
GALAHAD SLS

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package solves dense or sparse symmetric systems of linear equations using variants of Gaussian elimination.

Given a sparse symmetric matrix A = {ai j}n×n, and an n-vector b or a matrix B = {bi j}n×r, this subroutine solves the

system Ax = b or the system AX = B . The matrix A need not be definite.

The method provides a common interface to a variety of well-known solvers from HSL and elsewhere. Currently

supported solvers include MA27/SILS, HSL MA57, HSL MA77 , HSL MA86, HSL MA87 and HSL MA97 from HSL, SSIDS

from SPRAL, MUMPS from Mumps Technologies, PARDISO both from the Pardiso Project and Intel’s MKL, PaStiX

from Inria, and WSMP from the IBM alpha Works, as well as POTR, SYTR and SBTR from LAPACK. Note that, with

the exception of SSIDS and the Netlib reference LAPACK codes, the solvers themselves do not form part of this

package and must be obtained separately. Dummy instances are provided for solvers that are unavailable. Also

note that additional flexibility may be obtained by calling the solvers directly rather that via this package.

ATTRIBUTES — Versions: GALAHAD SLS single, GALAHAD SLS double. Calls: GALAHAD CLOCK, GALAHAD-

SYMBOLS, GALAHAD SORT, GALAHAD SPACE, GALAHAD SPECFILE, GALAHAD STRING, GALAHAD SMT, GALAHAD SILS and

optionally HSL MA57, HSL MA77, HSL MA86, HSL MA87, HSL MA97, HSL MC64, HSL MC68, MC61, MC77, and METIS. Date:

August 2009. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or For-

tran 2003. Parallelism: Some solvers may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD SLS single

with the obvious substitution GALAHAD SLS double, GALAHAD SLS single 64 and GALAHAD SLS double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, SLS control type,

SLS time type, SLS data type, and SLS inform type (§2.6), and the subroutines SLS initialize, SLS analyse,

SLS factorize, SLS solve, SLS terminate (§2.7), SLS enquire, SLS alter d, and SLS part solve (§2.9) must

be renamed on one of the USE statements.

There are five principal subroutines for user calls (see §2.9 for further features):

The subroutine SLS initialize must be called to specify the external solver to be used. It may also be called to set

default values for solver-specific components of the control structure. If non-default values are wanted for any

of the control components, the corresponding components should be altered after the call to SLS initialize.

SLS analyse accepts the pattern of A and optionally chooses pivots for Gaussian elimination using a selection

criterion to preserve sparsity. It subsequently constructs subsidiary information for actual factorization by

SLS factorize. If the user provides the pivot sequence, only the necessary information for SLS factorize

will be generated.

SLS factorize factorizes the matrix A using the information from a previous call to SLS analyse. The actual pivot

sequence used may differ from that of SLS analyse if A is not definite.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 1

SLS GALAHAD

SLS solve uses the factors generated by SLS factorize to solve a system of equations with one (Ax= b) or several

(AX = B) right-hand sides. Iterative refinement may be used to improve a given solution or set of solutions.

SLS terminate deallocates the arrays held inside the structure for the factors. It should be called when all the

systems involving its matrix have been solved or before another external solver is to be used.

2.2 Supported external solvers

In Table 2.1 we summarize key features of the external solvers supported by SLS. Further details are provided in the

references cited in §4.

solver factorization indefinite A out-of-core parallelised

SILS/MA27 multifrontal yes no no

HSL MA57 multifrontal yes no no

HSL MA77 multifrontal yes yes OpenMP core

HSL MA86 left-looking yes no OpenMP fully

HSL MA87 left-looking no no OpenMP fully

HSL MA97 multifrontal yes no OpenMP core

SSIDS multifrontal yes no CUDA core

MUMPS multifrontal yes optionally MPI

PARDISO left-right-looking yes no OpenMP fully

MKL PARDISO left-right-looking yes optionally OpenMP fully

PaStiX left-right-looking yes no OpenMP fully

WSMP left-right-looking yes no OpenMP fully

POTR dense no no with parallel LAPACK

SYTR dense yes no with parallel LAPACK

PBTR dense band no no with parallel LAPACK

Table 2.1: External solver characteristics.

2.3 Matrix storage formats

The matrix A may be stored in a variety of input formats.

2.3.1 Sparse co-ordinate storage format

Only the nonzero entries of the lower-triangular part of A are stored. For the l-th entry of the lower-triangular portion

of A, its row index i, column index j and value ai j are stored in the l-th components of the integer arrays row, col and

real array val, respectively. The order is unimportant, but the total number of entries ne is also required.

2.3.2 Sparse row-wise storage format

Again only the nonzero entries of the lower-triangular part are stored, but this time they are ordered so that those in

row i appear directly before those in row i+1. For the i-th row of A, the i-th component of an integer array ptr holds

the position of the first entry in this row, while ptr (m+ 1) holds the total number of entries plus one. The column

indices j and values ai j of the entries in the i-th row are stored in components l = ptr(i), . . . ,ptr (i+ 1)− 1 of the

integer array col, and real array val, respectively.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

2.3.3 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are stored

in order within an appropriate real one-dimensional array. Since A is symmetric, only the lower triangular part (that is

the part ai j for 1 ≤ j ≤ i ≤ n) need be held, and this part will be stored by rows, that is component i∗ (i− 1)/2+ j of

the storage array val will hold the value ai j (and, by symmetry, a ji) for 1 ≤ j ≤ i ≤ n.

2.4 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.5 Parallel usage

OpenMP may be used by the GALAHAD SLS package to provide parallelism for some solvers in shared memory envi-

ronments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP must

be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number of

threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.6 The derived data types

Five derived data types are used by the package.

2.6.1 The derived data type for holding the matrix

The derived data type SMT type is used to hold the matrix A. The components of SMT type used are:

n is a scalar variable of type INTEGER(ip), that holds the order n of the matrix A. Restriction: n ≥ 1.

type is an allocatable array of rank one and type default CHARACTER, that indicates the storage scheme used. If

the sparse co-ordinate scheme (see §2.3.1) is used the first ten components of type must contain the string

COORDINATE. For the sparse row-wise storage scheme (see §2.3.2), the first fourteen components of type must

contain the string SPARSE BY ROWS, and for dense storage scheme (see §2.3.3) the first five components of type

must contain the string DENSE.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into type. For example, if A is to be stored in the structure A of derived type SMT type and we wish to

use the co-ordinate scheme, we may simply

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 3

SLS GALAHAD

CALL SMT_put(A%type, ’COORDINATE’, istat)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part of A in

the sparse co-ordinate storage scheme (see §2.3.1). It need not be set for any of the other three schemes.

val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower triangular

part of the matrix A for each of the storage schemes discussed in §2.3. Any duplicated entries that appear in the

sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular part of

A in the sparse co-ordinate storage scheme (see §2.3.1). It need not be allocated for any of the other schemes.

