
GALAHAD ULS

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package solves dense or sparse unsymmetric systems of linear equations using variants of Gaussian elimina-

tion. Given a sparse symmetric matrix A = {ai j}m×n, and an m-vector b, this subroutine solves the system Ax = b. If

b is an n-vector, the subroutine may solve instead the system AT x = b. Both square (m = n) and rectangular (m 6= n)

matrices are handled; one of an infinite class of solutions for consistent systems will be returned whenever A is not of

full rank.

The method provides a common interface to a variety of well-known solvers from HSL and elsewhere. Currently

supported solvers include MA28/GLS and HSL MA48, as well as GETR from LAPACK. Note that the solvers themselves

do not form part of this package and must be obtained separately. Dummy instances are provided for solvers that

are unavailable. Also note that additional flexibility may be obtained by calling the solvers directly rather that via this

package.

ATTRIBUTES — Versions: GALAHAD ULS single, GALAHAD ULS double. Calls: GALAHAD SYMBOLS, GALAHAD -

SORT, GALAHAD SPACE, GALAHAD SPECFILE, GALAHAD STRING, GALAHAD SMT, GALAHAD GLS and optionally HSL MA48.

Date: August 2009. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or

Fortran 2003. Parallelism: Some solvers may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD ULS single

with the obvious substitution GALAHAD ULS double, GALAHAD ULS single 64 and GALAHAD ULS double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, ULS control type,

ULS data type, and ULS inform type (§2.5), and the subroutines ULS initialize, ULS factorize, ULS solve,

ULS terminate (§2.6), and ULS enquire (§2.8) must be renamed on one of the USE statements.

There are four principal subroutines for user calls (see §2.8 for further features):

The subroutine ULS initialize must be called to specify the external solver to be used. It may also be called to set

default values for solver-specific components of the control structure. If non-default values are wanted for any

of the control components, the corresponding components should be altered after the call to ULS initialize.

ULS factorize accepts the pattern of A and chooses pivots for Gaussian elimination using a selection criterion to

preserve sparsity. The factors of A are generated using the calculated pivot order.

ULS solve uses the factors generated by ULS factorize to solve a system of equations Ax= b or AT x= b. Iterative

refinement may be used to improve a given solution or set of solutions.

ULS terminate deallocates the arrays held inside the structure for the factors. It should be called when all the

systems involving its matrix have been solved or before another external solver is to be used.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ULS (May 24, 2024) 1

ULS GALAHAD

2.1 Supported external solvers

In Table 2.1 we summarize key features of the external solvers supported by ULS. Further details are provided in the

references cited in §4.

solver factorization out-of-core parallelised

GLS/MA28 sparse no no

HSL MA48 sparse no no

GETR dense no with parallel LAPACK

Table 2.1: External solver characteristics.

2.2 Matrix storage formats

The matrix A may be stored in a variety of input formats.

2.2.1 Sparse co-ordinate storage format

Only the nonzero entries of A are stored. For the l-th entry of A, its row index i, column index j and value ai j are

stored in the l-th components of the integer arrays row, col and real array val, respectively. The order is unimportant,

but the total number of entries ne is also required.

2.2.2 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+1. For the i-th row of A, the i-th component of an integer array ptr holds the position of the first entry

in this row, while ptr (m+ 1) holds the total number of entries plus one. The column indices j and values ai j of the

entries in the i-th row are stored in components l = ptr(i), . . . ,ptr (i+ 1)− 1 of the integer array col, and real array

val, respectively.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.2.3 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. In particular, component m∗(i−1)+ j of the storage

array val will hold the value ai j for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

2.3 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.4 Parallel usage

OpenMP may be used by the GALAHAD ULS package to provide parallelism for some solvers in shared memory envi-

ronments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP must

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 ULS (May 24, 2024) GALAHAD

GALAHAD ULS

be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number of

threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.5 The derived data types

Four derived data types are used by the package.

