j-th component of the integer array Ao_ptr holds the position of the first entry in this column, while Ao_ptr(n) holds the total number of entries. The row indices i, \(0 \leq i \leq o-1\), and values \(A_{o\,ij}\) of the nonzero entries in the j-th columns are stored in components l = Ao_ptr(j), \(\ldots\), Ao_ptr(j+1)-1, \(0 \leq j \leq n-1\), of the integer array Ao_row, and real array Ao_val, respectively. As before, for sparse matrices, this scheme almost always requires less storage than the co-ordinate format. The string Ao_type = ‘sparse_by_columns’ should be specified.
introduction to function calls#
To solve a given problem, functions from the slls package must be called in the following order:
slls_initialize - provide default control parameters and set up initial data structures
slls_read_specfile (optional) - override control values by reading replacement values from a file
set up problem data structures and fixed values by caling one of
slls_import - in the case that A\(_o\) is explicitly available
slls_import_without_a - in the case that only the effect of applying A\(_o\) and its transpose to a vector is possible
slls_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved
solve the problem by calling one of
slls_solve_given_a - solve the problem using values of \(A_o\)
slls_solve_reverse_a_prod - solve the problem by returning to the caller for products of A\(_o\) and its transpose with specified vectors
slls_information (optional) - recover information about the solution and solution process
slls_terminate - deallocate data structures
See the examples section for illustrations of use.
callable functions#
overview of functions provided#
// typedefs typedef float spc_; typedef double rpc_; typedef int ipc_; // structs struct slls_control_type; struct slls_inform_type; struct slls_time_type; // function calls void slls_initialize( void **data, struct slls_control_type* control, ipc_ *status ); void slls_read_specfile( struct slls_control_type* control, const char specfile[] ); void slls_import( struct slls_control_type* control, void **data, ipc_ *status, ipc_ n, ipc_ o, const char A_type[], ipc_ Ao_ne, const ipc_ Ao_row[], const ipc_ Ao_col[], ipc_ Ao_ptr_ne, const ipc_ Ao_ptr[] ); void slls_import_without_a( struct slls_control_type* control, void **data, ipc_ *status, ipc_ n, ipc_ m ); void slls_reset_control( struct slls_control_type* control, void **data, ipc_ *status ); void slls_solve_given_a( void **data, void *userdata, ipc_ *status, ipc_ n, ipc_ o, ipc_ Ao_ne, const rpc_ Ao_val[], const rpc_ b[], rpc_ x[], rpc_ z[], rpc_ r[], rpc_ g[], ipc_ x_stat[], const rpc_ w[], ipc_(*)(ipc_, const rpc_[], rpc_[], const void*) eval_prec ); void slls_solve_reverse_a_prod( void **data, ipc_ *status, ipc_ *eval_status, ipc_ n, ipc_ o, const rpc_ b[], const rpc_ x_l[], const rpc_ x_u[], rpc_ x[], rpc_ z[], rpc_ r[], rpc_ g[], ipc_ x_stat[], rpc_ v[], const rpc_ p[], ipc_ nz_v[], ipc_ *nz_v_start, ipc_ *nz_v_end, const ipc_ nz_p[], ipc_ nz_p_end, const rpc_ w[] ); void slls_information(void **data, struct slls_inform_type* inform, ipc_ *status); void slls_terminate( void **data, struct slls_control_type* control, struct slls_inform_type* inform );
typedefs#
typedef float spc_
spc_
is real single precision
typedef double rpc_
rpc_
is the real working precision used, but may be changed to float
by
defining the preprocessor variable SINGLE
.
typedef int ipc_
ipc_
is the default integer word length used, but may be changed to
int64_t
by defining the preprocessor variable INTEGER_64
.
function calls#
void slls_initialize( void **data, struct slls_control_type* control, ipc_ *status )
Set default control values and initialize private data
Parameters:
data |
holds private internal data |
control |
is a struct containing control information (see slls_control_type) |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are (currently):
|
void slls_read_specfile( struct slls_control_type* control, const char specfile[] )
Read the content of a specification file, and assign values associated with given keywords to the corresponding control parameters. An in-depth discussion of specification files is available, and a detailed list of keywords with associated default values is provided in $GALAHAD/src/slls/SLLS.template. See also Table 2.1 in the Fortran documentation provided in $GALAHAD/doc/slls.pdf for a list of how these keywords relate to the components of the control structure.
