
GALAHAD SORT

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

GALAHAD SORT is a suite of Fortran procedures for sorting and permuting. It includes two algorithms (heapsort and

quicksort) to sort integer and/or real vectors, another to reorder a sparse matrix from co-ordinate to row format, and a

further three tools for in-place permutation and permutation inversion.

ATTRIBUTES — Versions: GALAHAD SORT single, GALAHAD SORT double. Date: March 2002. Origin: N. I.

M. Gould, Rutherford Appleton Laboratory, and Ph. L. Toint, University of Namur, Belgium. Language: Fortran 95

+ TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD SORT single

with the obvious substitution GALAHAD SORT double, GALAHAD SORT single 64 and GALAHAD SORT double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the subroutines SORT inplace invert,

SORT inplace permute, SORT inverse permute, SORT reorder by rows, SORT quicksort, SORT heapsort build

and SORT heapsort smallest, (Section 2.2) must be renamed on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 Argument lists and calling sequences

There are seven procedures that may be called by the user.

1. The subroutine SORT inplace invert is used to invert a permutation vector without resorting to extra storage.

2. The subroutine SORT inplace permute is used to apply a given permutation to an integer vector and, optionally,

to a real vector, without resorting to extra storage.

3. The subroutine SORT inverse permute is used to apply the inverse of a given permutation to an integer vector

and, optionally, to a real vector, without resorting to extra storage.

4. The subroutine SORT reorder by rows is used to reorder a sparse matrix from arbitary co-ordinate order to

row order, that is so that the entries for row i appear directly before those for row i+ 1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SORT (May 24, 2024) 1

SORT GALAHAD

5. The subroutine SORT quicksort is used to sort a given integer/real vector in ascending order, optionally

applying the same permutation to integer and/or to a real vector(s). It uses the “quicksort” algorithm (see

Section 4).

6. The subroutine SORT heapsort build is used to initialize a procedure to sort a vector of real numbers using

the “heapsort” algorithm (see Section 4).

7. The subroutine SORT heapsort smallest is used to find, possibly repeatedly, the smallest component of a real

vector to which SORT heapsort build has been previously applied (see Section 4). Successive application of

this subroutine therefore results in sorting the initial vector in ascending order. Optionally, the order may be

reversed so that the entries are sorted in descending order instead.

Note that the subroutines SORT heapsort build and SORT heapsort smallest are particularly appropriate if it is

not known in advance how many successive smallest components of the vector will be required as the heapsort method

is able to calculate the k+1-st smallest component efficiently once it has determined the first k smallest components. If

a complete sort is required, the Quicksort algorithm, SORT quicksort may be preferred. Both methods are guaranteed

to sort all n numbers in O(n logn) operations.

We use square brackets [] to indicate OPTIONAL arguments.

2.2.1 In-place inversion of a permutation

A permutation p of size n is a vector of n integers ranging from 1 to n, each integer in this range occurring exactly

once. Its inverse is another permutation q, also of size n, such that q(p(i)) = i for all i = 1, . . . ,n. Inverting a given

permutation without resorting to extra storage is done as follows:

CALL SORT inplace invert (n, p)

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to n, the size of the permutation

to be inverted. Restriction: n> 0.

p is a rank-one INTENT(INOUT) array argument of dimension at least n and type either INTEGER(ip) or REAL(rp),

that must be set by the user on input so that its i-th component contains the integer p(i). On exit, the elements

of p will have overwritten by those of q, the inverse of p.

2.2.2 Applying a given permutation in place

Applying a given permutation p to a vector x consists in modifying the vector x such that its i-th component appears

(after applying the permutation) in component p(i). This is done without resorting to extra storage as follows:

CALL SORT inplace permute (n, p [, x] [, ix] [, iy])

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to n, the size of the permutation

to be applied. Restriction: n> 0.

p is a rank-one INTENT(INOUT) array argument of dimension at least n and type either INTEGER(ip) or REAL(rp),

that must be set by the user on input so that its i-th component contains the integer p(i), that is the i-th component

of the permutation one wishes to apply. It is unchanged on exit.

x is an optional rank-one INTENT(INOUT) array argument of dimension at least n and type REAL(rp), whose n first

components must be set by the user. If x is present, the component x(i) will have been replaced by x(p(i))

on exit.

ix is an optional rank-one INTENT(INOUT) array argument of dimension at least n and type INTEGER(ip), whose

n fisrt components must be set by the user. If ix is present, the component ix(i) will have been replaced by

ix(p(i)) on exit.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 SORT (May 24, 2024) GALAHAD

GALAHAD SORT

iy is an optional rank-one INTENT(INOUT) array argument of dimension at least n and type INTEGER(ip), whose

n first components must be set by the user. If iy is present, the component iy(i) will have been replaced by

iy(p(i)) on exit.

