
GALAHAD TRB

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package uses a trust-region method to find a (local) minimizer of a differentiable objective function f (x)
of many variables x, subject to simple bounds xl ≤ x ≤ xu on the variables. Here, any of the components of

the vectors of bounds xl and xu may be infinite. The method offers the choice of direct and iterative solution of the

key trust-region subproblems, and is most suitable for large problems. First derivatives are required, and if second

derivatives can be calculated, they will be exploited—if the product of second derivatives with a vector may be found

but not the derivatives themselves, that may also be exploited.

ATTRIBUTES — Versions: GALAHAD TRB single, GALAHAD TRB double. Uses: GALAHAD CLOCK, GALAHAD NLPT,

GALAHAD SYMBOLS, GALAHAD SPECFILE, GALAHAD SLS, GALAHAD PSLS, GALAHAD GLTR, GALAHAD TRS, LANCELOT -

CAUCHY, LANCELOT CG, GALAHAD LMS, GALAHAD SHA, GALAHAD MOP, GALAHAD STRINGS, GALAHAD SPACE, GALAHAD -

NORMS, GALAHAD BLAS interface, and GALAHAD LAPACK interface. Date: July 2021. Origin: N. I. M. Gould,

Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD TRB single

with the obvious substitution GALAHAD TRB double, GALAHAD TRB single 64 and GALAHAD TRB double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, GALAHAD userdata type,

TRB time type, TRB control type, TRB inform type, TRB data type and NLPT problem type, (Section 2.3) and

the subroutines TRB initialize, TRB solve, TRB terminate, (Section 2.4) and TRB read specfile (Section 2.8)

must be renamed on one of the USE statements.

2.1 Matrix storage formats

If available, the Hessian matrix H = ∇xx f (x) may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular part

(that is the part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle should be stored by rows, that is

component i∗ (i−1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry, 1 ≤ l ≤ H%ne, of H, its row index i, column

index j and value hi j, 1 ≤ j ≤ i ≤ n, are stored in the l-th components of the integer arrays H%row, H%col and real

array H%val, respectively. Note that only the entries in the lower triangle should be stored.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 1

TRB GALAHAD

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of H, the i-th component of the integer array H%ptr holds the position of the first

entry in this row, while H%ptr (n+ 1) holds the total number of entries plus one. The column indices j, 1 ≤ j ≤ i,

and values hi j of the entries in the i-th row are stored in components l = H%ptr(i), . . . ,H%ptr (i+1)−1 of the integer

array H%col, and real array H%val, respectively. Note that as before only the entries in the lower triangle should be

stored. For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data types

Seven derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the Hessian matrix H if this is available. The components of SMT TYPE

used here are:

n is a scalar component of type INTEGER(ip), that holds the dimension of the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.3.2).

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of the symmetric matrix H is represented as a single entry (see §2.1.1–

2.1.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least n + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

2.3.2 The derived data type for holding the problem

The derived data type NLPT problem type is used to hold the problem. The relevant components of NLPT problem type

are:

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H. The following components are used here:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if nlp is of derived type TRB problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%H%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of the storage schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any of

the other three schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

G is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient g of the objective

function. The j-th component of G, j = 1, . . . ,n, contains g j. These are equivalently the values z of estimates of

the dual variables corresponding to the simple bound constraints (see Section 4).

f is a scalar variable of type REAL(rp), that holds the value of the objective function.

X l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xl on

the the variables. The j-th component of X l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting

the corresponding components of X l to any value smaller than -infinity, where infinity is a component of

the control array control (see Section 2.3.3).

X u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xu on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity, where infinity is a component of

the control array control (see Section 2.3.3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 3

TRB GALAHAD

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

pname is a scalar variable of type default CHARACTER and length 10, which contains the “name” of the problem for

printing. The default “empty” string is provided.

VNAMES is a rank-one allocatable array of dimension n and type default CHARACTER and length 10, whose j-th entry

contains the “name” of the j-th variable for printing. This is only used if “debug”printingcontrol%print level

> 4) is requested, and will be ignored if the array is not allocated.

2.3.3 The derived data type for holding control parameters

The derived data type TRB control type is used to hold controlling data. Default values may be obtained by calling

TRB initialize (see Section 2.4.1), while components may also be changed by calling GALAHAD TRB read spec

(see Section 2.8.1). The components of TRB control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in TRB solve and TRB terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in TRB solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

start print is a scalar variable of type INTEGER(ip), that specifies the first iteration for which printing will occur

in TRB solve. If start print is negative, printing will occur from the outset. The default is start print =

-1.

stop print is a scalar variable of type INTEGER(ip), that specifies the last iteration for which printing will occur

in TRB solve. If stop print is negative, printing will occur once it has been started by start print. The

default is stop print = -1.

print gap is a scalar variable of type INTEGER(ip). Once printing has been started, output will occur once every

print gap iterations. If print gap is no larger than 1, printing will be permitted on every iteration. The default

is print gap = 1.

maxit is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which will be allowed

in TRB solve. The default is maxit = 1000.

more toraldo is a scalar variable of type INTEGER(ip), that specifies the number of Moré-Toraldo projected

searches that are to be used to improve upon the Cauchy point when finding the step. Any non-positive value

results in a standard add-one-at-a-time conjugate-gradient search. The default is more toraldo = 0.

non monotone is a scalar variable of type INTEGER(ip), that specifies the history-length for non-monotone descent

strategy. Any non-positive value results in standard monotone descent, for which merit function improvement

occurs at each iteration. There are often definite advantages in using a non-monotone strategy with a modest

history, since the occasional local increase in the merit function may enable the algorithm to move across (gentle)

“ripples” in the merit function surface. However, we do not usually recommend large values of non monotone.

The default is non monotone = 1.

model is a scalar variable of type INTEGER(ip), that specifies which model to be used to approximate f (x) when

computing the step. Possible values are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

0 the model is chosen automatically on the basis of which option looks likely to be the most efficient at any given

stage of the solution process. Different models may be used at different stages. Not yet implemented.

1 a first-order model, not involving the Hessian, will be used.

2 a second-order model, using the Hessian, will be used.

3 a barely-second-order model, in which the Hessian is approximated by the identity matrix, will be used.

4 a secant-based sparse second-order model, in which the Hessian is approximated within its sparsity pattern

using secant formulae will be used.

5 a secant-based second-order model, in which the Hessian is approximated by a limited-memory BFGS for-

mula, will be used.

6 a secant-based second-order model, in which the Hessian is approximated by a limited-memory symmetric

rank-one (SR1) formula, will be used.

The default is model = 2.

norm is a scalar variable of type INTEGER(ip), that specifies which norm is to be used to define the trust region. In

particular the norm ‖ · ‖ will be defined by a symmetric, positive-definite matrix P so that for every vector v,

‖v‖2 = vT Pv. If %subproblem direct = .FALSE., the same P also defines the preconditioner to be used to

accelerate the generalized-Lanczos inner model minimization. Possible values are:

-3 the user’s own norm will be used.

-2 a norm based on a limited-memory BFGS formula will be used.

-1 the Euclidean (ℓ2-) norm is used.

0 the type is chosen automatically on the basis of which option looks likely to be the most efficient at any given

stage of the solution process. Different norms may be used at different stages. Not yet implemented.

1 P is the diagonal of the Hessian matrix, suitably modified to ensure that it is significantly positive definite, is

used.