Any entry whose row index lies out of the range [1,n] will be ignored.

col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the lower trian-

gular part of A in either the sparse co-ordinate (see §2.3.1), or the sparse row-wise (see §2.3.2) storage scheme.

It need not be allocated when the dense storage scheme is used. Any entry whose column index lies out of the

range [1,n] will be ignored, while the row and column indices of any entry from the strict upper triangle will

implicitly be swapped.

ptr is a rank-one allocatable array of size n+1 and type INTEGER(ip), that holds the starting position of each row of

the lower triangular part of A, as well as the total number of entries plus one, in the sparse row-wise storage

scheme (see §2.3.2). It need not be allocated for the other schemes.

Although any of the above-mentioned matrix storage formats may be used with each supported solver, MA27/SILS

and HSL MA57 from HSL are most efficient if co-ordinate input is provided.

2.6.2 The derived data type for holding control parameters

The derived data type SLS control type is used to hold controlling data. Default values specifically for the desired

solver may be obtained by calling SLS initialize (see §2.7.1), while components may be changed at run time by

calling SLS read specfile (see §2.10.1). The components of SLS control type are:

error is a scalar variable of type INTEGER(ip), that holds the unit number for error messages. Printing of error

messages is suppressed if error< 0. The default is error = 6.

warning is a scalar variable of type INTEGER(ip), that holds the unit number for warning messages. Printing of

warning messages is suppressed if warning< 0. The default is warning = 6.

out is a scalar variable of type INTEGER(ip), that holds the unit number for informational messages. Printing of

informational messages is suppressed if out< 0. The default is out = 6.

statistics is a scalar variable of type INTEGER(ip), that holds the unit number for statistical output, if any.

Printing of statistical messages is suppressed if statistics< 0. The default is statistics = 0.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

that is required. No informational output will occur if print level≤ 0. If print level ≥ 1 a single line of

output will be produced for each step of iterative refinement performed. The default is print level = 0.

print level solver is a scalar variable of type INTEGER(ip), that is used to control the amount of informa-

tional output that is required by the exteral solver. No informational output will occur if print level≤ 0. If

print level ≥ 1 the amount of output produced is solver dependent. The default is print level solver =

0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

bits is a scalar variable of type INTEGER(ip), that indicates the machine architecture being used. It should be set

to 32 on a 32-bit architecture and to 64 on a 64-bit architecture. The default value is 32, and this default is used

if bits 6= 64.

block size kernel is a scalar variable of type INTEGER(ip), that gives the target block size for the kernel factor-

ization, if any. The default value is 40, and this default is used if block size kernel < 1.

block size elimination is a scalar variable of type INTEGER(ip), that gives the target block size for parallel

factorization, if any. The default is block size elimination = 32, and this default is used if block size -

elimination < 1.

blas block size factorize is a scalar variable of type INTEGER(ip), that gives the block size for level-three basic

linear algebra subprograms (BLAS) in the factorization phase. The default is blas block size factorize =

16, and this default is used if blas block size factorize < 1.

blas block size solve is a scalar variable of type INTEGER(ip), that gives the block size for level-two and -three

basic linear algebra subprograms (BLAS) in the solution phase. The default is blas block size solve = 16,

and this default is used if blas block size solve < 1.

node amalgamation is a scalar variable of type INTEGER(ip), that controls node amalgamation. Two neighbours in

the elimination tree are merged if they both involve fewer than node amalgamation eliminations. The default

is node amalgamation=32, and this default is used if node amalgamation < 1.

initial pool size is a scalar variable of type INTEGER(ip), that holds the initial size of the arrays that store the

task pool for parallel factorization, if any. The default is initial pool size = 100000, and this default is

used if initial pool size < 1.

min real factor size is a scalar variable of type INTEGER(ip), that specifies the amount of real storage that will

initially be allocated for the factors and other data. The default is min real factor size = 10000, and this

default is used if min real factor size < 1.

min integer factor size is a scalar variable of type INTEGER(ip), that specifies the amount of integer storage

that will initially be allocated for the factors and other data. The default is min integer factor size =

10000, and this default is used if min integer factor size < 1.

max real factor size is a scalar variable of type INTEGER(int64), that specifies the maximum amount of real

storage that will be allocated for the factors and other data. The default is max real factor size = HUGE(0).

max integer factor size is a scalar variable of type INTEGER(int64), that specifies the maximum amount of

integer storage that will be allocated for the factors and other data. The default is max integer factor size

= HUGE(0).

max in core store is a scalar variable of type INTEGER(int64), that specifies the maximum amount of storage

(measured in Fortran storage units) to be used if the user wants to use in-core arrays when possible in place

of out-of-core direct-access files for solvers that support out-of-core factorization. If max in core store = 0,

factorization will occur entirely out-of-core. The default is max in core store = HUGE(0)/4 (HUGE(0)/8 in

GALAHAD SLS double) for 32-bit architectures and max in core store = HUGE(0 long)/4 (HUGE(0 long)/8

in GALAHAD SLS double) in the 64-bit case.

array increase factor is a scalar variable of type REAL(rp), that holds the factor by which arrays sizes are to be

increased if they are too small. The default is array increase factor = 2.0.

array decrease factor is a scalar variable of type REAL(rp), that holds a factor that is used to assess whether

previously allocated internal workspace arrays are excessive. In particular, if current requirements are less

than array decrease factor times the currently allocated space, the space will be re-allocated to current

requirements. The default is array decrease factor = 2.0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 5

SLS GALAHAD

pivot control is a scalar variable of type INTEGER(ip), that is used to control numerical pivoting by SLS -

factorize. Possible values are:

1 Numerical pivoting will be performed, with relative pivot tolerance given by the component relative -

pivot tolerance.

2 No pivoting will be performed and an error exit will occur immediately a sign change is detected among the

pivots. This is suitable for cases when A is thought to be definite and is likely to decrease the factorization

time while still providing a stable decomposition.

3 No pivoting will be performed and an error exit will occur if a zero pivot is detected. This is likely to decrease

the factorization time, but may be unstable if there is a sign change among the pivots or a tiny pivot is

encountered.

4 No pivoting will be performed but the matrix will be altered to ensure that the result is “sufficiently” positive

definite if a non-positive pivot is encountered.

The default is pivot control = 1, and any value outside of [1,4] will be reset to the default.

ordering is a scalar variable of type INTEGER(ip), that controls the initial order of the rows when performing

the factorization. This will be ignored if an explicit permutation is specified (see the argument PERM for

SLS analyse). Possible values are:

< 0 The ordering will be chosen by the specified solver with its own ordering-selection value - ordering.