Parameters:
control |
is a struct containing control information (see slls_control_type) |
specfile |
is a character string containing the name of the specification file |
void slls_import( struct slls_control_type* control, void **data, ipc_ *status, ipc_ n, ipc_ o, const char Ao_type[], ipc_ Ao_ne, const ipc_ Ao_row[], const ipc_ Ao_col[], ipc_ Ao_ptr_ne, const ipc_ Ao_ptr[] )
Import problem data into internal storage prior to solution.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see slls_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
n |
is a scalar variable of type ipc_, that holds the number of variables. |
o |
is a scalar variable of type ipc_, that holds the number of residuals. |
Ao_type |
is a one-dimensional array of type char that specifies the symmetric storage scheme used for the design matrix \(A_o\). It should be one of ‘coordinate’, ‘sparse_by_rows’, ‘sparse_by_columns’, ‘dense_by_rows’, or ‘dense_by_columns’; lower or upper case variants are allowed. |
Ao_ne |
is a scalar variable of type ipc_, that holds the number of entries in \(A_o\) in the sparse co-ordinate storage scheme. It need not be set for any of the other schemes. |
Ao_row |
is a one-dimensional array of size Ao_ne and type ipc_, that holds the row indices of \(A_o\) in the sparse co-ordinate or sparse column-wise storage scheme. It need not be set for any of the other schemes, and in this case can be NULL. |
Ao_col |
is a one-dimensional array of size Ao_ne and type ipc_, that holds the column indices of \(A_o\) in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be set for any of the other schemes, and in this case can be NULL. |
Ao_ptr_ne |
is a scalar variable of type ipc_, that holds the length of the pointer array if sparse row or column storage scheme is used for \(A_o\). For the sparse row scheme, Ao_ptr_ne should be at least o+1, while for the sparse column scheme, it should be at least n+1, It need not be set when the other schemes are used. |
Ao_ptr |
is a one-dimensional array of size Ao_ptr_ne and type ipc_, that holds the starting position of each row of \(A_o\), as well as the total number of entries, in the sparse row-wise storage scheme. By contrast, it holds the starting position of each column of \(A_o\), as well as the total number of entries, in the sparse column-wise storage scheme. It need not be set when the other schemes are used, and in this case can be NULL. |
void slls_import_without_a( struct slls_control_type* control, void **data, ipc_ *status, ipc_ n, ipc_ o )
Import problem data into internal storage prior to solution.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see slls_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
n |
is a scalar variable of type ipc_, that holds the number of variables. |
o |
is a scalar variable of type ipc_, that holds the number of residuals. |
void slls_reset_control( struct slls_control_type* control, void **data, ipc_ *status )
Reset control parameters after import if required.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see slls_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
void slls_solve_given_a( void **data, void *userdata, ipc_ *status, ipc_ n, ipc_ o, ipc_ Ao_ne, const rpc_ Ao_val[], const rpc_ b[], rpc_ x[], rpc_ z[], rpc_ r[], rpc_ g[], ipc_ x_stat[], const rpc_ w[], ipc_(*)(ipc_, const rpc_[], rpc_[], const void*) eval_prec )
Solve the simplex-constrained linear least-squares problem when the design matrix \(A_o\) is available.
Parameters:
data |
holds private internal data |
userdata |
is a structure that allows data to be passed into the function and derivative evaluation programs. |
status |
is a scalar variable of type ipc_, that gives the entry and exit status from the package. On initial entry, status must be set to 1. Possible exit values are:
|
n |
is a scalar variable of type ipc_, that holds the number of variables |
o |
is a scalar variable of type ipc_, that holds the number of residuals. |
Ao_ne |
is a scalar variable of type ipc_, that holds the number of entries in the design matrix \(A_o\). |
Ao_val |
is a one-dimensional array of size Ao_ne and type rpc_, that holds the values of the entries in the design matrix \(A_o\) in any of the available storage schemes. |
b |
is a one-dimensional array of size o and type rpc_, that holds the constant term \(b\) in the residuals. The i-th component of b, i = 0, … , o-1, contains \(b_i\). |
x |
is a one-dimensional array of size n and type rpc_, that holds the values \(x\) of the optimization variables. The j-th component of x, j = 0, … , n-1, contains \(x_j\). |
z |
is a one-dimensional array of size n and type rpc_, that holds the values \(z\) of the dual variables. The j-th component of z, j = 0, … , n-1, contains \(z_j\). |
r |
is a one-dimensional array of size o and type rpc_, that holds the values of the residuals \(r = A_o x - b\). The i-th component of r, i = 0, … , o-1, contains \(r_i\). |
g |
is a one-dimensional array of size n and type rpc_, that holds the values of the gradient \(g = A^T c\). The j-th component of g, j = 0, … , n-1, contains \(g_j\). |
x_stat |
is a one-dimensional array of size n and type ipc_, that gives the optimal status of the problem variables. If x_stat(j) is negative, the variable \(x_j\) most likely lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its bounds. |
eval_prec |
is an optional user-supplied function that may be NULL. If non-NULL, it must have the following signature: ipc_ eval_prec( ipc_ n, const rpc_ v[], rpc_ p[], const void *userdata ) The product \(p = P^{-1} v\) involving the user’s preconditioner \(P\) with the vector v = \(v\), the result \(p\) must be retured in p, and the function return value set to 0. If the evaluation is impossible, return should be set to a nonzero value. Data may be passed into |
void slls_solve_reverse_a_prod( void **data, ipc_ *status, ipc_ *eval_status, ipc_ n, ipc_ o, const rpc_ b[], const rpc_ x_l[], const rpc_ x_u[], rpc_ x[], rpc_ z[], rpc_ r[], rpc_ g[], ipc_ x_stat[], rpc_ v[], const rpc_ p[], ipc_ nz_v[], ipc_ *nz_v_start, ipc_ *nz_v_end, const ipc_ nz_p[], ipc_ nz_p_end, const rpc_ w[] )
Solve the bound-constrained linear least-squares problem when the products of the Jacobian \(A_o\) and its transpose with specified vectors may be computed by the calling program.