2 P is the Hessian matrix whose entries outside a band of given semi-bandwidth are replaced by zeros (see

nsemib below).

3 P is the Hessian matrix whose entries outside a bandwidth-reduced reordered band of given semi-bandwidth

are replaced by zeros (see nsemib below).

4 P is the (possibly perturbed) Hessian, using the Schnabel-Eskow modification method to ensure that the

resultant matrix is positive definite.

5 P is the (possibly perturbed) Hessian, using the Gill-Murray-Poncéleon-Saunders modification method to

ensure that the resultant matrix is positive definite. Not yet implemented.

6 P will be that from the incomplete factorization of the Hessian using the Lin-Moré method.

7 P will be that from the incomplete factorization of the Hessian using the method implemented by HSL MI28.

8 P will be that from the incomplete factorization of the Hessian using Munksgaars’s method. Not yet imple-

mented.

9 P will be that from an expanding band of the Hessian. Not yet implemented.

10 P will be that which gives a diagonalising norm as implemented in TRB DPS. Note that this is currently only

available when subproblem direct = .TRUE. (see below).

The default is norm = 1.

semi bandwidth is a scalar variable of type INTEGER(ip), that specifies the semi-bandwidth of P when norm = 2,

if appropriate. The default is semi bandwidth = 5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 5

TRB GALAHAD

lbfgs vectors is a scalar variable of type INTEGER(ip), that specifies the number of limited-memory vectors

used in the model when model = 5 or 6, and/or by the norm when norm = -2, if appropriate. The default is

lbfgs vectors = 10.

max dxg is a scalar variable of type INTEGER(ip), that specifies the maximum number of sparse difference vectors

used by the model when model = 4. The default is max dxg = 100.

icfs vectors is a scalar variable of type INTEGER(ip), that specifies the number of multiples of the problem dimen-

sion n that is available to hold fill-in when computing the Lin-Moré factorization. The default is icfs vectors

= 10.

mi28 lsize is a scalar variable of type INTEGER(ip), that specifies the maximum number of fill entries within each

column of the incomplete factor L computed by HSL MI28. In general, increasing mi28 lsize improves the

quality of the preconditioner but increases the time to compute and then it. Values less than 0 are treated as 0.

The default is mi28 lsize = 10.

mi28 rsize is a scalar variable of type INTEGER(ip), that specifies the the maximum number of entries within each

column of the strictly lower triangular matrix R used in the computation of the preconditioner by HSL MI28.

Rank-1 arrays of size mi28 rsize * n are allocated internally to hold R. Thus the amount of memory used,

as well as the amount of work involved in computing the preconditioner, depends on mi28 rsize. Setting

mi28 rsize > 0 generally leads to a higher quality preconditioner than using mi28 rsize = 0, and choosing

mi28 rsize ≥ mi28 lsize is generally recommended. The default is mi28 rsize = 10.

alive unit is a scalar variable of type INTEGER(ip). If alive unit > 0, a temporary file named alive file (see

below) will be created on stream number alive unit on initial entry to GALAHAD TRB solve, and execution of

GALAHAD TRB solve will continue so long as this file continues to exist. Thus, a user may terminate execution

simply by removing the temporary file from this unit. If alive unit ≤ 0, no temporary file will be created, and

execution cannot be terminated in this way. The default is alive unit = 60.

advanced start is a scalar variable of type INTEGER(ip)that specifies the number of evaluations of the objective

function that may be performed If the user wishes to try to select a good initial value of the trust-region radius.

If the user is content with the initial value provided, advanced start should be set to 0, and this is the default.

infinity is a scalar variable of type REAL(rp), that is used to specify which constraint bounds are infinite. Any

bound larger than infinity in modulus will be regarded as infinite. The default is infinity = 1019.

stop pg absolute is a scalar variable of type REAL(rp), that is used to specify the maximum permitted (infinity)

norm of the projected gradient of the objective function (see Section 4) at the estimate of the solution sought.

The default is stop g absolute = 10−5.

stop pg relative is a scalar variable of type REAL(rp), that is used to specify the largest relative reduction in the

norm of the projected gradient of the objective function that will be permitted (see Section 4) at the estimate of

the solution sought compared to that at the initial point. The default is stop g relative = 1.

stop s is a scalar variable of type REAL(rp), that is used to specify the minimum acceptable correction step s

relative to the current estimate of the solution x The algorithm will be deemed to have converged if |si| ≤ stop s

∗max(1, |xi|) for all i = 1, . . . ,n. The default is stop s = u, where u is EPSILON(1.0) (EPSILON(1.0D0) in

GALAHAD TRB double).

initial radius is a scalar variable of type REAL(rp), that holds the required initial value of the trust-region ra-

dius. If initial radius ≤ 0, the radius will be chosen automatically by GALAHAD TRB solve The default is

initial radius = 100.0.

maximum radius is a scalar variable of type REAL(rp), that holds the largest permitted value of the trust-region

radius as the algorithm proceeds. The default is maximum radius = 108.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

stop rel cg is a scalar variable of type REAL(rp), that is used to specify the largest relative residual that is tolerated

before any conjugate-gradient inner iteration terminates. The default is stop rel cg = 0.01.

radius increase, radius reduce and radius reduce max are scalar variables of type REAL(rp), that control the

maximum amounts by which the trust-region radius can contract or expand during an iteration. The radius will

be decreased by powers of radius reduce, but not in total more than radius reduce max, until it is smaller

than the norm of the current step. It can be increased by at most a factor radius increase. The defaults are

radius increase = 2.0, radius reduce = 0.5 and radius reduce max = 0.0625.

eta successful, eta very successful and eta too successful are scalar variables of type default REAL(rp),

that control the acceptance and rejection of the trial step and the updates to the trust-region radius. At every iter-

ation, the ratio of the actual reduction in the merit function following the trial step to that predicted by the model

is computed. The step is accepted whenever this ratio exceeds eta successful; otherwise the trust-region

radius will be reduced. If, in addition, the ratio exceeds eta very successful but not eta too successful,

the trust-region radius may be increased. The defaults are eta successful = 10−8, eta very successful =

0.9 and eta too successful = 2.0.

obj unbounded is a scalar variable of type default REAL(rp), that specifies smallest value of the objective function

that will be tolerated before the problem is declared to be unbounded from below. The default is potential u-

nbounded = −u−2, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD TRB double).

cpu time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted CPU time.