2.5.1 The derived data type for holding the matrix

The derived data type SMT type is used to hold the matrix A. The components of SMT type used are:

m is a scalar variable of type INTEGER(ip), that holds the row dimension m of the matrix A. Restriction: m ≥ 1.

n is a scalar variable of type INTEGER(ip), that holds the column dimension n of the matrix A. Restriction: n

≥ 1.

type is an allocatable array of rank one and type default CHARACTER, that indicates the storage scheme used. If

the sparse co-ordinate scheme (see §2.2.1) is used the first ten components of type must contain the string

COORDINATE. For the sparse row-wise storage scheme (see §2.2.2), the first fourteen components of type must

contain the string SPARSE BY ROWS, and for dense storage scheme (see §2.2.3) the first five components of type

must contain the string DENSE.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into type. For example, if A is to be stored in the structure A of derived type SMT type and we wish to

use the co-ordinate scheme, we may simply

CALL SMT_put(A%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

ne is a scalar variable of type INTEGER(ip), that holds the number of entries in A in the sparse co-ordinate storage

scheme (see §2.2.1). It need not be set for any of the other three schemes.

val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the matrix A for each of

the storage schemes discussed in §2.2. Any duplicated entries that appear in the sparse co-ordinate or row-wise

schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of A in the sparse co-ordinate

storage scheme (see §2.2.1). It need not be allocated for any of the other schemes. Any entry whose row index

lies out of the range [1,n] will be ignored.

col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of A in either the

sparse co-ordinate (see §2.2.1), or the sparse row-wise (see §2.2.2) storage scheme. It need not be allocated

when the dense storage scheme is used. Any entry whose row index lies out of the range [1,m] or column index

lies out of the range [1,n] will be ignored.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ULS (May 24, 2024) 3

ULS GALAHAD

ptr is a rank-one allocatable array of size m+1 and type INTEGER(ip), that holds the starting position of A, as well as

the total number of entries plus one, in the sparse row-wise storage scheme (see §2.2.2). It need not be allocated

for the other schemes.

Although any of the above-mentioned matrix storage formats may be used with each supported solver, MA28/GLS and

HSL MA48 from HSL are most efficient if co-ordinate input is provided.

2.5.2 The derived data type for holding control parameters

The derived data type ULS control type is used to hold controlling data. Default values specifically for the desired

solver may be obtained by calling ULS initialize (see §2.6.1), while components may be changed at run time by

calling ULS read specfile (see §2.9.1). The components of ULS control type are:

error is a scalar variable of type INTEGER(ip), that holds the unit number for error messages. Printing of error

messages is suppressed if error< 0. The default is error = 6.

warning is a scalar variable of type INTEGER(ip), that holds the unit number for warning messages. Printing of

warning messages is suppressed if warning< 0. The default is warning = 6.

out is a scalar variable of type INTEGER(ip), that holds the unit number for informational messages. Printing of

informational messages is suppressed if out< 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

that is required. No informational output will occur if print level≤ 0. If print level ≥ 1 a single line of

output will be produced for each step of iterative refinement performed. If print level ≥ 2 this output may be

increased to provide significant detail of the factorization process. The default is print level = 0.

print level solver is a scalar variable of type INTEGER(ip), that is used to control the amount of informa-

tional output that is required by the exteral solver. No informational output will occur if print level≤ 0. If

print level ≥ 1 the amount of output produced is solver dependent. The default is print level solver =

0.

initial fill in factor is a scalar variable of type INTEGER(ip), that gives a prediction of the factor by which

the fill-in will exceed the initial number of entries in a. The default is initial fill in factor = 3.

min real factor size is a scalar variable of type INTEGER(ip), that specifies the amount of real storage that will

initially be allocated for the factors and other data. The default is min real factor size = 10000, and this

default is used if min real factor size < 1.

min integer factor size is a scalar variable of type INTEGER(ip), that specifies the amount of integer storage

that will initially be allocated for the factors and other data. The default is min integer factor size =

10000, and this default is used if min integer factor size < 1.

max factor size is a scalar variable of type INTEGER(int64), that specifies the maximum amount of real storage

that will be allocated for the factors and other data. The default is max factor size = HUGE(0).

blas block size factorize is a scalar variable of type INTEGER(ip), that gives the block size for level-three basic

linear algebra subprograms (BLAS) in the factorization phase. The default is blas block size factorize =

16, and this default is used if blas block size factorize < 1.

blas block size solve is a scalar variable of type INTEGER(ip), that gives the block size for level-two and -three

basic linear algebra subprograms (BLAS) in the solution phase. The default is blas block size solve = 16,

and this default is used if blas block size solve < 1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 ULS (May 24, 2024) GALAHAD

GALAHAD ULS

pivot control is a scalar variable of type INTEGER(ip), that is used to control numerical pivoting by ULS -

factorize. Possible values are:

1 Threshold partial pivoting will be performed, with relative pivot tolerance given by the component relative -

pivot tolerance.