Parameters:
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the entry and exit status from the package. Possible exit values are:
|
eval_status |
is a scalar variable of type ipc_, that is used to indicate if the matrix products can be provided (see |
n |
is a scalar variable of type ipc_, that holds the number of variables |
o |
is a scalar variable of type ipc_, that holds the number of residuals. |
b |
is a one-dimensional array of size o and type rpc_, that holds the constant term \(b\) in the residuals. The i-th component of b, i = 0, … , o-1, contains \(b_i\). |
x_l |
is a one-dimensional array of size n and type rpc_, that holds the lower bounds \(x^l\) on the variables \(x\). The j-th component of x_l, j = 0, … , n-1, contains \(x^l_j\). |
x_u |
is a one-dimensional array of size n and type rpc_, that holds the upper bounds \(x^l\) on the variables \(x\). The j-th component of x_u, j = 0, … , n-1, contains \(x^l_j\). |
x |
is a one-dimensional array of size n and type rpc_, that holds the values \(x\) of the optimization variables. The j-th component of x, j = 0, … , n-1, contains \(x_j\). |
r |
is a one-dimensional array of size m and type rpc_, that holds the values of the residuals \(r = A x - b\). The i-th component of r, i = 0, … , o-1, contains \(r_i\). |
g |
is a one-dimensional array of size n and type rpc_, that holds the values of the gradient \(g = A^T W r\). The j-th component of g, j = 0, … , n-1, contains \(g_j\). |
z |
is a one-dimensional array of size n and type rpc_, that holds the values \(z\) of the dual variables. The j-th component of z, j = 0, … , n-1, contains \(z_j\). |
x_stat |
is a one-dimensional array of size n and type ipc_, that gives the optimal status of the problem variables. If x_stat(j) is negative, the variable \(x_j\) most likely lies on its lower bound, if it is positive, it lies on its upper bound, and if it is zero, it lies between its bounds. |
v |
is a one-dimensional array of size n and type rpc_, that is used for reverse communication (see status=2-4 above for details). |
p |
is a one-dimensional array of size n and type rpc_, that is used for reverse communication (see status=2-4 above for details). |
nz_v |
is a one-dimensional array of size n and type ipc_, that is used for reverse communication (see status=3-4 above for details). |
nz_v_start |
is a scalar of type ipc_, that is used for reverse communication (see status=3-4 above for details). |
nz_v_end |
is a scalar of type ipc_, that is used for reverse communication (see status=3-4 above for details). |
nz_p |
is a one-dimensional array of size n and type ipc_, that is used for reverse communication (see status=4 above for details). |
nz_p_end |
is a scalar of type ipc_, that is used for reverse communication (see status=4 above for details). |
w |
is an optional one-dimensional array of size m and type rpc_, that holds the values \(w\) of the weights on the residuals in the least-squares objective function. It need not be set if the weights are all ones, and in this case can be NULL. |
void slls_information(void **data, struct slls_inform_type* inform, ipc_ *status)
Provides output information
Parameters:
data |
holds private internal data |
inform |
is a struct containing output information (see slls_inform_type) |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are (currently):
|
void slls_terminate( void **data, struct slls_control_type* control, struct slls_inform_type* inform )
Deallocate all internal private storage
Parameters:
data |
holds private internal data |
control |
is a struct containing control information (see slls_control_type) |
inform |
is a struct containing output information (see slls_inform_type) |
available structures#
slls_control_type structure#
#include <galahad_slls.h> struct slls_control_type { // components bool f_indexing; ipc_ error; ipc_ out; ipc_ print_level; ipc_ start_print; ipc_ stop_print; ipc_ print_gap; ipc_ maxit; ipc_ cold_start; ipc_ preconditioner; ipc_ ratio_cg_vs_sd; ipc_ change_max; ipc_ cg_maxit; ipc_ arcsearch_max_steps; ipc_ sif_file_device; rpc_ weight; rpc_ stop_d; rpc_ stop_cg_relative; rpc_ stop_cg_absolute; rpc_ alpha_max; rpc_ alpha_initial; rpc_ alpha_reduction; rpc_ arcsearch_acceptance_tol; rpc_ stabilisation_weight; rpc_ cpu_time_limit; bool direct_subproblem_solve; bool exact_arc_search; bool space_critical; bool deallocate_error_fatal; bool generate_sif_file; char sif_file_name[31]; char prefix[31]; struct sbls_control_type sbls_control; struct convert_control_type convert_control; };
detailed documentation#
control derived type as a C struct
components#
bool f_indexing
use C or Fortran sparse matrix indexing
ipc_ error
unit number for error and warning diagnostics
ipc_ out
general output unit number
ipc_ print_level
the level of output required
ipc_ start_print
on which iteration to start printing
ipc_ stop_print
on which iteration to stop printing
ipc_ print_gap
how many iterations between printing
ipc_ maxit
how many iterations to perform (-ve reverts to HUGE(1)-1)
ipc_ cold_start
cold_start should be set to 0 if a warm start is required (with variable assigned according to X_stat, see below), and to any other value if the values given in prob.X suffice
ipc_ preconditioner
the preconditioner (scaling) used. Possible values are: /li 0. no preconditioner. /li 1. a diagonal preconditioner that normalizes the rows of \(A\). /li anything else. a preconditioner supplied by the user either via a subroutine call of eval_prec} or via reverse communication.