0 The ordering will be chosen to be the default for the solver used. If the specified solver has no default, the

rows will be unordered which is unlikely to be satisfactory.

1 The ordering will be chosen by the Approximate Minimum Degree method with provisions for “dense”

rows/columns.

2 The ordering will be chosen by the Minimum Degree method.

3 The ordering will be chosen by the Nested Dissection method; this requires the user to have installed the

external package METIS.

4 An indefinite ordering involving a combination of 1x1 and 2x2 pivots will be used.

5 An ordering that aims to provide a small profile or wavefront will be used.

6 An ordering that aims to provide a small bandwidth will be used.

7 The ordering will be chosen by an earlier implementation of the Approximate Minimum Degree method with

no provisions for “dense” rows/columns.

> 7 The ordering will be chosen automatically depending on matrix characteristics (not yet implemented).

Values 1 to 4 are only supported if the HSL package HSL MC68 is available, while 5 and 6 are only possible

when the HSL package MC61 is provided. The default is ordering = 0, and currently any value > 6 will be

reset to this default.

full row threshold is a scalar variable of type INTEGER(ip), that controls the threshold for detecting rows with a

large percentage (relative to the matrix order) of nonzeros by SLS analyse. Such rows will normally be ordered

last when the factorization occurs. If full row threshold = 100, only fully dense rows will be detected. The

default is full row threshold = 100, and any value outside of [0,100] will be reset to the default.

row search indefinite is a scalar variable of type INTEGER(ip), that controls the maximum number of rows

searched for a pivot when using the indefinite ordering (see ordering = 4 above). The default is row search -

indefinite = 10, and this default is used if row search indefinite < 1.

scaling is a scalar variable of type INTEGER(ip), that may control scaling of the matrix. Possible values are:

< 0 The scaling will be chosen by the specified solver with its own scaling-selection value - scaling.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

0 No scaling is used.

1 Scale the matrix so that the diagonal and off diagonal entries of the result are one and smaller than one,

respectively, in absolute value using the package HSL MC64.

2 Scale the matrix so that ℓ1-norms of each column of the result are approximately one using the package MC77.

3 Scale the matrix so that ℓ∞-norms of each column of the result are approximately one using the package MC77.

4 Use the default for the specified solver, or 0 (no scaling) if there is no default.

This option is not currently available for all solvers; -1 is only available for HSL MA57, -2 for HSL MA77 and -3

to -1 for HSL MA97. The default is scaling = 0, and any value larger than 4 will be reset to the default.

scale maxit is a scalar variable of type INTEGER(ip), that controls the maximum number of iterations performed

by MC77 when scaling is requested (see scale above). The default is scale maxit = 10, and this default is

used if scale maxit < 1.

scale thresh is a scalar variable of type REAL(rp), that is used by MC77 to terminate the scaling iteration. The

iteration stops as soon as the the difference between every column norm and one is smaller that scale thresh

in magnitude. The default is scale thresh = 0.1.

relative pivot tolerance is a scalar variable of type REAL(rp), that holds the relative pivot tolerance that is

used to control the stability of the factorization of indefinite A. The default is relative pivot tolerance

= 0.01. For problems requiring greater than average numerical care a higher value than the default would be

advisable. Values greater than 0.5 are treated as 0.5 for all solvers except HSL MA77 (where an upper bound 1.0

is enforced) and less than 0.0 as 0.0.

minimum pivot tolerance is a scalar variable of type REAL(rp), that holds the minimum permitted value of the

relative pivot tolerance. If, at any stage of the computation, fewer than the expected number of stable pivots

have been found using the current tolerance but the largest candidate pivot would be acceptable with toler-

ance minimum pivot tolerance, the pivot is accepted, and all subsequent pivots will be assessed relative to

minimum pivot tolerance rather than relative pivot tolerance. The default is minimum pivot tolerance=0.01.

Values of minimum pivot tolerance greater than relative pivot tolerance are treated as relative pivot tolerance,

while values less than 0 are treated as 0.

absolute pivot tolerance is a scalar variable of type REAL(rp), that holds the absolute pivot tolerance that is

used to control the stability of the factorization of indefinite A. No pivot smaller than absolute pivot tolerance

in absolute value will be accepted. The default is absolute pivot tolerance = EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD SLS double).

zero tolerance is a scalar variable of type REAL(rp), that controls which small entries are to be ignored during the

factorization of A. Any entry smaller in absolute value than zero tolerance will be treated as zero; as a con-

sequence when zero tolerance > 0, the factors produced will be of a perturbation of order zero tolerance

of A. The default is zero tolerance = 0.0.

static pivot tolerance and static level switch are scalar variables of type REAL(rp), that are used to set the

static pivot level when the solvers HSL MA57 or HSL MA77 are used. If static pivot tolerance>0.0 and if,

at any stage of the computation, relatively fewer than static level switch pivots can be found with relative

pivot tolerance greater than minimum pivot tolerance, diagonal entries are accepted as pivots. If a candidate

diagonal entry has absolute value at least static pivot tolerance, it is selected as a pivot; otherwise, the

pivot is given the value that has the same sign but absolute value static pivot tolerance. The defaults are

static pivot tolerance = 0.0 and static level switch = 0.0. If static pivot tolerance is larger

than zero, but smaller than zero tolerance, the value zero tolerance will be used.

consistency tolerance is a scalar variable of type REAL(rp), that holds the tolerance used to access whether a sin-

gular system is consistent or not. The default is xonsistency tolerance = EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD SLS double).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 7

SLS GALAHAD

max iterative refinements is a scalar variable of type default INTEGER(ip), that holds the maximum number of

iterative refinements that may be attempted. The default is max iterative refinements = 0.

acceptable residual relative and acceptable residual absolute are scalar variables of type REAL(rp),

that specify an acceptable level for the residual Ax − b or residuals Axi − bi, i = 1, . . . ,r, when there are

more than one. In particular, iterative refinement will cease as soon as ‖Ax− b‖∞ falls below max(‖b‖∞∗
acceptable residual relative, acceptable residual absolute); for the multiple residual case, we re-

quire that ‖Axi−bi‖∞ falls below max(‖bi‖∞∗ acceptable residual relative, for each i= 1, . . . ,r. The de-

faults are acceptable residual relative = acceptable residual absolute = 10u, where u is EPSILON(1.0)

(EPSILON(1.0D0) in GALAHAD SLS double).

out of core directory is a scalar variable of type default CHARACTER and length 400, that identifies the full path

name of the directory in which direct-access files will be written if out-of-core factorization is performed; the

full path must end with a /. Exceptionally, the “empty” string "" refers to the current directory. The default is

out of core directory = "".

out of core integer factor file is a scalar variable of type default CHARACTER and length 400, that identifies

the base files name for direct-access files that hold integer components of the matrix factors when an out-of-core

factorization is obtained. Files with names out of core integer factor file appended with 1, 2, ...

will be created as needed. There should be no other files with this base file name in the directory specified for

the task. The default is out of core integer factor file = "factor integer ooc".

out of core real factor file is a scalar variable of type default CHARACTER and length 400, that identifies the

base files name for direct-access files that hold real components of the matrix factors when an out-of-core

factorization is obtained. Files with names out of core real factor file appended with 1, 2, ... will

be created as needed. There should be no other files with this base file name in the directory specified for the

task. The default is out of core real factor file = "factor real ooc".

out of core real work file is a scalar variable of type default CHARACTER and length 400, that identifies the base

files name for direct-access files that hold real workspace components when an out-of-core factorization is ob-

tained. Files with names out of core real work file appended with 1, 2, ... will be created as needed.