2 Threshold rook pivoting is desired, with relative pivot tolerance given by the component relative pivot -

tolerance.

3 Threshold complete pivoting is desired, with relative pivot tolerance given by the component relative -

pivot tolerance.

4 Threshold symmetric pivoting is desired, with relative pivot tolerance given by the component relative -

pivot tolerance.

5 Threshold diagonal pivoting is desired, with relative pivot tolerance given by the component relative -

pivot tolerance.

The default is pivot control = 1, and any value outside of [1,5] will be reset to the default. If a desired value

is not available, the default will be substituted.

pivot search limit is a scalar variable of type INTEGER(ip), that controls the maximum number of row and

columns searched for a pivot. If pivot search limit ≤ 0, the search is unlimited. The default is pivot search -

limit = 0.

minimum size for btf is a scalar variable of type INTEGER(ip), that specifies the minimum size of a block within

any block-triangular form found during the factorization. The default is minimum size for btf = 1.

max iterative refinements is a scalar variable of type default INTEGER(ip), that holds the maximum number of

iterative refinements that may be attempted. The default is max iterative refinements = 0.

stop if singular is a scalar variable of type default LOGICAL, that should be set .TRUE. if the factorization is to

be terminated if A is found to be singular, and .FALSE. if the factorization should continue. The default is

stop if singular = .FALSE..

array increase factor is a scalar variable of type REAL(rp), that holds the factor by which arrays sizes are to be

increased if they are too small. The default is array increase factor = 2.0.

switch to full code density is a scalar variable of type REAL(rp), that specifies the density at which a switch to

full/dense code to perform the remaining factorization occurs. The default is switch to full code density

= 0.5.

array decrease factor is a scalar variable of type REAL(rp), that holds a factor which is used to assess whether

previously allocated internal workspace arrays are excessive. In particular, if current requirements are less

than array decrease factor times the currently allocated space, the space will be re-allocated to current

requirements. The default is array decrease factor = 2.0.

relative pivot tolerance is a scalar variable of type REAL(rp), that holds the relative pivot tolerance that is used

to control the stability of the factorization. The default is relative pivot tolerance = 0.01. For problems

requiring greater than average numerical care a higher value than the default would be advisable. Values greater

than 0.5 are treated as 0.5 and less than 0.0 as 0.0.

absolute pivot tolerance is a scalar variable of type REAL(rp), that holds the absolute pivot tolerance which is

used to control the stability of the factorization. No pivot smaller than absolute pivot tolerance in absolute

value will be accepted. The default is absolute pivot tolerance = EPSILON(1.0) (EPSILON(1.0D0) in

GALAHAD ULS double).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ULS (May 24, 2024) 5

ULS GALAHAD

zero tolerance is a scalar variable of type REAL(rp), that controls which small entries are to be ignored during the

factorization of A. Any entry smaller in absolute value than zero tolerance will be treated as zero; as a con-

sequence when zero tolerance > 0, the factors produced will be of a perturbation of order zero tolerance

of A. The default is zero tolerance = 0.0.

acceptable residual relative and acceptable residual absolute are scalar variables of type REAL(rp),

that specify an acceptable level for the residual Ax − b or residuals Axi − bi, i = 1, . . . ,r, when there are

more than one. In particular, iterative refinement will cease as soon as ‖Ax− b‖∞ falls below max(‖b‖∞∗
acceptable residual relative, acceptable residual absolute); for the multiple residual case, we re-

quire that ‖Axi−bi‖∞ falls below max(‖bi‖∞∗ acceptable residual relative, for each i= 1, . . . ,r. The de-

faults are acceptable residual relative = acceptable residual absolute = 10u, where u is EPSILON(1.0)

(EPSILON(1.0D0) in GALAHAD ULS double).

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, the default prefix = "" should be used.