ipc_ ratio_cg_vs_sd
the ratio of how many iterations use CGLS rather than steepest descent
ipc_ change_max
the maximum number of per-iteration changes in the working set permitted when allowing CGLS rather than steepest descent
ipc_ cg_maxit
how many CG iterations to perform per SLLS iteration (-ve reverts to n+1)
ipc_ arcsearch_max_steps
the maximum number of steps allowed in a piecewise arcsearch (-ve=infini
ipc_ sif_file_device
the unit number to write generated SIF file describing the current probl
rpc_ weight
the value of the non-negative regularization weight sigma, i.e., the quadratic objective function q(x) will be regularized by adding 1/2 weight ||x||^2; any value smaller than zero will be regarded as zero.
rpc_ stop_d
the required accuracy for the dual infeasibility
rpc_ stop_cg_relative
the CG iteration will be stopped as soon as the current norm of the preconditioned gradient is smaller than max( stop_cg_relative * initial preconditioned gradient, stop_cg_absolute)
rpc_ alpha_max
the largest permitted arc length during the piecewise line search
rpc_ alpha_initial
the initial arc length during the inexact piecewise line search
rpc_ alpha_reduction
the arc length reduction factor for the inexact piecewise line search
rpc_ arcsearch_acceptance_tol
the required relative reduction during the inexact piecewise line search
rpc_ stabilisation_weight
the stabilisation weight added to the search-direction subproblem
rpc_ cpu_time_limit
the maximum CPU time allowed (-ve = no limit)
bool direct_subproblem_solve
direct_subproblem_solve is true if the least-squares subproblem is to be solved using a matrix factorization, and false if conjugate gradients are to be preferred
bool exact_arc_search
exact_arc_search is true if an exact arc_search is required, and false if an approximation suffices
bool space_critical
if space_critical is true, every effort will be made to use as little space as possible. This may result in longer computation times
bool deallocate_error_fatal
if deallocate_error_fatal is true, any array/pointer deallocation error will terminate execution. Otherwise, computation will continue
bool generate_sif_file
if generate_sif_file is true, a SIF file describing the current problem will be generated
char sif_file_name[31]
name (max 30 characters) of generated SIF file containing input problem
char prefix[31]
all output lines will be prefixed by a string (max 30 characters) prefix(2:LEN(TRIM(.prefix))-1) where prefix contains the required string enclosed in quotes, e.g. “string” or ‘string’
struct sbls_control_type sbls_control
control parameters for SBLS
struct convert_control_type convert_control
control parameters for CONVERT
slls_time_type structure#
#include <galahad_slls.h> struct slls_time_type { // components rpc_ total; rpc_ analyse; rpc_ factorize; rpc_ solve; };
detailed documentation#
time derived type as a C struct
components#
rpc_ total
the total CPU time spent in the package
rpc_ analyse
the CPU time spent analysing the required matrices prior to factorization
rpc_ factorize
the CPU time spent factorizing the required matrices
rpc_ solve
the CPU time spent in the linear solution phase
slls_inform_type structure#
#include <galahad_slls.h> struct slls_inform_type { // components ipc_ status; ipc_ alloc_status; ipc_ factorization_status; ipc_ iter; ipc_ cg_iter; rpc_ obj; rpc_ norm_pg; char bad_alloc[81]; struct slls_time_type time; struct sbls_inform_type sbls_inform; struct convert_inform_type convert_inform; };
detailed documentation#
inform derived type as a C struct
components#
ipc_ status
reported return status.
ipc_ alloc_status
Fortran STAT value after allocate failure.
ipc_ factorization_status
status return from factorization
ipc_ iter
number of iterations required
ipc_ cg_iter
number of CG iterations required
rpc_ obj
current value of the objective function, r(x).
rpc_ norm_pg
current value of the Euclidean norm of projected gradient of r(x).
char bad_alloc[81]
name of array which provoked an allocate failure
struct slls_time_type time
times for various stages
struct sbls_inform_type sbls_inform
inform values from SBLS
struct convert_inform_type convert_inform
inform values for CONVERT
example calls#
This is an example of how to use the package to solve a bound-constrained linear least-squares problem; the code is available in $GALAHAD/src/slls/C/sllst.c . A variety of supported Hessian and constraint matrix storage formats are shown.
Notice that C-style indexing is used, and that this is flagged by setting
control.f_indexing
to false
. The floating-point type rpc_
is set in galahad_precision.h
to double
by default, but to float
if the preprocessor variable SINGLE
is defined. Similarly, the integer
type ipc_
from galahad_precision.h
is set to int
by default,
but to int64_t
if the preprocessor variable INTEGER_64
is defined.