Any negative value indicates no limit will be imposed. The default is cpu time limit = - 1.0.

clock time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted elapsed

system clock time. Any negative value indicates no limit will be imposed. The default is clock time limit =

- 1.0.

hessian available is a scalar variable of type default LOGICAL, that should be set .TRUE. if the user will provide

second derivatives (either by providing an appropriate evaluation routine to the solver or by reverse commu-

nication, see Section 2.6), and .FALSE. if the second derivatives are not explicitly available. The default is

hessian available = .TRUE..

subproblem direct is a scalar variable of type default LOGICAL, that should be set .TRUE. if a direct (factoriza-

tion) method is desired when solving for the step, and .FALSE. if an iterative method suffices. The default is

subproblem direct = .FALSE..

retrospective trust region is a scalar variable of type default LOGICAL, that should be set .TRUE. if a retrospec-

tive trust-region strategy, based on the model at the next iterate, is to be used, and .FALSE. if the traditional

strategy suffices. The default is retrospective trust region = .FALSE..

renormalize radius is a scalar variable of type default LOGICAL, that should be set .TRUE. if the trust-region radius

is to be re-normaized to account for the shape of the trust-region norm every iteration, and .FALSE. if no re-

normalization is required. The default is renormalize radius = .FALSE..

two norm tr is a scalar variable of type default LOGICAL, that should be set .TRUE. if a two-norm (hyperspheri-

cal) trust region is required, and .FALSE. if an infinity-norm (box) trust region is to be used. The default is

two norm tr = .FALSE..

exact gcp is a scalar variable of type default LOGICAL, that should be set .TRUE. if the exact generalized Cauchy

point, the first estimate of the minimizer of the quadratic model within the feasible box, is required, and .FALSE.

if an approximation suffices. The default is exact gcp = .TRUE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 7

TRB GALAHAD

accurate bqp is a scalar variable of type default LOGICAL, that should be set .TRUE. if an accurate minimizer of the

quadratic model within the feasible box is required, and .FALSE. if an approximation suffices. The accurate

minimizer often requires considerably more work, but occasionally this reduces the overall number of iterations.

The default is accurate bqp = .FALSE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

alive file is a scalar variable of type default CHARACTER and length 30, that gives the name of the temporary file

whose removal from stream number alive unit terminates execution of GALAHAD TRB solve. The default is

alive unit = ALIVE.d.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

PSLS control is a scalar variable of type PSLS control type whose components are used to control the precondi-

tioning aspects of the calculation, as performed by the package GALAHAD PSLS. See the specification sheet for the

package GALAHAD PSLS for details, and appropriate default values (but note that values for PSLS control%preconditioner,

PSLS control%semi bandwidth and PSLS control%icfs vectors may be overridden by GALAHAD TRB solve).

GLTR control is a scalar variable of type GLTR control type whose components are used to control the iterative

trust-region step calculation (if any), performed by the package GALAHAD GLTR. See the specification sheet for

the package GALAHAD GLTR for details, and appropriate default values (but note that value of GLTR control%unitm

may be changed by GALAHAD TRB solve).

TRS control is a scalar variable of type TRS control type whose components are used to control the direct trust-

region step calculation (if any), performed by the package GALAHAD TRS. See the specification sheet for the pack-

age GALAHAD TRS for details, and appropriate default values (but note that values of TRS control%initial multiplier

and TRS control%new h may be changed by GALAHAD TRB solve).

LMS control and LMS control prec are scalar variables of type LMS control type whose components are used to

control the limited memory secant approximations for the model Hessian and trust region norm as performed by

the package GALAHAD LMS. See the specification sheet for the package GALAHAD LMS for details, and appropriate

default values.

SHA control is a scalar variable of type SHA control type whose components are used to control the calculation of

the sparse model Hessian (if required), performed by the package GALAHAD SHA. See the specification sheet for

the package GALAHAD SHA for details, and appropriate default values.

2.3.4 The derived data type for holding timing information

The derived data type TRB time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of TRB time type are:

total is a scalar variable of type default REAL, that gives the CPU total time spent in the package.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

preprocess is a scalar variable of type REAL(rp), that gives the CPU time spent reordering the problem to standard

form prior to solution.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing required matrices prior to

factorization.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent using the factors to solve relevant linear

equations.

clock total is a scalar variable of type default REAL, that gives the total elapsed system clock time spent in the

package.

clock preprocess is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent reordering

the problem to standard form prior to solution.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing

required matrices prior to factorization.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent using the factors

to solve relevant linear equations.

2.3.5 The derived data type for holding informational parameters

The derived data type TRB inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of TRB inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Sections 2.6 and 2.7

for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

n free is a scalar variable of type INTEGER(ip), that holds the number of variables that are free from their bounds.

iter is a scalar variable of type INTEGER(ip), that holds the number of iterations performed.

cg iter is a scalar variable of type INTEGER(ip), that gives the total number of conjugate-gradient iterations re-

quired.

cg maxit is a scalar variable of type INTEGER(ip), that gives the number of conjugate-gradient iterations permitted

duriing each major iteration.

factorization status is a scalar variable of type INTEGER(ip), that gives the return status from the matrix fac-

torization.

max entries factors is a scalar variable of type INTEGER(int64), that gives the maximum number of entries in

any of the matrix factorizations performed during the calculation.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 9

TRB GALAHAD

factorization max is a scalar variable of type INTEGER(ip), that gives the largest number of factorizations re-

quired during a subproblem solution.

factorization integer is a scalar variable of type default INTEGER(ip), that gives the amount of integer storage

used for the matrix factorization.

factorization real is a scalar variable of type INTEGER(ip), that gives the amount of real storage used for the

matrix factorization.

f eval is a scalar variable of type INTEGER(ip), that gives the total number of objective function evaluations per-

formed.

g eval is a scalar variable of type INTEGER(ip), that gives the total number of objective function gradient evalua-

tions performed.

h eval is a scalar variable of type INTEGER(ip), that gives the total number of objective function Hessian evalua-

tions performed.

obj is a scalar variable of type REAL(rp), that holds the value of the objective function at the best estimate of the

solution found.

norm pg is a scalar variable of type REAL(rp), that holds the value of the norm of the projected gradient of the

objective function at the best estimate of the solution found.

radius is a scalar variable of type REAL(rp), that holds the current value of the trust-region radius

factorization average is a scalar variable of type REAL(rp), that gives the average number of factorizations per

subproblem solved.

time is a scalar variable of type TRB time type whose components are used to hold elapsed elapsed CPU and system

clock times for the various parts of the calculation (see Section 2.3.4).

PSLS inform is a scalar variable of type PSLS inform type whose components give information about the progress

and needs of the preconditioning stages of the algorithm performed by the package GALAHAD PSLS. See the

specification sheet for the package GALAHAD PSLS for details.

GLTR inform is a scalar variable of type GLTR inform type whose components give information about the progress

and needs of the iterative solution stages of the algorithm performed by the package GALAHAD GLTR. See the

specification sheet for the package GALAHAD GLTR for details.

TRS inform is a scalar variable of type TRS inform type whose components give information about the progress and

needs of the direct solution stages of the algorithm performed by the package GALAHAD TRS. See the specification

sheet for the package GALAHAD TRS for details.

LMS inform and LMS inform prec are scalar variables of type LMS inform type whose components give informa-

tion about the progress and needs of the limited memory secant approximations for the model Hessian and trust

region norm as performed by the package GALAHAD LMS. See the specification sheet for the package GALAH-

AD LMS for details.

SHA inform is a scalar variable of type SHA inform type whose components give information about the progress and

needs of the sparse model Hessian calculation performed by the package GALAHAD SHA. See the specification

sheet for the package GALAHAD SHA for details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

2.3.6 The derived data type for holding problem data

The derived data type TRB data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of TRB procedures. This data should be preserved, untouched (except as directed

on return from GALAHAD TRB solve with positive values of inform%status, see Section 2.6), from the initial call to

TRB initialize to the final call to TRB terminate.