2.5.3 The derived data type for holding informational parameters

The derived data type ULS inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of ULS inform type are as follows—any component that is not relevant to the

solver being used will have the value -1 or -1.0 as appropriate:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See §2.7 for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if there have been no allocation

or deallocation errors.

out of range is a scalar variable of type INTEGER(int64), that is set to the number of entries of A supplied with

one or both indices out of range.

duplicates is a scalar variable of type INTEGER(int64), that is set to the number of duplicate off-diagonal entries

of A supplied.

entries dropped is a scalar variable of type INTEGER(int64), that is set to the number of small entries dropped

from the factorization.

workspace factors is a scalar variable of type INTEGER(int64), that gives the total number of reals and integers

needed to hold the factors.

compresses is a scalar variable of type INTEGER(ip), that gives the number of compresses of the workspace data

required.

entries in factors is a scalar variable of type INTEGER(int64), that gives the number of entries in the factors of

A.

rank is a scalar variable of type INTEGER(ip), that gives an estimate of the rank of A.

structural rank is a scalar variable of type INTEGER(ip), that gives the structural rank of A.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 ULS (May 24, 2024) GALAHAD

GALAHAD ULS

pivot control is a scalar variable of type INTEGER(ip), that specifies what form of numerical pivoting has been

used. Possible values are:

1 Threshold partial pivoting has been performed.

2 Threshold rook pivoting has been performed.

3 Threshold complete pivoting has been performed.

4 Threshold symmetric pivoting has been performed.

5 Threshold diagonal pivoting has been performed.

iterative refinements is a scalar variable of type INTEGER(ip), that gives the number of iterative refinements

performed.

solver is a scalar variable of type default CHARACTER and length 20, that gives the name of the actual solver used.

gls ainfo is a scalar variable of type gls ainfo, that corresponds to the output value gls ainfo from GLS. See the

documentation for GLS for further details.

gls finfo is a scalar variable of type gls finfo, that corresponds to the output value gls finfo from GLS. See the

documentation for GLS for further details.

gls sinfo is a scalar variable of type gls sinfo, that corresponds to the output value gls sinfo from GLS. See the

documentation for GLS for further details.

ma48 ainfo is a scalar variable of type ma48 ainfo, that corresponds to the output value ma48 ainfo from HSL MA48.

See the documentation for HSL MA48 for further details.

ma48 finfo is a scalar variable of type ma48 finfo, that corresponds to the output value ma48 finfo from HSL MA48.

See the documentation for HSL MA48 for further details.

ma48 sinfo is a scalar variable of type ma48 sinfo, that corresponds to the output value ma48 sinfo from HSL MA48.

See the documentation for HSL MA48 for further details.

PARDISO error is a scalar variable of type INTEGER(ip), that corresponds to the output value error from PARDISO.

See the documentation for PARDISO for further details.

PARDISO iparm is an array of size 64 and type INTEGER(ip), whose components correspond to those in the output

array IPARM from PARDISO. See the documentation for PARDISO for further details.

PARDISO dparm is an array of size 64 and type REAL(rp), whose components correspond to those in the output array

DPARM from PARDISO. See the documentation for PARDISO for further details.

lapack error is a scalar variable of type INTEGER(ip), that corresponds to the output value info returned from

the LAPACK routine S/DGETRF/S. See the documentation for LAPACK for further details.

2.5.4 The derived data type for holding problem data

The derived data type ULS data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls to ULS procedures. All components are private.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ULS (May 24, 2024) 7

ULS GALAHAD

2.6 Argument lists and calling sequences

2.6.1 The initialization subroutine

The initialization subroutine must be called for each solver used to initialize data and solver-specific control parame-

ters.

CALL ULS initialize(solver, data, control, inform[, check])

solver is scalar, of INTENT(IN), of type CHARACTER, and of variable length that specifies which solver to use. Pos-

sible values are

gls if the GALAHAD solver GLS is desired.

ma28 is an alias for gls that reflects the fact that the GALAHAD solver GLS is a Fortran-90 encapsulation of the

Fortran-77 package MA28 from HSL.

ma48 if the HSL solver HSL MA48 is desired. This is a more advanced version of GLS/MA28.

getr if the LAPACK dense LU factorization package (S/D)GETR(F/S) is desired.