/* sllst.c */
/* Full test for the SLLS C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_slls.h"
// Define imax
ipc_ imax(ipc_ a, ipc_ b) {
return (a > b) ? a : b;
};
// Custom userdata struct
struct userdata_type {
rpc_ scale;
};
// Function prototypes
ipc_ prec( ipc_ n, const rpc_ v[], rpc_ p[], const void * );
int main(void) {
// Derived types
void *data;
struct slls_control_type control;
struct slls_inform_type inform;
// Set user data
struct userdata_type userdata;
userdata.scale = 1.0;
// Set problem data
ipc_ n = 10; // dimension
ipc_ o = n + 1; // number of residuals
ipc_ Ao_ne = 2 * n; // sparse Jacobian elements
ipc_ Ao_dense_ne = o * n; // dense Jacobian elements
// row-wise storage
ipc_ Ao_row[Ao_ne]; // row indices,
ipc_ Ao_col[Ao_ne]; // column indices
ipc_ Ao_ptr_ne = o+1; // row pointer length
ipc_ Ao_ptr[Ao_ptr_ne]; // row pointers
rpc_ Ao_val[Ao_ne]; // values
rpc_ Ao_dense[Ao_dense_ne]; // dense values
// column-wise storage
ipc_ Ao_by_col_row[Ao_ne]; // row indices,
ipc_ Ao_by_col_ptr_ne = n+1; // column pointer length
ipc_ Ao_by_col_ptr[Ao_by_col_ptr_ne]; // column pointers
rpc_ Ao_by_col_val[Ao_ne]; // values
rpc_ Ao_by_col_dense[Ao_dense_ne]; // dense values
rpc_ b[o]; // linear term in the objective
rpc_ x[n]; // variables
rpc_ z[n]; // dual variables
rpc_ r[o]; // residual
rpc_ g[n]; // gradient
// Set output storage
ipc_ x_stat[n]; // variable status
char st[3];
ipc_ i, l, status;
// A = ( I ) and b = ( i * e )
// ( e^T ) ( n + 1 )
for( ipc_ i = 0; i < n; i++) b[i] = i + 1;
b[n] = n+1;
// A by rows
for( ipc_ i = 0; i < n; i++)
{
Ao_ptr[i] = i;
Ao_row[i] = i; Ao_col[i] = i; Ao_val[i] = 1.0;
}
Ao_ptr[n] = n;
for( ipc_ i = 0; i < n; i++)
{
Ao_row[n+i] = n; Ao_col[n+i] = i; Ao_val[n+i] = 1.0;
}
Ao_ptr[o] = Ao_ne;
l = - 1;
for( ipc_ i = 0; i < n; i++)
{
for( ipc_ j = 0; j < n; j++)
{
l = l + 1;
if ( i == j ) {
Ao_dense[l] = 1.0;
}
else {
Ao_dense[l] = 0.0;
}
}
}
for( ipc_ j = 0; j < n; j++)
{
l = l + 1;
Ao_dense[l] = 1.0;
}
// A by columns
l = - 1;
for( ipc_ j = 0; j < n; j++)
{
l = l + 1; Ao_by_col_ptr[j] = l ;
Ao_by_col_row[l] = j ; Ao_by_col_val[l] = 1.0;
l = l + 1;
Ao_by_col_row[l] = n ; Ao_by_col_val[l] = 1.0;
}
Ao_by_col_ptr[n] = Ao_ne;
l = - 1;
for( ipc_ j = 0; j < n; j++)
{
for( ipc_ i = 0; i < n; i++)
{
l = l + 1;
if ( i == j ) {
Ao_by_col_dense[l] = 1.0;
}
else {
Ao_by_col_dense[l] = 0.0;
}
}
l = l + 1;
Ao_by_col_dense[l] = 1.0;
}
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of slls storage formats\n\n");
for( ipc_ d=1; d <= 5; d++){
// Initialize SLLS
slls_initialize( &data, &control, &status );
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
for( ipc_ i = 0; i < n; i++) x[i] = 0.0;
for( ipc_ i = 0; i < n; i++) z[i] = 0.0;
switch(d){
case 1: // sparse co-ordinate storage
strcpy( st, "CO" );
slls_import( &control, &data, &status, n, o,
"coordinate", Ao_ne, Ao_row, Ao_col, 0, NULL );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_ne, Ao_val, b,
x, z, r, g, x_stat, prec );
break;
case 2: // sparse by rows
strcpy( st, "SR" );
slls_import( &control, &data, &status, n, o,
"sparse_by_rows", Ao_ne, NULL, Ao_col,
Ao_ptr_ne, Ao_ptr );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_ne, Ao_val, b,
x, z, r, g, x_stat, prec );
break;
case 3: // dense by rows
strcpy( st, "DR" );
slls_import( &control, &data, &status, n, o,
"dense_by_rows", Ao_dense_ne,
NULL, NULL, 0, NULL );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_dense_ne, Ao_dense, b,
x, z, r, g, x_stat, prec );
break;
case 4: // sparse by columns
strcpy( st, "SC" );
slls_import( &control, &data, &status, n, o,
"sparse_by_columns", Ao_ne, Ao_by_col_row,