There should be no other files with this base file name in the directory specified for the task. The default is

out of core real work file = "work real ooc".

out of core indefinite file is a scalar variable of type default CHARACTER and length 400, that identifies the base

files name for direct-access files that hold additional real workspace components in the indefinite case when an

out-of-core factorization is obtained. Files with names out of core indefinite file appended with 1, 2,

... will be created as needed. There should be no other files with this base file name in the directory specified

for the task. The default is out of core indefinite file = "work indefinite ooc".

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, the default prefix = "" should be used.

2.6.3 The derived data type for holding timing information

The derived data type SLS time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of SLS time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time (in seconds) spent in the package.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent in the analysis phase.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent in the factorization phase.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent in the solve phases.

order external is a scalar variable of type REAL(rp), that gives the CPU time spent by the external solvers in the

ordering phase.

analyse external is a scalar variable of type REAL(rp), that gives the CPU time spent by the external solvers in

the analysis phase.

factorize external is a scalar variable of type REAL(rp), that gives the CPU time spent by the external solvers

in the factorization phase.

solve external is a scalar variable of type REAL(rp), that gives the CPU time spent by the external solvers in the

solve phases.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time (in seconds) spent

in the package.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent in the analysis

phase.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent in the

factorization phase.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent in the solve

phases.

clock order external is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent by the

external solvers in the ordering phase.

clock analyse external is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent by

the external solvers in the analysis phase.

clock factorize external is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent

by the external solvers in the factorization phase.

clock solve external is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent by the

external solvers in the solve phases.

2.6.4 The derived data type for holding informational parameters

The derived data type SLS inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of SLS inform type are as follows—any component that is not relevant to the

solver being used will have the value -1 or -1.0 as appropriate:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See §2.8 for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if there have been no allocation

or deallocation errors.

entries is a scalar variable of type INTEGER(ip), that is set to the total number of entries of A supplied.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 9

SLS GALAHAD

out of range is a scalar variable of type INTEGER(ip), that is set to the number of entries of A supplied with one

or both indices out of range.

duplicates is a scalar variable of type INTEGER(ip), that is set to the number of duplicate off-diagonal entries of

A supplied.

upper is a scalar variable of type INTEGER(ip), that is set to the number of input entries from the strict upper triangle

of A.

missing diagonals is a scalar variable of type INTEGER(ip), that gives the number of diagonal entries entries

missing for an allegedly-definite matrix A.

max depth assembly tree is a scalar variable of type INTEGER(ip), that gives the maximum depth of the assembly

tree.

nodes assembly tree is a scalar variable of type INTEGER(ip), that holds the number of nodes in the assembly

tree.

real size desirable is a scalar variable of type INTEGER(int64), that give the total number of real words re-

quired for a successful factorization without the need for data compression, provided no numerical pivoting is

performed.

integer size desirable is a scalar variable of type INTEGER(int64), that give the total number of integer words

required for a successful factorization without the need for data compression, provided no numerical pivoting is

performed.

real size necessary is a scalar variable of type INTEGER(int64), that give the total number of real words required

for a successful factorization allowing for data compression, provided no numerical pivoting is performed.

integer size necessary is a scalar variable of type INTEGER(int64), that give the total number of real words

required for a successful factorization allowing for data compression, provided no numerical pivoting is per-

formed.

real size factors is a scalar variable of type INTEGER(int64), that gives the predicted or actual number of real

words to hold factors of A.

integer size factors is a scalar variable of type INTEGER(int64), that gives the predicted or actual number of

integer words to hold factors of A.

entries in factors is a scalar variable of type INTEGER(int64), that gives the number of entries in the factors of

A.

max task pool size is a scalar variable of type INTEGER(ip), that gives the maximum number of tasks in the

parallel factorization task pool.

max front size is a scalar variable of type INTEGER(ip), that gives the forecast or actual size of the largest front

encountered during the factorization.

compresses real is a scalar variable of type INTEGER(ip), that gives the number of compresses of real data re-

quired.

compresses integer is a scalar variable of type INTEGER(ip), that gives the number of compresses of integer data

required.

two by two pivots is a scalar variable of type INTEGER(ip), that gives the number of two-by-two pivots used in

the factorization.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

semi bandwidths is a scalar variable of type INTEGER(ip), that gives the semi-bandwidth of the input matrix

following profile or bandwidth reduction.

delayed pivots is a scalar variable of type INTEGER(ip), that gives the total number of delayed pivots in the

factorization.

pivot sign changes is a scalar variable of type INTEGER(ip), that gives the number of pivot sign changes encoun-

tered if the no pivoting option (control%pivot control = 3) is used successfully.

static pivots is a scalar variable of type INTEGER(ip), that gives the number of modified pivots during static

pivoting are chosen.

first modified pivot is a scalar variable of type INTEGER(ip), that gives the step at which the first pivot is mod-

ified when performing static pivoting (i.e., if control%static pivot tolerance>0.0) or when modifying

the matrix to ensure it is sufficiently positive definite (i.e., if control%pivot control = 4).

rank is a scalar variable of type INTEGER(ip), that gives an estimate of the rank of A.

negative eigenvalues is a scalar variable of type INTEGER(ip), that gives an estimate of the number of negative

eigenvalues of A.

iterative refinements is a scalar variable of type INTEGER(ip), that gives the number of iterative refinements

performed.

alternative is a scalar variable of type default LOGICAL, that will be set .FALSE. on exit from SLS fredholm -

alternative (see §2.9.5) if a solution x to Ax = b has been found, and .TRUE. if instead the alternative vector

x for which Ax = 0 and bT x > 0 has been determined.

flops assembly is a scalar variable of type INTEGER(int64), that gives the anticipated or actual number of floating-

point operations performed when manipulating the matrix prior to factorization.

flops elimination is a scalar variable of type INTEGER(int64), that gives the anticipated or actual number of

floating-point operations performed during the factorization.

flops blas is a scalar variable of type INTEGER(int64), that gives the number of additional floating-point opera-

tions that result from using the basic linear algebra subprograms (BLAS) in the factorization phase.