Other solvers may be added in the future.

data is a scalar INTENT(OUT)argument of type ULS data type (see §2.5.4). It is used to hold data about the problem

being solved.

control is a scalar INTENT(OUT)argument of type ULS control type (see §2.5.2). On exit, control contains

solver-specific default values for the components as described in §2.5.2. These values should only be changed

after calling ULS initialize.

inform is a scalar INTENT(OUT)argument of type ULS inform type (see §2.5.3). A successful call is indicated when

the component status has the value 0. For other return values of status, see §2.7.

check is an OPTIONAL scalar LOGICAL INTENT(IN) argument that if PRESENT and set .TRUE. will check to see if the

requested solver is available, and if not will replace this by a suitable equivalent; the equivalent will be recorded

in control%solver. No checks will be performed if check is not PRESENT or if it is set to .FALSE. .

2.6.2 The factorization subroutine

The matrix A may be factorized as follows:

CALL ULS factorize(matrix, data, control, inform)

matrix is scalar INTENT(IN) argument of type SMT type that is used to specify A. The user must set all of the relevant

components of matrix according to the storage scheme desired (see §2.5.1). Incorrectly-set components will

result in errors flagged in inform%status, see §2.7.

data is a scalar INTENT(INOUT) argument of type ULS data type (see §2.5.4). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to ULS initialize and not

altered by the user in the interim.

control is scalar INTENT(IN) argument of type ULS control type. Its components control the action of the factor-

ization phase, as explained in §2.5.2.

inform is a scalar INTENT(INOUT) argument of type ULS inform type (see §2.5.3). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.7.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 ULS (May 24, 2024) GALAHAD

GALAHAD ULS

2.6.3 The solution subroutine

Given the factorization, a set of equations may be solved as follows:

CALL ULS solve(matrix, RHS, X, data, control, inform, trans)

matrix is scalar INTENT(IN) argument of type SMT type that is used to specify A. The user must set all of the

relevant components of matrix according to the storage scheme desired (see §2.5.1). Those components set for

ULS factorize must not have been altered in the interim.

RHS is an INTENT(IN) assumed-shape array argument of rank 1 and of type REAL(rp). On entry, RHS must be set

to the vector b and on successful return it holds the solution x. The i-th component of b occupies the i-th

component of RHS.

X is an INTENT(INOUT) assumed-shape array argument of rank 1 and of type REAL(rp). On successful return it

holds the solution x. The i-th component of the solution x occupies the i-th component of X.

data is a scalar INTENT(INOUT) argument of type ULS data type (see §2.5.4). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to ULS initialize and not

altered by the user in the interim.

control is scalar INTENT(IN) argument of type ULS control type. Its components control the action of the solve

phase, as explained in §2.5.2.

inform is a scalar INTENT(INOUT) argument of type ULS inform type (see §2.5.3). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.7.

trans is a scalar INTENT(IN) argument of type LOGICAL that should be set .TRUE. if the solution to AT x = b is

sought, and .FALSE. if the solution to Ax = b is required.

2.6.4 The termination subroutine

All previously allocated internal arrays are deallocated and OpenMP locks destroyed as follows:

CALL ULS terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type ULS data type (see §2.5.4). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to ULS initialize and not

altered by the user in the interim. On exit, its allocatable array components will have been deallocated.

control is scalar INTENT(IN) argument of type ULS control type. Its components control the action of the termi-

nation phase, as explained in §2.5.2.

inform is a scalar INTENT(INOUT) argument of type ULS inform type (see §2.5.3). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.7.

2.7 Warning and error messages

A negative value of inform%status on exit from the subroutines indicates that an error has occurred. No further calls

should be made until the error has been corrected. Possible values are:

-1 An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ULS (May 24, 2024) 9

ULS GALAHAD

-2 A deallocation error occurred. A message indicating the offending array is written on unit control%error and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3 One of the restrictions matrix%m > 0 or matrix%n > 0 or matrix%ne < 0, for co-ordinate entry, or requirements

that matrix%type contain its relevant string ’COORDINATE’, ’SPARSE BY ROWS’ or ’DENSE’ has been violated.

-26 The requested solver is not available.

-29 This option is not available with this solver.

-32 The integer workspace required is larger than max factor size.

-33 The real workspace required is larger than max factor size.

-39 The input permutation/pivot order is not a permutation or is faulty in some other way.

-50 A solver-specific error occurred; check the solver-specific information component of inform along with the

solver’s documentation for more details.

2.8 Further features

In this section, we describe a feature for enquiring about the factorization constructed. This feature will not be needed

by a user who wants simply to solve systems of equations with matrix A or AT .