NULL, Ao_by_col_ptr_ne, Ao_by_col_ptr );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_ne, Ao_by_col_val, b,
x, z, r, g, x_stat, prec );
break;
case 5: // dense by columns
strcpy( st, "DC" );
slls_import( &control, &data, &status, n, o,
"dense_by_columns", Ao_dense_ne,
NULL, NULL, 0, NULL );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_dense_ne, Ao_by_col_dense, b,
x, z, r, g, x_stat, prec );
break;
}
slls_information( &data, &inform, &status );
if(inform.status == 0){
printf("%s:%6" i_ipc_ " iterations. Optimal objective value = %5.2f"
" status = %1" i_ipc_ "\n",
st, inform.iter, inform.obj, inform.status);
}else{
printf("%s: SLLS_solve exit status = %1" i_ipc_ "\n", st, inform.status);
}
//printf("x: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
slls_terminate( &data, &control, &inform );
}
printf("\n tests reverse-communication options\n\n");
// reverse-communication input/output
ipc_ on;
on = imax( n, o );
ipc_ eval_status, nz_v_start, nz_v_end, nz_p_end;
ipc_ nz_v[on], nz_p[o], mask[o];
rpc_ v[on], p[on];
nz_p_end = 0;
// Initialize SLLS
slls_initialize( &data, &control, &status );
// Set user-defined control options
control.f_indexing = false; // C sparse matrix indexing
// Start from 0
for( ipc_ i = 0; i < n; i++) x[i] = 0.0;
for( ipc_ i = 0; i < n; i++) z[i] = 0.0;
strcpy( st, "RC" );
for( ipc_ i = 0; i < o; i++) mask[i] = 0;
slls_import_without_a( &control, &data, &status, n, o ) ;
while(true){ // reverse-communication loop
slls_solve_reverse_a_prod( &data, &status, &eval_status, n, o, b,
x, z, r, g, x_stat, v, p,
nz_v, &nz_v_start, &nz_v_end,
nz_p, nz_p_end );
if(status == 0){ // successful termination
break;
}else if(status < 0){ // error exit
break;
}else if(status == 2){ // evaluate p = Av
p[n]=0.0;
for( ipc_ i = 0; i < n; i++){
p[i] = v[i];
p[n] = p[n] + v[i];
}
}else if(status == 3){ // evaluate p = A^Tv
for( ipc_ i = 0; i < n; i++) p[i] = v[i] + v[n];
}else if(status == 4){ // evaluate p = Av for sparse v
p[n]=0.0;
for( ipc_ i = 0; i < n; i++) p[i] = 0.0;
for( ipc_ l = nz_v_start - 1; l < nz_v_end; l++){
i = nz_v[l];
p[i] = v[i];
p[n] = p[n] + v[i];
}
}else if(status == 5){ // evaluate p = sparse Av for sparse v
nz_p_end = 0;
for( ipc_ l = nz_v_start - 1; l < nz_v_end; l++){
i = nz_v[l];
if (mask[i] == 0){
mask[i] = 1;
nz_p[nz_p_end] = i;
nz_p_end = nz_p_end + 1;
p[i] = v[i];
}
if (mask[n] == 0){
mask[n] = 1;
nz_p[nz_p_end] = n;
nz_p_end = nz_p_end + 1;
p[n] = v[i];
}else{
p[n] = p[n] + v[i];
}
}
for( ipc_ l = 0; l < nz_p_end; l++) mask[nz_p[l]] = 0;
}else if(status == 6){ // evaluate p = sparse A^Tv
for( ipc_ l = nz_v_start - 1; l < nz_v_end; l++){
i = nz_v[l];
p[i] = v[i] + v[n];
}
}else if(status == 7){ // evaluate p = P^{-}v
for( ipc_ i = 0; i < n; i++) p[i] = userdata.scale * v[i];
}else{
printf(" the value %1" i_ipc_ " of status should not occur\n", status);
break;
}
eval_status = 0;
}
// Record solution information
slls_information( &data, &inform, &status );
// Print solution details
if(inform.status == 0){
printf("%s:%6" i_ipc_ " iterations. Optimal objective value = %5.2f"
" status = %1" i_ipc_ "\n",
st, inform.iter, inform.obj, inform.status);
}else{
printf("%s: SLLS_solve exit status = %1" i_ipc_ "\n", st, inform.status);
}
//printf("x: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
slls_terminate( &data, &control, &inform );
}
// Apply preconditioner
ipc_ prec( ipc_ n, const rpc_ v[], rpc_ p[], const void *userdata ){
struct userdata_type *myuserdata = (struct userdata_type *) userdata;
rpc_ scale = myuserdata->scale;
for( ipc_ i = 0; i < n; i++) p[i] = scale * v[i];
return 0;
}
This is the same example, but now fortran-style indexing is used; the code is available in $GALAHAD/src/slls/C/sllstf.c .