2.2.3 Applying the inverse of a given permutation in place

Applying a the inverse of a given permutation p to a vector x consists in modifying the vector x such that its i-

th component appears (after applying the procedure) in component q(i), where q is the inverse of p. Equivalently,

this can be seen as modifying the vector x such that its p(i)-th component appears (after applying the procedure) in

component i. This is done without resorting to extra storage as follows:

CALL SORT inverse permute (n, p [, x] [, ix])

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to n, the size of the permutation

whose inverse is to be applied. Restriction: n> 0.

p is a rank-one INTENT(INOUT) array argument of dimension at least n and type either INTEGER(ip) or REAL(rp),

that must be set by the user on input so that its i-th component contains the integer p(i), that is the i-th component

of the permutation whose inverse is to be applied. It is unchanged on exit.

x is an optional rank-one INTENT(INOUT) array argument of dimension at least n and type REAL(rp), whose n first

components must be set by the user. If x is present, the component x(i) will have been replaced by x(p(i))

on exit.

ix is an optional rank-one INTENT(INOUT) array argument of dimension at least n and type INTEGER(ip), whose

n first components must be set by the user. If ix is present, the component ix(i) will have been replaced by

ix(p(i)) on exit.

2.2.4 Reordering a sparse matrix from co-ordinate to row order

The matrix A is reordered from co-ordinate to row order as follows:

CALL SORT_reorder_by_rows(nr, nc, nnz, A_row, A_col, la, A_val, A_ptr, lptr, &

IW, liw, error, warning, inform)

nr is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to the number of rows in

A. Restriction: nr> 0.

nc is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to the number of columns

in A. Restriction: nc> 0.

nnz is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to the number of nonzeros

in A. Restriction: nnz> 0.

A row is a rank-one INTENT(INOUT) array argument of type INTEGER(ip) and length la. On entry, A row(k),
k = 1, . . . , nnz give the row indices of A. On exit, A row will have been reordered, but A row(k) will still be the

row index corresponding to the entry with column index A col(k).

A col is a rank-one INTENT(INOUT) array argument of type INTEGER(ip) and length la. On entry, A col(k),
k = 1, . . . , nnz give the column indices of A. On exit, A col will have been reordered so that entries in row i

appear directly before those in row i+ 1 for i = 1, . . . , nr−1.

la is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to the actual dimension of

the arrays A row, A col and A val Restriction: la ≥ nnz.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SORT (May 24, 2024) 3

SORT GALAHAD

A val is a rank-one INTENT(INOUT) array argument of type REAL(rp) of length la. On entry, A val(k), k = 1, . . . ,

nnz give the values of A. On exit, A val will have been reordered so that entries in row i appear directly before

those in row i+ 1 for i = 1, . . . , nr−1 and correspond to those in A row and A col.

A ptr is a rank-one INTENT(OUT) array argument of type INTEGER(ip) and length lptr. On exit, A ptr(i), i =
1, . . . , nr give the starting addresses for the entries in A row/A col/A val in row i, while A ptr(nr+1) gives the

index of the first non-occupied component of A.

lptr is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to the actual dimension of

A ptr. Restriction: lptr ≥ nr + 1.

IW is a rank-one INTENT(OUT) array argument of type INTEGER(ip) and length liw that is used for workspace.

liw is a scalar INTENT(IN) argument of type INTEGER(ip), that gives the actual dimension of IW. Restriction: liw

≥ MAX(nr,nc) + 1.

error is a scalar INTENT(IN) argument of type INTEGER(ip), that holds the stream number for error messages.

Error messages will only occur if error > 0.

warning is a scalar INTENT(IN) argument of type INTEGER(ip), that holds the stream number for warning mes-

sages. Warning messages will only occur if warning > 0.

inform is a scalar INTENT(OUT) argument of type INTEGER(ip). A successful call to SORT reorder by rows is

indicated when inform has the value 0 on exit. For other return values of inform, see Section 2.3.