2.3.7 The derived data type for holding user data

The derived data type GALAHAD userdata type is available from the package GALAHAD userdata to allow the user to

pass data to and from user-supplied subroutines for function and derivative calculations (see Section 2.5). Components

of variables of type GALAHAD userdata type may be allocated as necessary. The following components are available:

integer is a rank-one allocatable array of type INTEGER(ip).

real is a rank-one allocatable array of type default REAL(rp)

complex is a rank-one allocatable array of type default COMPLEX (double precision complex in GALAHAD TRB double).

character is a rank-one allocatable array of type default CHARACTER.

logical is a rank-one allocatable array of type default LOGICAL.

integer pointer is a rank-one pointer array of type INTEGER(ip).

real pointer is a rank-one pointer array of type default REAL(rp)

complex pointer is a rank-one pointer array of type default COMPLEX (double precision complex in GALAHAD TRB -

double).

character pointer is a rank-one pointer array of type default CHARACTER.

logical pointer is a rank-one pointer array of type default LOGICAL.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.8 for further features):

1. The subroutine TRB initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine TRB solve is called to solve the problem.

3. The subroutine TRB terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by TRB solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem with a different structure since TRB initialize cannot test for this

situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONAL arguments.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 11

TRB GALAHAD

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL TRB initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type TRB data type (see Section 2.3.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type TRB control type (see Section 2.3.3). On exit, control con-

tains default values for the components as described in Section 2.3.3. These values should only be changed after

calling TRB initialize.

inform is a scalar INTENT(OUT) argument of type TRB inform type (see Section 2.3.5). A successful call to

TRB initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.7.

2.4.2 The minimization subroutine

The minimization algorithm is called as follows:

CALL TRB solve(nlp, control, inform, data, userdata[, eval F, eval G, &

eval H, eval HPROD, eval SHPROD, eval PREC])

nlp is a scalar INTENT(INOUT) argument of type NLPT problem type (see Section 2.3.2). It is used to hold data

about the problem being solved. For a new problem, the user must allocate all the array components, and set

values for nlp%n and the required integer components of nlp%H if second derivatives will be used. Users are free

to choose whichever of the matrix formats described in Section 2.1 is appropriate for H for their application.

The component nlp%X must be set to an initial estimate, x0, of the minimization variables. A good choice will

increase the speed of the package, but the underlying method is designed to converge (at least to a local solution)

from an arbitrary initial guess.

On exit, the component nlp%X will contain the best estimates of the minimization variables x, while nlp%G will

contain the best estimates of the dual variables z.

Restrictions: nlp%n > 0 and nlp%H%type ∈ {’DENSE’,’COORDINATE’,’SPARSE BY ROWS’,’DIAGONAL’}.

control is a scalar INTENT(IN) argument of type TRB control type (see Section 2.3.3). Default values may be as-

signed by calling TRB initialize prior to the first call to TRB solve. The arguments control%PSLS control-

%preconditioner, control%PSLS control%semi bandwidth, control%PSLS control%lbfgs vectors and

control%PSLS control%icfs vectors will be overridden by control%norm, control%semi bandwidth,

control%lbfgs vectors and control%icfs vectors, respectively.

inform is a scalar INTENT(INOUT) argument of type TRB inform type (see Section 2.3.5). On initial entry, the

component status must be set to the value 1. Other entries need note be set. A successful call to TRB solve is

indicated when the component status has the value 0. For other return values of status, see Sections 2.6 and

2.7.

data is a scalar INTENT(INOUT) argument of type TRB data type (see Section 2.3.6). It is used to hold data about

the problem being solved. With the possible exceptions of the components eval status and U (see Section 2.6),

it must not have been altered by the user since the last call to TRB initialize.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the OPTIONAL subroutines eval F, eval G, eval H and eval HPROD

(see Section 2.3.7).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

eval F is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the objective function f (x)
at a given vector x. See Section 2.5.1 for details. If eval F is present, it must be declared EXTERNAL in the

calling program. If eval F is absent, GALAHAD TRB solve will use reverse communication to obtain objective

function values (see Section 2.6).

eval G is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the gradient of the objective

function ∇x f (x) at a given vector x. See Section 2.5.2 for details. If eval G is present, it must be declared

EXTERNAL in the calling program. If eval G is absent, GALAHAD TRB solve will use reverse communication to

obtain gradient values (see Section 2.6).

eval H is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the Hessian of the objective

function ∇xx f (x) at a given vector x. See Section 2.5.3 for details. If eval H is present, it must be declared

EXTERNAL in the calling program. If eval H is absent, GALAHAD TRB solve will use reverse communication to

obtain Hessian function values (see Section 2.6).

eval HPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product ∇xx f (x)v
of the Hessian of the objective function ∇xx f (x) with a given vector v. See Section 2.5.4 for details. If

eval HPROD is present, it must be declared EXTERNAL in the calling program. If eval HPROD is absent, GA-

LAHAD TRB solve will use reverse communication to obtain Hessian-vector products (see Section 2.6).

eval SHPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product ∇xx f (x)v
of the Hessian of the objective function u = ∇xx f (x) with a given sparse vector v, and to return the nonzero

components of the resulting u. See Section 2.5.5 for details. If eval SHPROD is present, it must be declared

EXTERNAL in the calling program. If eval SHPROD is absent, GALAHAD TRB solve will use reverse communica-

tion to obtain Hessian-sparse-vector products (see Section 2.6).

eval PREC is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product P(x)v of

the user’s preconditioner with a given vector v. See Section 2.5.6 for details. If eval PREC is present, it must

be declared EXTERNAL in the calling program. If eval PREC is absent, GALAHAD TRB solve will use reverse

communication to obtain products with the preconditioner (see Section 2.6).

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL TRB terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type TRB data type exactly as for TRB solve, which must not have

been altered by the user since the last call to TRB initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type TRB control type exactly as for TRB solve.

inform is a scalar INTENT(OUT) argument of type TRB inform type exactly as for TRB solve. Only the component

status will be set on exit, and a successful call to TRB terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.7.

2.5 Function and derivative values

2.5.1 The objective function value via internal evaluation

If the argument eval F is present when calling GALAHAD TRB solve, the user is expected to provide a subroutine of

that name to evaluate the value of the objective function f (x). The routine must be specified as

SUBROUTINE eval_F(status, X, userdata, f)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 13

TRB GALAHAD

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

f is a scalar INTENT(OUT) argument of type REAL(rp), that should be set to the value of the objective function

f (x) evaluated at the vector x input in X.

2.5.2 Gradient values via internal evaluation

If the argument eval G is present when calling GALAHAD TRB solve, the user is expected to provide a subroutine of

that name to evaluate the value of the gradient the objective function ∇x f (x). The routine must be specified as

SUBROUTINE eval_G(status, X, userdata, G)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the gradient of the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

G is a rank-one INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

gradient of the objective function ∇x f (x) evaluated at the vector x input in X.

2.5.3 Hessian values via internal evaluation

If the argument eval H is present when calling GALAHAD TRB solve, the user is expected to provide a subroutine of

that name to evaluate the values of the Hessian of the objective function ∇xx f (x). The routine must be specified as

SUBROUTINE eval_H(status, X, userdata, Hval)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the Hessian of the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

Hval is a scalar INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

Hessian of the objective function ∇xx f (x) evaluated at the vector x input in X. The values should be input in the

same order as that in which the array indices were given in nlp%H.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

2.5.4 Hessian-vector products via internal evaluation

If the argument eval HPROD is present when calling GALAHAD TRB solve, the user is expected to provide a subroutine

of that name to evaluate the sum u+∇xx f (x)v involving the product of the Hessian of the objective function ∇xx f (x)
with a given vector v. The routine must be specified as

SUBROUTINE eval_HPROD(status, X, userdata, U, V, got_h)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the sum u+∇xx f (x)v and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

U is a rank-one INTENT(INOUT) array argument of type REAL(rp) whose components on input contain the vector

u and on output the sum u+∇xx f (x)v.