The solvers used each produce an PRLUPC factorization of A, where L and U are lower and upper triangular

matrices, and PR and PC are row and column permutation matrices respectively. The following subroutine is provided:

ULS enquire returns the row and column permutations that define PR and PC.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 ULS (May 24, 2024) GALAHAD

GALAHAD ULS

Support for this feature from the solvers available with ULS is summarised in Table 2.2.

solver ULS enquire

GLS/MA28
√

HSL MA48
√

GETR
√

Table 2.2: Options supported.

2.8.1 To return PR and PC

CALL ULS enquire(data, inform, ROWS, COLS)

data is a scalar INTENT(INOUT) argument of type ULS data type (see §2.5.4). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to ULS initialize and not

altered by the user in the interim.

inform is a scalar INTENT(INOUT) argument of type ULS inform type (see §2.5.3). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.7.

ROWS is a rank-one INTEGER(ip) array argument of INTENT(OUT) and length m. The ROW(i)th row of A is the ith

row in the factors, 1 ≤ i ≤ m.

COLS is a rank-one INTEGER(ip) array argument of INTENT(OUT) and length n. The COL(j)th column of A is the

jth column in the factors, 1 ≤ j ≤ n.

2.9 Setting control parameters

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type ULS control type (see §2.5.2), by reading an appropriate data specification file using the subroutine

ULS read specfile. This facility is useful as it allows a user to change ULS control parameters without editing and

recompiling programs that call ULS.

A specification file, or specfile, is a data file containing a number of “specification commands”. Each command

occurs on a separate line, and comprises a “keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specification file is limited to 80 characters, including the blanks separating

keyword and value.

The portion of the specification file used by ULS read specfile must start with a “BEGIN ULS” command and

end with an “END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by ULS_read_specfile ..)

BEGIN ULS

keyword value

.......

keyword value

END

(.. lines ignored by ULS_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN ULS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ULS (May 24, 2024) 11

ULS GALAHAD

BEGIN ULS SPECIFICATION

and

END ULS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN ULS” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a

! or * character is also ignored (as is the ! or * character itself). This provides an easy way to “comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameter may be of three different types, namely integer, character or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively).

The specification file must be open for input when ULS read specfile is called, and the associated unit number

passed to the routine in device (see below). Note that the corresponding file is rewound, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

ULS read specfile.

2.9.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL ULS_read_specfile(control, device)

control is a scalar INTENT(INOUT) argument of type ULS control type (see §2.5.2). Default values should have

already been set, perhaps by calling ULS initialize. On exit, individual components of control may have

been changed according to the commands found in the specfile. Specfile commands and the component (see

§2.5.2) of control that each affects are given in Table 2.3.

device is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the unit number on which the

specification file has been opened. If device is not open, control will not be altered and execution will

continue, but an error message will be printed on unit control%error.

3 GENERAL INFORMATION

Workspace: Provided automatically by the module.

Other modules used directly: GALAHAD SYMBOLS, GALAHAD SORT single/double, GALAHAD SPACE single/double,

GALAHAD SPECFILE single/double, GALAHAD STRING single/double, GALAHAD SMT single/double,

GALAHAD GLS single/double and optionally HSL MA48 single/double.

Other routines called directly: None.

Input/output: Output is under control of the arguments control%error, control%warning, control%out,

control%statistics and control%print level.

Restrictions: matrix%n≥ 1, matrix%ne≥ 0 if matrix%type = ’COORDINATE’, matrix%type one of ’COORDINATE’,

’SPARSE BY ROWS’ or ’DENSE’.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003 and optionally OpenNP. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 ULS (May 24, 2024) GALAHAD