2.2.5 Quicksort

The vector x is sorted in acending order as follows:

CALL SORT quicksort (n, x, inform [, ix] [, rx])

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to n, the number of entries of

x that are to be sorted. Restriction: n> 0 and n < 232.

x is a rank-one INTENT(INOUT) array argument of dimension at least n and type either INTEGER(ip) or REAL(rp),

whose first n components must be set by the user on input. On successful return, these components will have

been sorted to ascending order.

inform is a scalar INTENT(OUT) argument of type INTEGER(ip). A successful call to SORT quicksort is indicated

when inform has the value 0 on exit. For other return values of inform, see Section 2.3.

ix is an optional rank-one INTENT(INOUT) array argument of dimension at least n and type INTEGER(ip). If ix

is present, exactly the same permutation is applied to the components of ix as to the components of x. For

example, the inverse permutation will be provided if ix(i) is set to i, for i = 1, . . . ,n on entry.

rx is an optional rank-one INTENT(INOUT) array argument of dimension at least n and type REAL(rp). If rx is

present, exactly the same permutation is applied to the components of rx as to the components of x.

2.2.6 Heapsort

Building the initial heap. The initial heap is constructed as follows:

CALL SORT heapsort build (n, x, inform [, ix, largest])

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to n, the number of entries of

x that are to be (partially) sorted. Restriction: n> 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 SORT (May 24, 2024) GALAHAD

GALAHAD SORT

x is a rank-one INTENT(INOUT) array argument of dimension at least n and type either INTEGER(ip) or REAL(rp),

whose first n components must be set by the user on input. On successful return, the elements of x will have

been permuted so that they form a heap.

inform is a scalar INTENT(OUT) argument of type INTEGER(ip). A successful call to SORT heapsort build is

indicated when inform has the value 0 on exit. For other return values of inform, see Section 2.3.

ix is an optional rank-one INTENT(INOUT) array argument of dimension at least n and type INTEGER(ip). If ix

is present, exactly the same permutation is applied to the components of ix as to the components of x. For

example, the inverse permutation will be provided if ix(i) is set to i, for i = 1, . . . ,n on entry.

largest is an optional scalar INTENT(IN) argument of type INTEGER(ip). If largest is present and set to .TRUE.,

the heap will be built so that the largest entry is at the root, and thus the subsequent sort will determine the largest

entries in order. Otherwise, the heap will be built with the smallest entry is at the root so that the sort will find

the smallest entries in order.

Finding the smallest entry in the current heap. To find the smallest entry in a given heap, to place this entry at the

end of the list of entries in the heap and to form a new heap with the remaining entries:

CALL SORT heapsort smallest (m, x, inform [, ix, largest])

m is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set by the user to m, the number of entries of

x that lie on the heap on entry. Restriction: m> 0.

x is a rank-one INTENT(INOUT) array argument of dimension at least m and type either INTEGER(ip) or REAL(rp)

whose first m components must be set by the user on input so that they form a heap. In practice, this normally

means that they have been placed on a heap by a previous call to SORT heapsort build or SORT heapsort smallest.

On output, the smallest of the first m components of x will have been moved to position x(m) and the remaining

components will now occupy locations 1,2, m-1 of x and will again form a heap.

inform is a scalar INTENT(OUT) argument of type INTEGER(ip). A successful call to SORT heapsort smallest is

indicated when inform has the value 0 on exit. For other return values of inform, see Section 2.3.

ix is an optional rank-one INTENT(INOUT) array argument of dimension at least m and type INTEGER(ip). If ix is

present, exactly the same permutation is applied to the components of ix as to the components of x.

largest is an optional scalar INTENT(IN) argument of type INTEGER(ip). If largest is present and set to .TRUE.,

the largest, rather than the smallest, entry will be found and placed in x(m) on exit, and the remaining heap

rebuilt

Finding the k smallest components of a set of n elements. To find the k smallest components of a set, {x1,x2, ...,xn},

of n elements, the user should firstly call SORT heapsort build with n = n and x1 to xn stored in x(1) to x(n). This

places the components of x on a heap. This should then be followed by k calls of SORT heapsort smallest, with m

= n− i+ 1 for i = 1, ...,k. The required k smallest values, in increasing order, will now occupy positions n− i+ 1 of

x for i = 1, ...,k.

2.3 Warning and error messages

A positive value of inform on exit from SORT reorder by rows, SORT quicksort, SORT heapsort build or

SORT heapsort smallest indicates that an input error has occurred. The other arguments will not have been altered.