largest modified pivot is a scalar variable of type REAL(rp), that gives the value of the largest pivot modification

when performing static pivoting (i.e., if control%static pivot tolerance>0.0) or when modifying the

matrix to ensure it is sufficiently positive definite (i.e., if control%pivot control = 4).

minimum scaling factor is a scalar variable of type REAL(rp), that gives the minimum scaling factor used.

maximum scaling factor is a scalar variable of type REAL(rp), that gives the maximum scaling factor used.

backward error 1 and backward error 2 are scalar variables of type REAL(rp), that gives estimates of the scaled

backward errors (i.e., the residuals of the equations suitably normalised by the sizes of A and b/B) for category-1

and -2 equations, respectively; category-2 equations are exceptional ones for which the residuals are nonzero

but the normalising factors are large.

condition number 1 and condition number 2 are scalar variables of type REAL(rp), that gives estimates of the

condition numbers of the matrix for category-1 and -2 equations, respectively.

forward error is a scalar variable of type REAL(rp), that gives an estimate of the forward error (i.e., the error in

the solution).

solver is a scalar variable of type default CHARACTER and length 20, that gives the name of the actual solver used.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 11

SLS GALAHAD

time is a scalar variable of type SLS time type whose components are used to hold elapsed CPU and system clock

times (in seconds) for the various parts of the calculation (see Section 2.6.3).

sils ainfo is a scalar variable of type sils ainfo, that corresponds to the output value sils ainfo from SILS.

See the documentation for SILS for further details.

sils finfo is a scalar variable of type sils finfo, that corresponds to the output value sils finfo from SILS.

See the documentation for SILS for further details.

sils sinfo is a scalar variable of type sils sinfo, that corresponds to the output value sils sinfo from SILS.

See the documentation for SILS for further details.

ma57 ainfo is a scalar variable of type ma57 ainfo, that corresponds to the output value ma57 ainfo from HSL MA57.

See the documentation for HSL MA57 for further details.

ma57 finfo is a scalar variable of type ma57 finfo, that corresponds to the output value ma57 finfo from HSL MA57.

See the documentation for HSL MA57 for further details.

ma57 sinfo is a scalar variable of type ma57 sinfo, that corresponds to the output value ma57 sinfo from HSL MA57.

See the documentation for HSL MA57 for further details.

ma77 info is a scalar variable of type ma77 info, that corresponds to the output value ma77 info from HSL MA77.

See the documentation for HSL MA77 for further details.

ma86 info is a scalar variable of type ma86 info, that corresponds to the output value ma86 info from HSL MA86.

See the documentation for HSL MA86 for further details.

ma87 info is a scalar variable of type ma87 info, that corresponds to the output value ma87 info from HSL MA87.

See the documentation for HSL MA87 for further details.

ma97 info is a scalar variable of type ma97 info, that corresponds to the output value ma97 info from HSL MA97.

See the documentation for HSL MA97 for further details.

ssids inform is a scalar variable of type ssids inform, that corresponds to the output value ssids inform from

SSIDS. See the documentation for SSIDS for further details.

mc64 info is a scalar variable of type mc64 info, that corresponds to the output value mc64 info from HSL MC64.

See the documentation for HSL MC64 for further details.

mc61 info is an array of size 10 and type INTEGER(ip), that corresponds to the output array INFO from MC61. See

the HSL documentation for MC61 for further details.

mc61 rinfo is an array of size 15 and type REAL(rp), that corresponds to the output array RINFO from MC61. See

the HSL documentation for MC61 for further details.

mc68 info is a scalar variable of type mc68 info, that corresponds to the output value mc68 info from HSL MC68.

See the documentation for HSL MC68 for further details.

mc77 info is an array of rank one, of dimension 10 and of type INTEGER(ip), that corresponds to the output array

INFO from the primary subroutine in MC77. See the documentation for MC77 for further details.

mc77 rinfo is an array of rank one, of dimension 10 and of type REAL(rp), that corresponds to the output array

RINFO from the primary subroutine in MC77. See the documentation for MC77 for further details.

MUMPS error is a scalar variable of type INTEGER(ip), that corresponds to the component INFOG(1) in the solver

derived type from MUMPS. See the documentation for MUMPS for further details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

MUMPS info is an array of size 80 and type INTEGER(ip), whose components correspond to those in the array INFOG

in the solver derived type from MUMPS. See the documentation for MUMPS for further details.

MUMPS rinfo is an array of size 40 and type REAL(rp), whose components correspond to those in the array RINFOG

in the solver derived type from MUMPS. See the documentation for MUMPS for further details.

PARDISO error is a scalar variable of type INTEGER(ip), that corresponds to the output value error from PARDISO.

See the documentation for PARDISO for further details.

PARDISO iparm is an array of size 64 and type INTEGER(ip), whose components correspond to those in the output

array IPARM from PARDISO. See the documentation for PARDISO for further details.

PARDISO dparm is an array of size 64 and type REAL(rp), whose components correspond to those in the output

array DPARM from PARDISO. See the documentation for PARDISO for further details. This is only available for

the Pardiso Project version of the package.

pastix info is a scalar variable of type INTEGER(ip), that corresponds to the output value info returned from the

PaStix. See the documentation for PaStiX for further details.

WSMP error is a scalar variable of type INTEGER(ip), that corresponds to the output value error from WSMP. See

the documentation for WSMP for further details.

WSMP iparm is an array of size 64 and type INTEGER(ip), whose components correspond to those in the output array

IPARM from WSMP. See the documentation for WSMP for further details.

WSMP dparm is an array of size 64 and type REAL(rp), whose components correspond to those in the output array

DPARM from WSMP. See the documentation for WSMP for further details.

lapack error is a scalar variable of type INTEGER(ip), that corresponds to the output value info returned from the

LAPACK routines S/DPOTRF/S, S/DSYTRF/S and S/DPBTRF/S See the documentation for LAPACK for further

details.

2.6.5 The derived data type for holding problem data

The derived data type SLS data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls to SLS procedures. All components are private.

2.7 Argument lists and calling sequences

We use square brackets [] to indicate OPTIONAL arguments.

2.7.1 The initialization subroutine

The initialization subroutine must be called for each solver used to initialize data and solver-specific control parame-

ters.