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

got h is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If the Hessian has already been evaluated

at the current x got h will be PRESENT and set .TRUE.; if this is the first time the Hessian is to be accessed at x,

either got h will be absent or PRESENT and set .FALSE.. This gives the user the opportunity to reuse “start-up”

computations required for the first instance of x to speed up subsequent products.

2.5.5 Hessian-sparse-vector products via internal evaluation

If the argument eval SHPROD is present when calling GALAHAD TRB solve, the user is expected to provide a subroutine

of that name to evaluate the product u = ∇xx f (x)v involving the Hessian of the objective function ∇xx f (x) and a given

sparse vector v, and to return the nonzero components of the result u. This routine is not required if the user has set

control%hessian available to .TRUE. and has made the values of ∇xx f (x) available either by calls to eval H (see

§2.5.3) or by reverse communication (see §2.6). If needed, the routine must be specified as

SUBROUTINE eval_SHPROD(status, X, userdata, nnz_v, INDEX_nz_v, V, &
nnz_u, INDEX_nz_u, U, got_h)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the sum u+∇xx f (x)v and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H, eval HPROD and

eval PREC (see Section 2.3.7).

nnz v is a scalar INTENT(IN) argument of type INTEGER(ip), that specifies the number of nonzeros in the input

sparse vector v.

INDEX nz v is a rank-one INTENT(IN) array argument of length at least nnz v and type INTEGER(ip) whose first

nnz v components give the indices of the nonzero components of v.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 15

TRB GALAHAD

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components INDEX nz v(i), i = 1, . . . ,
nnz v, hold the nonzero values of v. Any other components should be ignored.

nnz u is a scalar INTENT(OUT) argument of type INTEGER(ip), that gives the number of nonzeros in the output

vector u.

INDEX nz u is a rank-one INTENT(OUT) array argument of length at least nnz u and type INTEGER(ip) whose first

nnz u components give the indices of the nonzero components of the computed product u.

U is a rank-one INTENT(OUT) array argument of type REAL(rp) whose components INDEX nz u(i), i = 1, . . . ,
nnz u, hold the nonzero values of u. The remaining components should be ignored.

got h is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If the Hessian has already been evaluated

at the current x got h will be PRESENT and set .TRUE.; if this is the first time the Hessian is to be accessed at x,

either got h will be absent or PRESENT and set .FALSE.. This gives the user the opportunity to reuse “start-up”

computations required for the first instance of x to speed up subsequent products.

2.5.6 Preconditioner-vector products via internal evaluation

If the argument eval PREC is present when calling GALAHAD TRB solve, the user is expected to provide a subroutine

of that name to evaluate the product u = P(x)v involving the user’s preconditioner P(x) with a given vector v. The

symmetric matrix P(x) should ideally be chosen so that the eigenvalues of P(x)(∇xx f (x))−1 are clustered. This

subroutine will only be required if control%norm = -3, and the user prefers a subroutine call to that provided by

reverse communication with inform%status = 6 (see §2.6). The routine must be specified as

SUBROUTINE eval_PREC(status, X, userdata, U, V)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the product P(x)v and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval F, eval G, eval H and eval PREC (see

Section 2.3.7).

U is a rank-one INTENT(OUT) array argument of type REAL(rp) whose components on output should contain the

product sum u = P(x)v.

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

2.6 Reverse Communication Information

A positive value of inform%status on exit from TRB solve indicates that GALAHAD TRB solve is seeking further

information—this will happen if the user has chosen not to evaluate function or derivative values internally (see Sec-

tion 2.5). The user should compute the required information and re-enter GALAHAD TRB solve with inform%status

and all other arguments (except those specifically mentioned below) unchanged.

Possible values of inform%status and the information required are

2. The user should compute the objective function value f (x) at the point x indicated in nlp%X. The required value

should be set in nlp%f, and data%eval status should be set to 0. If the user is unable to evaluate f (x)—for

instance, if the function is undefined at x—the user need not set nlp%f, but should then set data%eval status

to a non-zero value.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

3. The user should compute the gradient of the objective function ∇x f (x) at the point x indicated in nlp%X. The

value of the i-th component of the gradient should be set in nlp%G(i), for i = 1, . . . ,n and data%eval status

should be set to 0. If the user is unable to evaluate a component of ∇x f (x)—for instance, if a component of the

gradient is undefined at x—the user need not set nlp%G, but should then set data%eval status to a non-zero

value.

4. The user should compute the Hessian of the objective function ∇xx f (x) at the point x indicated in nlp%X.

The value l-th component of the Hessian stored according to the scheme input in the remainder of nlp%H (see

Section 2.3.2) should be set in nlp%H%val(l), for l = 1, . . . , nlp%H%ne and data%eval status should be set

to 0. If the user is unable to evaluate a component of ∇xx f (x)—for instance, if a component of the Hessian is

undefined at x—the user need not set nlp%H%val, but should then set data%eval status to a non-zero value.

5. The user should compute the product ∇xx f (x)v of the Hessian of the objective function ∇xx f (x) at the point x

indicated in nlp%X with the vector v and add the result to the vector u. The vectors u and v are given in data%U

and data%V respectively, the resulting vector u+∇xx f (x)v should be set in data%U and data%eval status

should be set to 0. If the user is unable to evaluate the product—for instance, if a component of the Hessian is

undefined at x—the user need not set nlp%H%val, but should then set data%eval status to a non-zero value.

6. The user should compute the product u = P(x)v of their preconditioner P(x) at the point x indicated in nlp%X

with the vector v. The vectors v is given in data%V, the resulting vector u = P(x)v should be set in data%U and

data%eval status should be set to 0. If the user is unable to evaluate the product—for instance, if a component

of the preconditioner is undefined at x—the user need not set data%U, but should then set data%eval status

to a non-zero value.

This value can only occur if the user has set control%norm = -3, and has not provided an optional subroutine

eval PREC (see §2.5.6) to compute the required product with the preconditioner.

7. The user should compute the product h = ∇xx f (x)p of the Hessian of the objective function ∇xx f (x) at the point

x indicated in nlp%X with the sparse vector p. The nonzeros of p are stored in data%P(data%INDEX nz p(data

%nnz p l:data%nnz p u)) while the nonzeros of h should be returned in data%HP(data%INDEX nz hp(1

:data%nnz hp)); the user must set data%nnz hp and data%INDEX nz hp accordingly, and data%eval status

should be set to 0. If the user is unable to evaluate the product—for instance, if a component of the Hessian

is undefined at x—the user need not set data%HP, data%INDEX nz hp and data%nnz hp but should then set

data%eval status to a non-zero value.

This value will not occur if the user has set control%hessian available to .TRUE. and can provide values of

∇xx f (x) either by calls to eval H (see §2.5.3) or by reverse communication (see inform%status = 4, above).

2.7 Warning and error messages

A negative value of inform%status on exit from TRB solve or TRB terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. The restriction nlp%n > 0 or requirement that nlp%H type contains its relevant string ’DENSE’, ’COORDINATE’,

’SPARSE BY ROWS’ or ’DIAGONAL’ has been violated.

-4. The bound constraints are inconsistent.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 17

TRB GALAHAD

-7. The objective function appears to be unbounded from below on the feasible set.