The only possible values are:

1. One or more of the restrictions nr > 0, nc > 0, nnz > 0 (SORT reorder by rows), n > 0 (SORT quicksort,

SORT heapsort build) or m > 0 (SORT heapsort smallest) has been violated.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SORT (May 24, 2024) 5

SORT GALAHAD

2. One of the restrictions la ≥ nnz (SORT reorder by rows) or n < 232 (SORT quicksort) has been violated.

3. The restriction liw ≥ MAX(nr,nc)+1 (SORT reorder by rows) has been violated.

4. The restriction lptr ≥ nr+1 (SORT reorder by rows) has been violated.

5. All of the entries input in A row and A col are out of range.

A negative value of inform on exit from SORT reorder by rows indicates that A has been successfully reordered,

but that a a warning condition has occurred. The only possible values are:

-1. There were duplicate input entries, which have been summed.

-2. There were input row entries out of range, which have been ignored.

-3. There were input column entries out of range, which have been ignored.

3 GENERAL INFORMATION

Use of common: None.

Workspace: None.

Other routines called directly: None.

Other modules used directly: None.

Input/output: None.

Restrictions: nr > 0, nc > 0, nnz > 0, la ≥ nnz, liw ≥ MAX(nr,nc)+1, lptr ≥ nr+1, (SORT reorder by rows),

n> 0 (SORT quicksort and SORT heapsort build), m> 0 (SORT heapsort smallest) and n< 232

(SORT quicksort)

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

4.1 Quicksort

The quicksort method is due to C. A. R. Hoare (Computer Journal, 5 (1962), 10-15).

The idea is to take one component of the vector to sort, say x1, and to move it to the final position it should occupy

in the sorted vector, say position p. While determining this final position, the other components are also rearranged

so that there will be none with smaller value to the left of position p and none with larger value to the right. Thus the

original sorting problem is transformed into the two disjoint subproblems of sorting the first p− 1 and the last n− p

components of the resulting vector. The same technique is then applied recursively to each of these subproblems. The

method is likely to sort the vector x in O(n logn) operations, but may require as many as O(n2) operations in extreme

cases.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 SORT (May 24, 2024) GALAHAD

GALAHAD SORT

4.2 Heapsort

The heapsort method is due to J. W. J. Williams (Algorithm 232, Communications of the ACM 7 (1964), 347-348).

Subroutine SORT heapsort build is a partial amalgamation of Williams’ Algol procedures setheap and inheap while

SORT heapsort smallest is based upon his procedures outheap and swopheap.

The elements of the set {x1,x2, ...,xn} are first allocated to the nodes of a heap. A heap is a binary tree in which the

element at each parent node has a numerical value as small as or smaller than the elements at its two children. The

smallest value is thus placed at the root of the tree. This value is now removed from the heap and a subset of the

remaining elements interchanged until a new, smaller, heap is constructed. The smallest value of the new heap is now

at the root and may be removed as described above. The elements of the initial set may thus be arranged in order

of increasing size, the i-th largest element of the array being found in the i-th sweep of the method. The method is

guaranteed to sort all n numbers in O(n logn) operations.

5 EXAMPLE OF USE

The following example is a somewhat unnatural sequence of operations, but illustrates the use of the SORT tools. It

uses the data vector

x = {x1,x2, ...,x20}= {−5,−7, 2, 9, 0,−3, 3, 5,−2,−6, 8, 7,−1,−8, 10,−4, 6,−9, 1, 4}.

Suppose now that we wish to perform the following successful operations:

1. sort the components of x in ascending order and compute the associated inverse permutation,

2. apply this permutation to the resulting vector (in order to recover its original ordering),

3. restore the permutation to the identity by sorting its components in ascending order,

4. find the 12 smallest components of x and the associated inverse permutation,

5. inverse this permutation (which yields the permutation used to sort the 12 smallest components),

6. apply to the permuted x the inverse of the this latest permutation (thus recovering its original ordering again).

Then we may use the following code:

! THIS VERSION: GALAHAD 3.3 - 04/02/2020 AT 11:30 GMT.

PROGRAM GALAHAD_SORT_EXAMPLE

USE GALAHAD_SORT_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

INTEGER, PARAMETER :: n = 20

INTEGER :: i, m, inform

INTEGER :: p(n)

REAL (KIND = wp) :: x(n)

x = (/ -5.0, -7.0, 2.0, 9.0, 0.0, -3.0, 3.0, 5.0, -2.0, -6.0, &

8.0, 7.0, -1.0, -8.0, 10.0, -4.0, 6.0, -9.0, 1.0, 4.0 /) ! values

p = (/ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, &

15, 16, 17, 18, 19, 20 /) ! indices

! write the initial data

WRITE(6, "(/’ The vector x is’ / 2(10 (F5.1, 2X) /)) ") x(1:n)

WRITE(6, "(’ The permutation is’ / 20 (2X, I2) /) ") p(1:n)