CALL SLS initialize(solver, data, control, inform[, check])

solver is scalar, of INTENT(IN), of type CHARACTER, and of variable length that specifies which solver to use. Pos-

sible values are

sils if the GALAHAD solver SILS is desired.

ma27 is an alias for sils that reflects the fact that the GALAHAD solver SILS is a Fortran-90 encapsulation of

the Fortran-77 package MA27 from HSL.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 13

SLS GALAHAD

ma57 if the HSL solver HSL MA57 is desired. This is a more advanced version of SILS/MA27.

ma77 if the HSL solver HSL MA77 is desired. This is particularly appropriate when the matrix factors are too

large to fit in main memory, and offers the option of parallel execution of core computations.

ma86 if the HSL solver HSL MA86 is desired. This option offers the opportunity for general parallel solution,

but may be less efficient than ma87 below when A is positive definite.

ma87 if the HSL solver HSL MA87 is desired. This option should only be selected when A is positive definite,

but offers the opportunity for general parallel solution.

ma97 if the HSL solver HSL MA97 is desired. This option offers the functionality of HSL MA57 but offers the

option of parallel execution of core computations.

ssids if the HSL solver HSL SSIDS is desired. This option offers the functionality of HSL MA97 but additionally

performs core computations on a GPU if available. N.B., SSIDS is only supported for compilers that are

OMP 4.0 compliant, and only available in double precision.

mumps if the Mumps Technologies solver MUMPS (version 5.5.1 or above) is desired. Distributed parallel solution

is offered with this choice.

pardiso if the Pardiso Project solver PARDISO (version 4.0.0 or above) is desired. Again parallel solution is

offered with this choice.

mkl pardiso if the Intel MKL solver PARDISO that forked from the Pardiso Project version in 2006, and sup-

ports parallel solution.

pastix if the Inria solver PaStiX (version 6.2.1 or above) is desired. The solver supports parallel solution.

wsmp if the IBM alpha Works solver WSMP (version 10.9 or above) is desired. Parallel solution is also offered

with this choice.

potr if the LAPACK dense Cholesky factorization package (S/D)POTR(F/S) is desired.

sytr if the LAPACK dense symmetric indefinite factorization package S/DSYTRF/S is desired.

pbtr if the LAPACK banded Cholesky factorization package S/DPBTRF/S is desired.

Other solvers may be added in the future.

data is a scalar INTENT(OUT)argument of type SLS data type (see §2.6.5). It is used to hold data about the problem

being solved.

control is a scalar INTENT(OUT)argument of type SLS control type (see §2.6.2). On exit, control contains

solver-specific default values for the components as described in §2.6.2. These values should only be changed

after calling SLS initialize.

inform is a scalar INTENT(OUT)argument of type SLS inform type (see §2.6.4). A successful call is indicated when

the component status has the value 0. For other return values of status, see §2.8.

check is an OPTIONAL scalar LOGICAL INTENT(IN) argument that if PRESENT and set .TRUE. will check to see if the

requested solver is available, and if not will replace this by a suitable equivalent; the equivalent will be recorded

in control%solver. In addition, the output default values of control%ordering and control%scaling may

be adjusted to ensure that these options are available. No checks will be performed if check is not PRESENT or

if it is set to .FALSE. .

2.7.2 The sparsity pattern analysis subroutine

The sparsity pattern of A may be analysed as follows:

CALL SLS analyse(matrix, data, control, inform[, PERM])

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

matrix is scalar INTENT(IN) argument of type SMT type that is used to specify A. The user must set all of the relevant

components of matrix according to the storage scheme desired (see §2.6.1) except matrix%val. Incorrectly-set

components will result in errors flagged in inform%status, see §2.8.

data is a scalar INTENT(INOUT) argument of type SLS data type (see §2.6.5). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to SLS initialize.

control is scalar INTENT(IN) argument of type SLS control type. Its components control the action of the analy-

sis phase, as explained in §2.6.2.

inform is a scalar INTENT(INOUT) argument of type SLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

PERM is an OPTIONAL INTENT(IN) rank-one INTEGER(ip) argument of length matrix%n that may be used to provide

a permutation/pivot order. If present, PERM(i), i = 1, . . . , matrix%n, should be set to the desired position of

the input row i in the permuted matrix.

2.7.3 The numerical factorization subroutine

Once it has been analysed, the matrix A may be factorized as follows:

CALL SLS factorize(matrix, data, control, inform)

matrix is scalar INTENT(IN) argument of type SMT type that is used to specify A. The user must set all of the

relevant components of matrix according to the storage scheme desired (see §2.6.1). Those components set for

SLS analyse must not have been altered in the interim.

data is a scalar INTENT(INOUT) argument of type SLS data type (see §2.6.5). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to SLS initialize and not

altered by the user in the interim.

control is scalar INTENT(IN) argument of type SLS control type. Its components control the action of the factor-

ization phase, as explained in §2.6.2.

inform is a scalar INTENT(INOUT) argument of type SLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

2.7.4 The solution subroutine

Given the factorization, a set of equations may be solved as follows:

CALL SLS solve(matrix, X, data, control, inform)

matrix is scalar INTENT(IN) argument of type SMT type that is used to specify A. The user must set all of the

relevant components of matrix according to the storage scheme desired (see §2.6.1). Those components set for

SLS factorize must not have been altered in the interim.

X is an INTENT(INOUT) assumed-shape array argument of rank 1 or 2 and of type REAL(rp). On entry, X must

be set to the vector b or the matrix B and on successful return it holds the solution x or X. For the single

right-hand side case, the i-th component of b and the resulting i-th component of the solution x occupy the i-th

component of X. When there are multiple right-hand sides, the i-th component of the j-th right-hand side b j

and the resulting solution x j occupy the i,j-th component of X.

data is a scalar INTENT(INOUT) argument of type SLS data type (see §2.6.5). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to SLS initialize and not

altered by the user in the interim.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 15

SLS GALAHAD

control is scalar INTENT(IN) argument of type SLS control type. Its components control the action of the solve

phase, as explained in §2.6.2.

inform is a scalar INTENT(INOUT) argument of type SLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

2.7.5 The termination subroutine

All previously allocated internal arrays are deallocated and OpenMP locks destroyed as follows:

CALL SLS terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type SLS data type (see §2.6.5). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to SLS initialize and not

altered by the user in the interim. On exit, its allocatable array components will have been deallocated.

control is scalar INTENT(IN) argument of type SLS control type. Its components control the action of the termi-

nation phase, as explained in §2.6.2.

inform is a scalar INTENT(INOUT) argument of type SLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

2.8 Warning and error messages

A negative value of inform%status on exit from the subroutines indicates that an error has occurred. No further calls

should be made until the error has been corrected. Possible values are:

-1 An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2 A deallocation error occurred. A message indicating the offending array is written on unit control%error and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3 One of the restrictions matrix%n > 0 or matrix%ne < 0, for co-ordinate entry, or requirements that matrix%type

contain its relevant string ’COORDINATE’, ’SPARSE BY ROWS’ or ’DENSE’ has been violated.

-20 The matrix is not positive definite while the solver used expected it to be.

-26 The requested solver is not available.

-29 This option is not available with this solver.

-32 More than control%max integer factor size words of internal integer storage are required for in-core fac-

torization.