/* sllstf.c */
/* Full test for the SLLS C interface using fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_slls.h"
// Define imax
ipc_ imax(ipc_ a, ipc_ b) {
return (a > b) ? a : b;
};
// Custom userdata struct
struct userdata_type {
rpc_ scale;
};
// Function prototypes
ipc_ prec( ipc_ n, const rpc_ v[], rpc_ p[], const void * );
int main(void) {
// Derived types
void *data;
struct slls_control_type control;
struct slls_inform_type inform;
// Set user data
struct userdata_type userdata;
userdata.scale = 1.0;
// Set problem data
ipc_ n = 10; // dimension
ipc_ o = n + 1; // number of residuals
ipc_ Ao_ne = 2 * n; // sparse Jacobian elements
ipc_ Ao_dense_ne = o * n; // dense Jacobian elements
// row-wise storage
ipc_ Ao_row[Ao_ne]; // row indices,
ipc_ Ao_col[Ao_ne]; // column indices
ipc_ Ao_ptr_ne = o+1; // row pointer length
ipc_ Ao_ptr[Ao_ptr_ne]; // row pointers
rpc_ Ao_val[Ao_ne]; // values
rpc_ Ao_dense[Ao_dense_ne]; // dense values
// column-wise storage
ipc_ Ao_by_col_row[Ao_ne]; // row indices,
ipc_ Ao_by_col_ptr_ne = n+1; // column pointer length
ipc_ Ao_by_col_ptr[Ao_by_col_ptr_ne]; // column pointers
rpc_ Ao_by_col_val[Ao_ne]; // values
rpc_ Ao_by_col_dense[Ao_dense_ne]; // dense values
rpc_ b[o]; // linear term in the objective
rpc_ x[n]; // variables
rpc_ z[n]; // dual variables
rpc_ r[o]; // residual
rpc_ g[n]; // gradient
// Set output storage
ipc_ x_stat[n]; // variable status
char st[3];
ipc_ i, l, status;
// A = ( I ) and b = ( i * e )
// ( e^T ) ( n + 1 )
for( ipc_ i = 0; i < n; i++) b[i] = i + 1;
b[n] = n+1;
// A by rows
for( ipc_ i = 0; i < n; i++)
{
Ao_ptr[i] = i + 1;
Ao_row[i] = i + 1; Ao_col[i] = i + 1; Ao_val[i] = 1.0;
}
Ao_ptr[n] = n + 1;
for( ipc_ i = 0; i < n; i++)
{
Ao_row[n+i] = o; Ao_col[n+i] = i + 1; Ao_val[n+i] = 1.0;
}
Ao_ptr[o] = Ao_ne + 1;
l = - 1;
for( ipc_ i = 0; i < n; i++)
{
for( ipc_ j = 0; j < n; j++)
{
l = l + 1;
if ( i == j ) {
Ao_dense[l] = 1.0;
}
else {
Ao_dense[l] = 0.0;
}
}
}
for( ipc_ j = 0; j < n; j++)
{
l = l + 1;
Ao_dense[l] = 1.0;
}
// A by columns
l = - 1;
for( ipc_ j = 0; j < n; j++)
{
l = l + 1; Ao_by_col_ptr[j] = l + 1;
Ao_by_col_row[l] = j + 1; Ao_by_col_val[l] = 1.0;
l = l + 1;
Ao_by_col_row[l] = o; Ao_by_col_val[l] = 1.0;
}
Ao_by_col_ptr[n] = Ao_ne;
l = - 1;
for( ipc_ j = 0; j < n; j++)
{
for( ipc_ i = 0; i < n; i++)
{
l = l + 1;
if ( i == j ) {
Ao_by_col_dense[l] = 1.0;
}
else {
Ao_by_col_dense[l] = 0.0;
}
}
l = l + 1;
Ao_by_col_dense[l] = 1.0;
}
printf(" fortran sparse matrix indexing\n\n");
printf(" basic tests of slls storage formats\n\n");
for( ipc_ d=1; d <= 5; d++){
// Initialize SLLS
slls_initialize( &data, &control, &status );
// Set user-defined control options
control.f_indexing = true; // fortran sparse matrix indexing
// Start from 0
for( ipc_ i = 0; i < n; i++) x[i] = 0.0;
for( ipc_ i = 0; i < n; i++) z[i] = 0.0;
switch(d){
case 1: // sparse co-ordinate storage
strcpy( st, "CO" );
slls_import( &control, &data, &status, n, o,
"coordinate", Ao_ne, Ao_row, Ao_col, 0, NULL );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_ne, Ao_val, b,
x, z, r, g, x_stat, prec );
break;
case 2: // sparse by rows
strcpy( st, "SR" );
slls_import( &control, &data, &status, n, o,
"sparse_by_rows", Ao_ne, NULL, Ao_col,
Ao_ptr_ne, Ao_ptr );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_ne, Ao_val, b,
x, z, r, g, x_stat, prec );
break;
case 3: // dense by rows
strcpy( st, "DR" );
slls_import( &control, &data, &status, n, o,
"dense_by_rows", Ao_dense_ne,
NULL, NULL, 0, NULL );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_dense_ne, Ao_dense, b,
x, z, r, g, x_stat, prec );
break;
case 4: // sparse by columns
strcpy( st, "SC" );
slls_import( &control, &data, &status, n, o,
"sparse_by_columns", Ao_ne, Ao_by_col_row,