! sort x and obtain the inverse permutation

WRITE(6, "(’ Sort x in ascending order’ /)")

CALL SORT_quicksort(n, x, inform, p)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SORT (May 24, 2024) 7

SORT GALAHAD

WRITE(6, "(’ The vector x is now’ / 2(10 (F5.1, 2X) /)) ") x(1:n)

WRITE(6, "(’ The permutation is now’ / 20 (2X, I2) /) ") p(1:n)

! apply the inverse permutation to x

WRITE(6, "(’ Apply the permutation to x’ /)")

CALL SORT_inplace_permute(n, p, x)

WRITE(6, "(’ The vector x is now’ / 2(10 (F5.1, 2X) /)) ") x(1:n)

! restore the identity permutation

WRITE(6, "(’ Restore the identity permutation by sorting’ /)")

CALL SORT_quicksort(n, p, inform)

WRITE(6, "(’ The permutation is now’ / 20 (2X, I2) /) ") p(1:n)

! get the 12 smallest components and the associated inverse permutation

WRITE(6, "(’ Get the 12 smallest components of x’ /)")

CALL SORT_heapsort_build(n, x, inform, ix = p) ! Build the heap

DO i = 1, 12

m = n - i + 1

CALL SORT_heapsort_smallest(m, x, inform, ix = p) ! Reorder the variables

WRITE(6, "(’ The ’, I2, ’-th(-st) smallest value, x(’, I2, ’) is ’, &

& F5.1) ") i, p(m), x(m)

END DO

WRITE(6, "(/ ’ The permutation is now’ / 20 (2X, I2) /) ") p(1:n)

! compute the direct permutation in p

WRITE(6, "(’ Compute the inverse of this permutation’ /)")

CALL SORT_inplace_invert(n, p)

WRITE(6, "(’ The permutation is now’ / 20 (2X, I2) /) ") p(1:n)

! apply inverse permutation

WRITE(6, "(’ Apply the resulting permutation to x’ /)")

CALL SORT_inverse_permute(n, p, x)

WRITE(6, "(’ The final vector is’ / 2(10 (F5.1, 2X) /)) ") x(1:n)

STOP

END PROGRAM GALAHAD_SORT_EXAMPLE

This produces the following output:

The vector x is

-5.0 -7.0 2.0 9.0 0.0 -3.0 3.0 5.0 -2.0 -6.0

8.0 7.0 -1.0 -8.0 10.0 -4.0 6.0 -9.0 1.0 4.0

The permutation is

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Sort x in ascending order

The vector x is now

-9.0 -8.0 -7.0 -6.0 -5.0 -4.0 -3.0 -2.0 -1.0 0.0

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

The permutation is now

18 14 2 10 1 16 6 9 13 5 19 3 7 20 8 17 12 11 4 15

Apply the permutation to x

The vector x is now

-5.0 -7.0 2.0 9.0 0.0 -3.0 3.0 5.0 -2.0 -6.0

8.0 7.0 -1.0 -8.0 10.0 -4.0 6.0 -9.0 1.0 4.0

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 SORT (May 24, 2024) GALAHAD

GALAHAD SORT

Restore the identity permutation by sorting

The permutation is now

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Get the 12 smallest components of x

The 1-th(-st) smallest value, x(18) is -9.0

The 2-th(-st) smallest value, x(14) is -8.0

The 3-th(-st) smallest value, x(2) is -7.0

The 4-th(-st) smallest value, x(10) is -6.0

The 5-th(-st) smallest value, x(1) is -5.0

The 6-th(-st) smallest value, x(16) is -4.0

The 7-th(-st) smallest value, x(6) is -3.0

The 8-th(-st) smallest value, x(9) is -2.0

The 9-th(-st) smallest value, x(13) is -1.0

The 10-th(-st) smallest value, x(5) is 0.0

The 11-th(-st) smallest value, x(19) is 1.0

The 12-th(-st) smallest value, x(3) is 2.0

The permutation is now

7 20 12 17 8 4 11 15 3 19 5 13 9 6 16 1 10 2 14 18

Compute the inverse of this permutation

The permutation is now

16 18 9 6 11 14 1 5 13 17 7 3 12 19 8 15 4 20 10 2

Apply the resulting permutation to x

The final vector is

-5.0 -7.0 2.0 9.0 0.0 -3.0 3.0 5.0 -2.0 -6.0

8.0 7.0 -1.0 -8.0 10.0 -4.0 6.0 -9.0 1.0 4.0

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SORT (May 24, 2024) 9