-34 The package PARDISO failed; check the solver-specific information components inform%pardiso iparm and

inform%pardiso dparm along with PARDISO’s documentation for more details.

-35 The package WSMP failed; check the solver-specific information components inform%wsmp iparm and inform%-

wsmp dparm along with WSMP’s documentation for more details.

-36 The scaling package HSL MC64 failed; check the solver-specific information component inform%mc64 info

along with HSL MC64’s documentation for more details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

-37 The scaling package MC77 failed; check the solver-specific information components inform%mc77 info and

inform%mc77 rinfo along with MC77’s documentation for more details.

-39 The input permutation/pivot order is not a permutation or is faulty in some other way.

-40 It is not possible to alter the block diagonal factors for this solver.

-41 There is no information about the permutation used or the values of the pivots used for this solver (see §2.9.1).

-42 There is no information about the values of diagonal perturbations made for this solver (see §2.9.1).

-43 A direct-access file error occurred. See the value of inform%ma77 info%flag for more details.

-50 A solver-specific error occurred; check the solver-specific information component of inform along with the

solver’s documentation for more details.

2.9 Further features

In this section, we describe features for enquiring about and manipulating the parts of the factorization constructed.

These features will not be needed by a user who wants simply to solve systems of equations with matrix A.

The solvers used each produce an LDLT factorization of A or a perturbation thereof, where L is a permuted

lower triangular matrix and D is a block diagonal matrix with blocks of order 1 and 2. It is convenient to write this

factorization in the form

A+E = PLDLT PT ,

where P is a permutation matrix and E is any diagonal perturbation introduced. The following subroutines are pro-

vided:

SLS enquire returns any of P, D, E, or the pivot permutations implicit in D.

SLS alter d alters D. Note that this means that we no longer have a factorization of the given matrix A.

SLS part solve solves one of the systems of equations PLx= b, Dx= b, LT PT x= b, or when A is positive definite,

PL
√

Dx = b, for one or more right-hand sides.

SLS sparse forward solve solves PLx = b when b is sparse and aims to return a sparse x.

SLS fredholm alternative computes the Fredholm alternative for the data (A,b), i.e., returns either x satisfying

Ax = b or x satisfying Ax = 0 and bT x > 0.

Support for these features from the solvers available with SLS is summarised in Table 2.2.

2.9.1 To return P or D or both

CALL SLS enquire(data, inform[, PERM][, PIVOTS][, D][, PERTURBATION])

data is a scalar INTENT(INOUT) argument of type SLS data type (see §2.6.5). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to SLS initialize and not

altered by the user in the interim.

inform is a scalar INTENT(INOUT) argument of type SLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

PERM is an OPTIONAL rank-one INTEGER(ip) array argument of INTENT(OUT) and length n. If present, PERM will be

set to the pivot permutation selected by SLS analyse.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 17

SLS GALAHAD

solver SLS enquire SLS alter d SLS part solve SLS sparse- SLS fredholm-

P pivots D E forward solve alterantive

SILS/MA27
√ √ √ √ √ √ ×1 ×

HSL MA57
√ √ √ √ √ √ √ √

HSL MA77
√ × √ × √ √ ×1

√

HSL MA86
√ × √ √ × √ ×1 ×

HSL MA87
√ × √ √ × √ √ ×

HSL MA97
√ √ √ √ √ √ √ √

SSIDS
√ √ √ √ √ √ ×1 ×

MUMPS
√ × × × × × × ×

PARDISO × × × × × √ ×1 ×
MKL PARDISO × × × × × √ ×1 ×
PaStiX

√ × × × × × × ×
WSMP × × × × × √ ×1 ×
POTR × × √ × √ √ ×1 ×
SYTR × √ √ × √ √ ×1 ×
PBTR × × √ × √ √ ×1 ×

Table 2.2: Options supported. ×1 indicates a feature that is not available directly from the solver, but for which an

(inefficient) simulation is provided.

PIVOTS is an OPTIONAL rank-one INTEGER(ip) array argument of INTENT(OUT) and length n. If present, the index

of pivot i will be placed in PIVOTS (i), i = 1, . . . ,n, with its sign negative if it is the index of a 2 x 2 block.

D is an OPTIONAL rank-two REAL(rp) array argument of INTENT(OUT) and shape (2, n). If present, the diago-

nal entries of D−1 will be placed in D(1, i), i = 1, . . .n and the off-diagonal entries of D−1 will be placed in

D(2, i), i = 1, . . .n− 1.

PERTURBATION is an OPTIONAL rank-one REAL(rp) array argument of INTENT(OUT) and length n. If present,

PERTURBATION will be set to a vector of diagonal perturbations chosen by SLS factorize. This array can

only be nonzero if SLS factorize was last called with control%pivoting = 4 or if the solver chose its own

pivot sequence (control%pivoting ≤ 0).

2.9.2 To alter D

CALL SLS alter d(data, D, inform)

data is a scalar INTENT(INOUT)argument of type SLS data type (see §2.6.5). It is used to hold the factors and other

data about the problem being solved. It must have been initialized by a call to SLS initialize and not altered

by the user in the interim.

D is an INTENT(INOUT) REAL(rp) array argument of shape (2, n). The diagonal entries of D−1 will be altered to

D(1, i), i = 1, . . .n and the off-diagonal entries of D−1 will be altered to D(2, i), i = 1, . . .n− 1.

inform is a scalar INTENT(INOUT)argument of type SLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

2.9.3 To perform a partial solution

CALL SLS part solve(part, X, data, control, inform)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

part is scalar, of INTENT(IN) and of type CHARACTER. It must have one of the values

L for solving PLx = b or PLX = B,

D for solving Dx = b or DX = B, or

U for solving LT PT x = b or LT PT X = B.

S for solving PL
√

Dx = b or PL
√

DX = B where
√

D is the diagonal matrix whose entries are the square roots

of those of D when A is positive definite.

data is a scalar INTENT(INOUT)argument of type SLS data type (see §2.6.5). It is used to hold the factors and other

data about the problem being solved. It must have been initialized by a call to SLS initialize and not altered

by the user in the interim.

X is an INTENT(INOUT) REAL(rp) assumed-shape array argument of rank 1 or 2. On entry, X must be set to the

vector b or the matrix B and on successful return it holds the solution x or X. For the single right-hand side

case, the i-th component of b and the resulting i-th component of the solution x occupy the i-th component of

X. When there are multiple right-hand sides, the i-th component of the j-th right-hand side b j and the resulting

solution x j occupy the i,j-th component of X.

control is scalar INTENT(IN) argument of type SLS control type. Its components control the action of the solve

phase, as explained in §2.6.2.

inform is a scalar INTENT(INOUT) argument of type SLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

2.9.4 To solve PLx = b for sparse b

CALL SLS_sparse_forward_solve(nnz_b, INDEX_b, B, nnz_x, INDEX_x, X, data, &

control, inform)

nnz b is an INTENT(IN) scalar of type INTEGER that must hold the number of nonzero entries in the right-hand side.