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factor status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

tor status.

-11. The solution of a set of linear equations using factors from the factorization package failed; the return status

from the factorization package is given in the component inform%factor status.

-15. The preconditioner P(x) appears not to be positive definite.

-16. The problem is so ill-conditioned that further progress is impossible.

-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be

symptomatic of a badly scaled problem.

-19. The elapsed CPU or system clock time limit has been reached. This may happen if either control%cpu time limit

or control%clock time limit is too small, but may also be symptomatic of a badly scaled problem.

-82. The user has forced termination of GALAHAD TRB solve by removing the file named control%alive file

from unit control%alive unit.

2.8 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type TRB control type (see Section 2.3.3), by reading an appropriate data specification file using the

subroutine TRB read specfile. This facility is useful as it allows a user to change TRB control parameters without

editing and recompiling programs that call TRB.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by TRB read specfile must start with a ”BEGIN TRB” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by TRB_read_specfile ..)

BEGIN TRB

keyword value

.......

keyword value

END

(.. lines ignored by TRB_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN TRB” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

BEGIN TRB SPECIFICATION

and

END TRB SPECIFICATION

are acceptable. Furthermore, between the “BEGIN TRB” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when TRB read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

TRB read specfile.

2.8.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL TRB_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type TRB control type (see Section 2.3.3). Default values should

have already been set, perhaps by calling TRB initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.3) of control that each affects are given in Table 2.1 on the following page.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.9 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. This

will include the values of the objective function and the norm of its gradient, the ratio of actual to predicted decrease

following the step, the radius of the trust-region and the time taken so far. In addition, if a direct solution of the

subproblem has been attempted, the Lagrange multiplier from the secular equation and the number of factorizations

used will be recorded, while if an iterative solution has been used, the numbers of phase 1 and 2 iterations will be

given.

If control%print level≥ 2 this output will be increased to provide significant detail of each iteration. This extra

output includes residuals of the linear systems solved, and, for larger values of control%print level, values of the

variables and gradients. Further details concerning the attempted solution of the models may be obtained by increasing

control%TRS control%print level, control%PSLS control%print level and control%GLTR control%print-

level, while details about factorizations are available by increasing control%PSLS control%print level. See the

specification sheets for the packages GALAHAD GLTR, GALAHAD PSLS and GALAHAD TRS for details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 19

TRB GALAHAD

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

start-print %start print integer

stop-print %stop print integer

iterations-between-printing %print gap integer

maximum-number-of-iterations %maxit integer

alive-device %alive unit integer

more-toraldo-search-length %more toraldo integer

history-length-for-non-monotone-descent %non monotone integer

model-used %model integer

norm-used %norm integer

semi-bandwidth-for-band-norm %semi bandwidth integer

number-of-lbfgs-vectors %lbfgs vectors integer

max-number-of-secant-vectors %max dxg integer

number-of-lin-more-vectors %icfs vectors integer

mi28-l-fill-size %mi28 lsize integer

mi28-r-entry-size %mi28 rsize integer

advanced-start %advanced start integer

infinity-value %infinity real

absolute-gradient-accuracy-required %stop g absolute real

relative-gradient-reduction-required %stop g relative real

minimum-relative-step-allowed %stop s real

initial-trust-region-radius %initial radius real

maximum-trust-region-radius %maximum radius real

inner-iteration-relative-accuracy-required stop rel cg real

successful-iteration-tolerance %eta successful real

very-successful-iteration-tolerance %eta very successful real

too-successful-iteration-tolerance %eta too successful real

trust-region-increase-factor %radius increase real

trust-region-decrease-factor %radius reduce real

trust-region-maximum-decrease-factor %radius reduce max real

minimum-objective-before-unbounded %obj unbounded real

maximum-cpu-time-limit %cpu time limit real

maximum-clock-time-limit %clock time limit real

hessian-available %hessian available logical

sub-problem-direct %subproblem direct logical

retrospective-trust-region %retrospective trust region logical

renormalize-radius %renormalize radius logical

two-norm-trust-region-used %two norm tr logical

exact-GCP-used %exact gcp logical

subproblem-solved-accurately %accurate bqp logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

alive-filename %alive file character

Table 2.1: Specfile commands and associated components of control.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: TRB solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD NLPT,

GALAHAD SYMBOLS, GALAHAD SPECFILE, GALAHAD SLS, GALAHAD PSLS, GALAHAD GLTR, GALAHAD TRS,

LANCELOT CAUCHY, LANCELOT CG, GALAHAD LMS, GALAHAD SHA, GALAHAD MOP, GALAHAD STRINGS,

GALAHAD SPACE, GALAHAD NORMS, GALAHAD BLAS interface, and GALAHAD LAPACK interface.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: nlp%n > 0 and nlp%H type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

A trust-region method is used. In this, an improvement to a current estimate of the required minimizer, xk is sought by

computing a step sk. The step is chosen to approximately minimize a model mk(s) of f (xk + s) within the intersection

of the bound constraints xl ≤ x ≤ xu and a trust region ‖sk‖ ≤ ∆k for some specified positive ”radius” ∆k. The quality

of the resulting step sk is assessed by computing the ”ratio” (f (xk)− f (xk +sk))/(mk(0)−mk(sk)). The step is deemed

to have succeeded if the ratio exceeds a given ηs > 0, and in this case xk+1 = xk + sk. Otherwise xk+1 = xk, and the

radius is reduced by powers of a given reduction factor until it is smaller than ‖sk‖. If the ratio is larger than ηv ≥ ηd ,

the radius will be increased so that it exceeds ‖sk‖ by a given increase factor. The method will terminate as soon as

‖∇x f (xk)‖ is smaller than a specified value.

Either linear or quadratic models mk(s) may be used. The former will be taken as the first two terms f (xk) +
sT ∇x f (xk) of a Taylor series about xk, while the latter uses an approximation to the first three terms f (xk)+sT ∇x f (xk)+
1
2 sT Bks, for which Bk is a symmetric approximation to the Hessian ∇xx f (xk); possible approximations include the true

Hessian, limited-memory secant and sparsity approximations and a scaled identity matrix. Normally a two-norm trust

region will be used, but this may change if preconditioning is employed.

The model minimization is carried out in two stages. Firstly, the so-called generalized Cauchy point for the

quadratic subproblem is found—the purpose of this point is to ensure that the algorithm converges and that the set

of bounds which are satisfied as equations at the solution is rapidly identified. Thereafter an improvement to the

quadratic model on the face of variables predicted to be active by the Cauchy point is sought using either a direct

approach involving factorization or an iterative (conjugate-gradient/Lanczos) approach based on approximations to the

required solution from a so-called Krlov subspace. The direct approach is based on the knowledge that the required

solution satisfies the linear system of equations (Bk +λkI)sk = −∇x f (xk), involving a scalar Lagrange multiplier λk,

on the space of inactive variables. This multiplier is found by uni-variate root finding, using a safeguarded Newton-

like process, by GALAHAD TRS or GALAHAD DPS (depending on the norm chosen). The iterative approach uses GA-

LAHAD GLTR, and is best accelerated by preconditioning with good approximations to Bk using GALAHAD PSLS. The

iterative approach has the advantage that only matrix-vector products Bkv are required, and thus Bk is not required

explicitly. However when factorizations of Bk are possible, the direct approach is often more efficient.