GALAHAD ULS

command component of control value type

error-printout-device %error integer

warning-printout-device %warning integer

printout-device %out integer

print-level %print level integer

print-level-solver %print level solver integer

maximum-block-size-for-btf %maximum block size for btf integer

blas-block-for-size-factorize %blas block size factorize integer

blas-block-size-for-solve %blas block size solve integer

initial-fill-in-factor %initial fill in factor integer

minimum-real-factor-size %min real factor size integer

minimum-integer-factor-size %min integer factor size integer

maximum-factor-size %max factor size integer(long)

pivot-control %pivot control integer

pivot-search-limit %pivot search limit integer

max-iterative-refinements %max iterative refinements integer

stop-if-singular %stop if singular logical

array-increase-factor %array increase factor real

array-decrease-factor %array decrease factor real

relative-pivot-tolerance %relative pivot tolerance real

absolute-pivot-tolerance %absolute pivot tolerance real

zero-tolerance %zero tolerance real

switch-to-full-code-density %switch to full code density real

acceptable-residual-relative %acceptable residual relative real

acceptable-residual-absolute %acceptable residual absolute real

output-line-prefix %prefix character

Table 2.3: Specfile commands and associated components of control.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ULS (May 24, 2024) 13

ULS GALAHAD

4 METHOD

Variants of sparse Gaussian elimination are used.

The solver GLS is available as part of GALAHAD and relies on the HSL Archive packages MA33. To obtain HSL Archive

packages, see

http://hsl.rl.ac.uk/archive/ .

The solver HSL MA48 is part of HSL 2007. To obtain HSL 2007 packages, see

http://hsl.rl.ac.uk/hsl2007/ .

References:

The methods used are described in the user-documentation for

HSL 2007, A collection of Fortran codes for large-scale scientific computation (2007).

http://www.cse.clrc.ac.uk/nag/hsl

5 EXAMPLE OF USE

We illustrate the use of the package on the solution of the single set of equations





11 12

21 22 23

32 33



x =





23

66

65





(Note that this example does not illustrate all the facilities). Then, choosing the solver GLS, we may use the following

code:

PROGRAM GALAHAD_ULS_example ! GALAHAD 4.2 - 2023-12-23 AT 08:00 GMT.

USE GALAHAD_ULS_DOUBLE

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER :: info

INTEGER, PARAMETER :: m = 3

INTEGER, PARAMETER :: n = 3

INTEGER, PARAMETER :: ne = 7

TYPE (SMT_type) :: matrix

TYPE (ULS_data_type) :: data

TYPE (ULS_control_type) control

TYPE (ULS_inform_type) :: inform

INTEGER :: ROWS(m), COLS(n)

REAL (KIND = wp) :: X(n), B(m)

! Record matrix order and number of entries

matrix%m = m ; matrix%n = n ; matrix%ne = ne

! Allocate and set matrix

CALL SMT_put(matrix%type, ’COORDINATE’, info) ! Specify co-ordinate

ALLOCATE(matrix%val(ne), matrix%row(ne), matrix%col(ne))

matrix%row(: ne) = (/ 1, 2, 3, 2, 1, 3, 2 /)

matrix%col(: ne) = (/ 1, 3, 3, 1, 2, 2, 2 /)

matrix%val(: ne) = (/ 11.0_wp, 23.0_wp, 33.0_wp, 21.0_wp, 12.0_wp, &

32.0_wp, 22.0_wp /)

! Specify the solver (in this case gls)

CALL ULS_initialize(’gls’, data, control, inform)

! Factorize the matrix

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 ULS (May 24, 2024) GALAHAD

GALAHAD ULS

CALL ULS_factorize(matrix, data, control, inform)

IF (inform%status < 0) THEN

WRITE(6, ’(A, I0)’) &

’ Failure of ULS_factorize with inform%status = ’, inform%status

STOP

END IF

! Write row and column reorderings

CALL ULS_enquire(data, inform, ROWS, COLS)

WRITE(6, "(A, /, (10I5))") ’ row orderings:’, ROWS(: inform%rank)

WRITE(6, "(A, /, (10I5))") ’ column orderings:’, COLS(: inform%rank)

! set right-hand side and solve system

B = (/ 23.0_wp, 66.0_wp, 65.0_wp /)

CALL ULS_solve(matrix, B, X, data, control, inform, .FALSE.)

IF (inform%status == 0) WRITE(6, ’(A, /,(6ES11.3))’) &

’ Solution of set of equations without refinement is’, X

! Clean up

CALL ULS_terminate(data, control, inform)

DEALLOCATE(matrix%val, matrix%row, matrix%col)

STOP

END PROGRAM GALAHAD_ULS_example

This produces the following output:

row orderings:

1 2 3

column orderings:

1 3 2

Solution of set of equations without refinement is

1.000E+00 1.000E+00 1.000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ULS (May 24, 2024) 15