NULL, Ao_by_col_ptr_ne, Ao_by_col_ptr );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_ne, Ao_by_col_val, b,
x, z, r, g, x_stat, prec );
break;
case 5: // dense by columns
strcpy( st, "DC" );
slls_import( &control, &data, &status, n, o,
"dense_by_columns", Ao_dense_ne,
NULL, NULL, 0, NULL );
slls_solve_given_a( &data, &userdata, &status, n, o,
Ao_dense_ne, Ao_by_col_dense, b,
x, z, r, g, x_stat, prec );
break;
}
slls_information( &data, &inform, &status );
if(inform.status == 0){
printf("%s:%6" i_ipc_ " iterations. Optimal objective value = %5.2f"
" status = %1" i_ipc_ "\n",
st, inform.iter, inform.obj, inform.status);
}else{
printf("%s: SLLS_solve exit status = %1" i_ipc_ "\n", st, inform.status);
}
//printf("x: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
slls_terminate( &data, &control, &inform );
}
printf("\n tests reverse-communication options\n\n");
// reverse-communication input/output
ipc_ on;
on = imax( o, n );
ipc_ eval_status, nz_v_start, nz_v_end, nz_p_end;
ipc_ nz_v[on], nz_p[o], mask[o];
rpc_ v[on], p[on];
nz_p_end = 0;
// Initialize SLLS
slls_initialize( &data, &control, &status );
// Set user-defined control options
control.f_indexing = true; // fortran sparse matrix indexing
// Start from 0
for( ipc_ i = 0; i < n; i++) x[i] = 0.0;
for( ipc_ i = 0; i < n; i++) z[i] = 0.0;
strcpy( st, "RC" );
for( ipc_ i = 0; i < o; i++) mask[i] = 0;
slls_import_without_a( &control, &data, &status, n, o ) ;
while(true){ // reverse-communication loop
slls_solve_reverse_a_prod( &data, &status, &eval_status, n, o, b,
x, z, r, g, x_stat, v, p,
nz_v, &nz_v_start, &nz_v_end,
nz_p, nz_p_end );
if(status == 0){ // successful termination
break;
}else if(status < 0){ // error exit
break;
}else if(status == 2){ // evaluate p = Av
p[n]=0.0;
for( ipc_ i = 0; i < n; i++){
p[i] = v[i];
p[n] = p[n] + v[i];
}
}else if(status == 3){ // evaluate p = A^Tv
for( ipc_ i = 0; i < n; i++) p[i] = v[i] + v[n];
}else if(status == 4){ // evaluate p = Av for sparse v
p[n]=0.0;
for( ipc_ i = 0; i < n; i++) p[i] = 0.0;
for( ipc_ l = nz_v_start - 1; l < nz_v_end; l++){
i = nz_v[l]-1;
p[i] = v[i];
p[n] = p[n] + v[i];
}
}else if(status == 5){ // evaluate p = sparse Av for sparse v
nz_p_end = 0;
for( ipc_ l = nz_v_start - 1; l < nz_v_end; l++){
i = nz_v[l]-1;
if (mask[i] == 0){
mask[i] = 1;
nz_p[nz_p_end] = i+1;
nz_p_end = nz_p_end + 1;
p[i] = v[i];
}
if (mask[n] == 0){
mask[n] = 1;
nz_p[nz_p_end] = o;
nz_p_end = nz_p_end + 1;
p[n] = v[i];
}else{
p[n] = p[n] + v[i];
}
}
for( ipc_ l = 0; l < nz_p_end; l++) mask[nz_p[l]] = 0;
}else if(status == 6){ // evaluate p = sparse A^Tv
for( ipc_ l = nz_v_start - 1; l < nz_v_end; l++){
i = nz_v[l]-1;
p[i] = v[i] + v[n];
}
}else if(status == 7){ // evaluate p = P^{-}v
for( ipc_ i = 0; i < n; i++) p[i] = userdata.scale * v[i];
}else{
printf(" the value %1" i_ipc_ " of status should not occur\n", status);
break;
}
eval_status = 0;
}
// Record solution information
slls_information( &data, &inform, &status );
// Print solution details
if(inform.status == 0){
printf("%s:%6" i_ipc_ " iterations. Optimal objective value = %5.2f"
" status = %1" i_ipc_ "\n",
st, inform.iter, inform.obj, inform.status);
}else{
printf("%s: SLLS_solve exit status = %1" i_ipc_ "\n", st, inform.status);
}
//printf("x: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
//printf("\n");
//printf("gradient: ");
//for( ipc_ i = 0; i < n; i++) printf("%f ", g[i]);
//printf("\n");
// Delete internal workspace
slls_terminate( &data, &control, &inform );
}
// Apply preconditioner
ipc_ prec( ipc_ n, const rpc_ v[], rpc_ p[], const void *userdata ){
struct userdata_type *myuserdata = (struct userdata_type *) userdata;
rpc_ scale = myuserdata->scale;
for( ipc_ i = 0; i < n; i++) p[i] = scale * v[i];
return 0;
}