The iteration is terminated as soon as the Euclidean norm of the projected gradient,

‖min(max(xk −∇x f (xk),x
l),xu)− xk‖2,

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 21

TRB GALAHAD

is sufficiently small. At such a point, ∇x f (xk) = zk, where the i-th dual variable zi is non-negative if xi is on its lower

bound xl
i , non-positive if xi is on its upper bound xu

i , and zero if xi lies strictly between its bounds.

References:

The generic bound-constrained trust-region method is described in detail in

A. R. Conn, N. I. M. Gould and Ph. L. Toint (2000). Trust-region methods. SIAM/MPS Series on Optimization.

5 EXAMPLES OF USE

Suppose we wish to minimize the parametric objective function f (x) = (x1 + x3 + p)2 +(x2 + x3)
2 + cosx1 when the

parameter p takes the value 4, and x is required to satisfy the bounds x1 ≤−1.1, x2 ≤−1.1 and 0≤ x3 ≤−1.1. Starting

from the initial guess x = (1,1,1), we may use the following code:

PROGRAM GALAHAD_TRB_EXAMPLE ! GALAHAD 4.1 - 2022-12-29 AT 11:15 GMT

USE GALAHAD_TRB_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (TRB_control_type) :: control

TYPE (TRB_inform_type) :: inform

TYPE (TRB_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

EXTERNAL :: FUN, GRAD, HESS

INTEGER :: s

INTEGER, PARAMETER :: n = 3, h_ne = 5

REAL (KIND = wp), PARAMETER :: p = 4.0_wp

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20 ! infinity

! start problem data

nlp%pname = ’TRBSPEC’ ! name

nlp%n = n ; nlp%H%ne = h_ne ! dimensions

ALLOCATE(nlp%X(n), nlp%G(n), nlp%X_l(n), nlp%X_u(n))

nlp%X = 1.0_wp ! start from one

nlp%X_l(: n) = (/ - infinity, - infinity, 0.0_wp /) ; nlp%X_u = 1.1_wp

! sparse co-ordinate storage format

CALL SMT_put(nlp%H%type, ’COORDINATE’, s) ! Specify co-ordinate storage

ALLOCATE(nlp%H%val(h_ne), nlp%H%row(h_ne), nlp%H%col(h_ne))

nlp%H%row = (/ 1, 3, 2, 3, 3 /) ! Hessian H

nlp%H%col = (/ 1, 1, 2, 2, 3 /) ! NB lower triangle

! problem data complete

ALLOCATE(userdata%real(1)) ! Allocate space for parameter

userdata%real(1) = p ! Record parameter, p

CALL TRB_initialize(data, control, inform) ! Initialize control parameters

control%subproblem_direct = .FALSE. ! Use an iterative method

control%maxit = 10

! control%print_level = 1

inform%status = 1 ! set for initial entry

CALL TRB_solve(nlp, control, inform, data, userdata, eval_F = FUN, &

eval_G = GRAD, eval_H = HESS) ! Solve problem

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ TRB: ’, I0, ’ iterations -’, &

& ’ optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

22 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

ELSE ! Error returns

WRITE(6, "(’ TRB_solve exit status = ’, I6) ") inform%status

END IF

CALL TRB_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(nlp%X, nlp%G, nlp%H%val, nlp%H%row, nlp%H%col, userdata%real)

END PROGRAM GALAHAD_TRB_EXAMPLE

SUBROUTINE FUN(status, X, userdata, f) ! Objective function

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), INTENT(OUT) :: f

REAL (KIND = wp), DIMENSION(:),INTENT(IN) :: X

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

f = (X(1) + X(3) + userdata%real(1)) ** 2 + &

(X(2) + X(3)) ** 2 + COS(X(1))

status = 0

RETURN

END SUBROUTINE FUN

SUBROUTINE GRAD(status, X, userdata, G) ! gradient of the objective

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: G

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

G(1) = 2.0_wp * (X(1) + X(3) + userdata%real(1)) - SIN(X(1))

G(2) = 2.0_wp * (X(2) + X(3))

G(3) = 2.0_wp * (X(1) + X(3) + userdata%real(1)) + &

2.0_wp * (X(2) + X(3))

status = 0

RETURN

END SUBROUTINE GRAD

SUBROUTINE HESS(status, X, userdata, Hval) ! Hessian of the objective

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: Hval

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

Hval(1) = 2.0_wp - COS(X(1))

Hval(2) = 2.0_wp

Hval(3) = 2.0_wp

Hval(4) = 2.0_wp

Hval(5) = 4.0_wp

status = 0

RETURN

END SUBROUTINE HESS

Notice how the parameter p is passed to the function evaluation routines via the real component of the derived type
userdata. The code produces the following output:

TRB: 5 iterations - optimal objective value = -7.5897E-01

Optimal solution = -3.7247E+00 0.0000E+00 0.0000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 23

TRB GALAHAD

If the Hessian is unavailable, but products of the form u+Hv are, the same problem may be solved as follows:

PROGRAM GALAHAD_TRB2_EXAMPLE ! GALAHAD 4.1 - 2022-12-29 AT 11:15 GMT

USE GALAHAD_TRB_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (TRB_control_type) :: control

TYPE (TRB_inform_type) :: inform

TYPE (TRB_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

EXTERNAL :: FUN, GRAD, HESSPROD, SHESSPROD

INTEGER, PARAMETER :: n = 3, h_ne = 5

REAL (KIND = wp), PARAMETER :: p = 4.0_wp

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20 ! infinity

! start problem data

nlp%n = n ; nlp%H%ne = h_ne ! dimensions

ALLOCATE(nlp%X(n), nlp%G(n), nlp%X_l(n), nlp%X_u(n))

nlp%X = 1.0_wp ! start from one

nlp%X_l(: n) = (/ - infinity, - infinity, 0.0_wp /) ; nlp%X_u = 1.1_wp

! problem data complete

ALLOCATE(userdata%real(1)) ! Allocate space for parameter

userdata%real(1) = p ! Record parameter, p

CALL TRB_initialize(data, control, inform) ! Initialize control parameters

control%hessian_available = .FALSE. ! Hessian products will be used

! control%print_level = 1

inform%status = 1 ! Set for initial entry

CALL TRB_solve(nlp, control, inform, data, userdata, eval_F = FUN, &

eval_G = GRAD, eval_HPROD = HESSPROD, &

eval_SHPROD = SHESSPROD) ! Solve problem

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ TRB: ’, I0, ’ iterations -’, &

& ’ optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

ELSE ! Error returns

WRITE(6, "(’ TRB_solve exit status = ’, I6) ") inform%status

END IF

CALL TRB_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(nlp%X, nlp%G, userdata%real)

END PROGRAM GALAHAD_TRB2_EXAMPLE

SUBROUTINE FUN(status, X, userdata, f) ! Objective function

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), INTENT(OUT) :: f

REAL (KIND = wp), DIMENSION(:),INTENT(IN) :: X

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

f = (X(1) + X(3) + userdata%real(1)) ** 2 + &

(X(2) + X(3)) ** 2 + COS(X(1))

status = 0

RETURN

END SUBROUTINE FUN

SUBROUTINE GRAD(status, X, userdata, G) ! gradient of the objective

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

24 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: G

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

G(1) = 2.0_wp * (X(1) + X(3) + userdata%real(1)) - SIN(X(1))

G(2) = 2.0_wp * (X(2) + X(3))

G(3) = 2.0_wp * (X(1) + X(3) + userdata%real(1)) + &

2.0_wp * (X(2) + X(3))

status = 0

RETURN

END SUBROUTINE GRAD

SUBROUTINE HESSPROD(status, X, userdata, U, V, got_h) ! Hess-vector product

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(INOUT) :: U

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X, V

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

LOGICAL, OPTIONAL, INTENT(IN) :: got_h

U(1) = U(1) + 2.0_wp * (V(1) + V(3)) - COS(X(1)) * V(1)

U(2) = U(2) + 2.0_wp * (V(2) + V(3))

U(3) = U(3) + 2.0_wp * (V(1) + V(2) + 2.0_wp * V(3))

status = 0

RETURN

END SUBROUTINE HESSPROD

SUBROUTINE SHESSPROD(status, X, userdata, nnz_v, INDEX_nz_v, V, &

nnz_u, INDEX_nz_u, U, got_h)

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(IN) :: nnz_v

INTEGER, INTENT(OUT) :: nnz_u

INTEGER, INTENT(OUT) :: status

INTEGER, DIMENSION(:), INTENT(IN) :: INDEX_nz_v

INTEGER, DIMENSION(:), INTENT(OUT) :: INDEX_nz_u

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: U

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: V

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

LOGICAL, OPTIONAL, INTENT(IN) :: got_h

INTEGER :: i, j

REAL (KIND = wp), DIMENSION(3) :: P

LOGICAL, DIMENSION(3) :: USED

P = 0.0_wp

USED = .FALSE.

DO i = 1, nnz_v

j = INDEX_nz_v(i)

SELECT CASE(j)

CASE(1)

P(1) = P(1) + 2.0_wp * V(1) - COS(X(1)) * V(1)

USED(1) = .TRUE.

P(3) = P(3) + 2.0_wp * V(1)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 25

TRB GALAHAD

USED(3) = .TRUE.

CASE(2)

P(2) = P(2) + 2.0_wp * V(2)

USED(2) = .TRUE.

P(3) = P(3) + 2.0_wp * V(2)

USED(3) = .TRUE.

CASE(3)

P(1) = P(1) + 2.0_wp * V(3)

USED(1) = .TRUE.

P(2) = P(2) + 2.0_wp * V(3)

USED(2) = .TRUE.

P(3) = P(3) + 4.0_wp * V(3)

USED(3) = .TRUE.

END SELECT

END DO

nnz_u = 0

DO j = 1, 3

IF (USED(j)) THEN

U(j) = P(j)

nnz_u = nnz_u + 1

INDEX_nz_u(nnz_u) = j

END IF

END DO

status = 0

RETURN

END SUBROUTINE SHESSPROD

Notice that storage for the Hessian is now not needed. This produces the same output.

If the user prefers to provide function and gradient information and Hessian-vector products without calls to

specified routines, the following code is appropriate. Note the product with the user-provided preconditioner

P(x) =





1
2 0 0

0 1
2 0

0 0 1
4





which is a suitable approximation to the inverse of the Hessian:

PROGRAM GALAHAD_TRB3_EXAMPLE ! GALAHAD 4.1 - 2022-12-29 AT 11:15 GMT

USE GALAHAD_TRB_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (TRB_control_type) :: control

TYPE (TRB_inform_type) :: inform

TYPE (TRB_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

INTEGER :: s

INTEGER, PARAMETER :: n = 3, h_ne = 5

REAL (KIND = wp), PARAMETER :: p = 4.0_wp

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20 ! infinity

! start problem data

nlp%n = n ; nlp%H%ne = h_ne ! dimensions

ALLOCATE(nlp%X(n), nlp%G(n), nlp%X_l(n), nlp%X_u(n))

nlp%X = 1.0_wp ! start from one

nlp%X_l(: n) = (/ - infinity, - infinity, 0.0_wp /) ; nlp%X_u = 1.1_wp

! sparse co-ordinate storage format

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

26 TRB (May 24, 2024) GALAHAD

GALAHAD TRB

CALL SMT_put(nlp%H%type, ’COORDINATE’, s) ! Specify co-ordinate storage

ALLOCATE(nlp%H%val(h_ne), nlp%H%row(h_ne), nlp%H%col(h_ne))

nlp%H%row = (/ 1, 3, 2, 3, 3 /) ! Hessian H

nlp%H%col = (/ 1, 1, 2, 2, 3 /) ! NB lower triangle

! problem data complete

CALL TRB_initialize(data, control, inform) ! Initialize control parameters

! control%hessian_available = .FALSE. ! Hessian products will be used

! control%psls_control%preconditioner = - 3 ! Apply uesr’s preconditioner

inform%status = 1 ! Set for initial entry

DO ! Loop to solve problem

CALL TRB_solve(nlp, control, inform, data, userdata)

SELECT CASE (inform%status) ! reverse communication

CASE (2) ! Obtain the objective function

nlp%f = (nlp%X(1) + nlp%X(3) + p) ** 2 + &

(nlp%X(2) + nlp%X(3)) ** 2 + COS(nlp%X(1))

data%eval_status = 0 ! record successful evaluation

CASE (3) ! Obtain the gradient

nlp%G(1) = 2.0_wp * (nlp%X(1) + nlp%X(3) + p) - SIN(nlp%X(1))

nlp%G(2) = 2.0_wp * (nlp%X(2) + nlp%X(3))

nlp%G(3) = 2.0_wp * (nlp%X(1) + nlp%X(3) + p) + &

2.0_wp * (nlp%X(2) + nlp%X(3))

data%eval_status = 0 ! record successful evaluation

CASE (4) ! Obtain Hessian evaluation

nlp%H%val(1) = 2.0_wp - COS(nlp%X(1))

nlp%H%val(2) = 2.0_wp

nlp%H%val(3) = 2.0_wp

nlp%H%val(4) = 2.0_wp

nlp%H%val(5) = 4.0_wp

data%eval_status = 0 ! record successful evaluation

CASE (5) ! Obtain Hessian-vector product

data%U(1) = data%U(1) + 2.0_wp * (data%V(1) + data%V(3)) - &

COS(nlp%X(1)) * data%V(1)

data%U(2) = data%U(2) + 2.0_wp * (data%V(2) + data%V(3))

data%U(3) = data%U(3) + 2.0_wp * (data%V(1) + data%V(2) + &

2.0_wp * data%V(3))

data%eval_status = 0 ! record successful evaluation

CASE (6) ! Apply the preconditioner

data%U(1) = 0.5_wp * data%V(1)

data%U(2) = 0.5_wp * data%V(2)

data%U(3) = 0.25_wp * data%V(3)

data%eval_status = 0 ! record successful evaluation

CASE DEFAULT ! Terminal exit from loop

EXIT

END SELECT

END DO

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ TRB: ’, I0, ’ iterations -’, &

& ’ optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

ELSE ! Error returns

WRITE(6, "(’ TRB_solve exit status = ’, I6) ") inform%status

END IF

CALL TRB_terminate(data, control, inform) ! Delete internal workspace

END PROGRAM GALAHAD_TRB3_EXAMPLE

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD TRB (May 24, 2024) 27

TRB GALAHAD

This produces the following output:

TRB: 5 iterations - optimal objective value = -7.5897E-01

Optimal solution = -3.7247E+00 0.0000E+00 0.0000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

28 TRB (May 24, 2024) GALAHAD