Restriction: 1≤nnz b≤ n.

INDEX b is an INTENT(IN) rank-1 array of type INTEGER. The first nnz b entries must hold the indices of the nonzero

entries in the right-hand side.

B is an INTENT(IN) rank-one assumed-shape array argument of length at least n and of type REAL(rp). If

INDEX b(i)=k, B(k) must hold the i-th nonzero component of the right-hand side; other entries of B are not

accessed.

nnz x is an INTENT(OUT) scalar of type INTEGER. On exit, nnz x holds the number of nonzero entries in the solution.

INDEX x is an INTENT(OUT) rank-1 array of type INTEGER and size nnz x (that is at most n). On exit, the first nnz x

entries hold the indices of the nonzero entries in the solution.

X is an INTENT(INOUT) rank-one assumed-shape array argument of length at least n and of type REAL(rp). On

entry, its first n entries must be set by the user to zero. On exit, if INDEX x(i)=k, X(k) holds the i-th nonzero

component of the solution; all other entries of X are zero.

data, control and inform: see Section 2.7.4.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 19

SLS GALAHAD

2.9.5 To find the Fredholm alternative for the data (A,b)

CALL SLS fredholm alternative(matrix, X, data, control, inform)

matrix, data, control and inform: see Section 2.7.4.

X is an INTENT(INOUT) rank-one assumed-shape array argument of length at least n and of type REAL(rp). On

entry, its first n entries must be set by the user to the vector b. On exit, X will contain a solution x to Ax = b

if inform%alternative is .FALSE. or a vector x for which Ax = 0 and bT x > 0 if inform%alternative is

.TRUE..

2.10 Setting control parameters

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type SLS control type (see §2.6.2), by reading an appropriate data specification file using the subroutine

SLS read specfile. This facility is useful as it allows a user to change SLS control parameters without editing and

recompiling programs that call SLS.

A specification file, or specfile, is a data file containing a number of “specification commands”. Each command

occurs on a separate line, and comprises a “keyword”, that is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specification file is limited to 80 characters, including the blanks separating

keyword and value.

The portion of the specification file used by SLS read specfile must start with a “BEGIN SLS” command and

end with an “END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by SLS_read_specfile ..)

BEGIN SLS

keyword value

.......

keyword value

END

(.. lines ignored by SLS_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN SLS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN SLS SPECIFICATION

and

END SLS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN SLS” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a

! or * character is also ignored (as is the ! or * character itself). This provides an easy way to “comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameter may be of three different types, namely integer, character or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

The specification file must be open for input when SLS read specfile is called, and the associated unit number

passed to the routine in device (see below). Note that the corresponding file is rewound, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

SLS read specfile.

2.10.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL SLS_read_specfile(control, device)

control is a scalar INTENT(INOUT) argument of type SLS control type (see §2.6.2). Default values should have

already been set, perhaps by calling SLS initialize. On exit, individual components of control may have

been changed according to the commands found in the specfile. Specfile commands and the component (see

§2.6.2) of control that each affects are given in Table 2.3.

device is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the unit number on which the

specification file has been opened. If device is not open, control will not be altered and execution will

continue, but an error message will be printed on unit control%error.

3 GENERAL INFORMATION

Workspace: Provided automatically by the module.

Other modules used directly: GALAHAD CLOCK, GALAHAD SYMBOLS, GALAHAD SORT single/double, GALAHAD SPACE-

single/double, GALAHAD SPECFILE single/double, GALAHAD STRING single/double, GALAHAD SMT sin-

gle/double, GALAHAD SILS single/double and optionally HSL MA57 single/double, HSL MA77 single/-

double, HSL MA86 single/double, HSL MA87 single/double, HSL MA97 single/double, HSL MC64 single-

/double and HSL MC68 single/double.

Other routines called directly: Optionally MC61, MC77 and METIS.

Input/output: Output is under control of the arguments control%error, control%warning, control%out,

control%statistics and control%print level.

Restrictions: matrix%n≥ 1, matrix%ne≥ 0 if matrix%type = ’COORDINATE’, matrix%type one of ’COORDINATE’,

’SPARSE BY ROWS’ or ’DENSE’.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003 and optionally OpenMP. The package is thread-safe.

4 METHOD

Variants of sparse Gaussian elimination are used.

The solver SILS is available as part of GALAHAD and relies on the HSL Archive package MA27. To obtain HSL

Archive packages, see

http://hsl.rl.ac.uk/archive/ .

The solvers HSL MA57, HSL MA77, HSL MA86, HSL MA87 and HSL MA97, the ordering packages MC61 and HSL MC68, and

the scaling packages HSL MC64 and MC77 are all part of HSL 2011. To obtain HSL 2011 packages, see

http://hsl.rl.ac.uk .

The solver SSIDS is from the SPRAL sparse-matrix collection, and is available as part of GALAHAD.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 21

SLS GALAHAD

command component of control value type

error-printout-device %error integer

warning-printout-device %warning integer

printout-device %out integer

statistics-printout-device %statistics integer

print-level %print level integer

print-level-solver %print level solver integer

architecture-bits %bits integer

block-size-for-kernel %block size kernel integer

block-size-for--elimination %block size elimination integer

blas-block-for-size-factorize %blas block size factorize integer

blas-block-size-for-solve %blas block size solve integer

node-amalgamation-tolerance %node amalgamation integer

initial-pool-size %initial pool size integer

minimum-real-factor-size %min real factor size integer

minimum-integer-factor-size %min integer factor size integer

maximum-real-factor-size %max real factor size integer(long)

maximum-integer-factor-size %max integer factor size integer(long)

maximum-in-core-store %max in core store integer(long)

pivot-control %pivot control integer

ordering %ordering integer

full-row-threshold %full row threshold integer

pivot-row-search-when-indefinite %row search indefinite integer

scaling %scaling integer

scale-maxit %scale maxit integer

scale-thresh %scale thresh real

max-iterative-refinements %max iterative refinements integer

array-increase-factor %array increase factor real

array-decrease-factor %array decrease factor real

relative-pivot-tolerance %relative pivot tolerance real

absolute-pivot-tolerance %absolute pivot tolerance real

zero-tolerance %zero tolerance real

static-pivot-tolerance %static pivot tolerance real

static-level-switch %static level switch real

consistency-tolerance %consistency tolerance real

acceptable-residual-relative %acceptable residual relative real

acceptable-residual-absolute %acceptable residual absolute real

out-of-core-directory %out of core directory character

out-of-core-integer-factor-file %out of core integer factor file character

out-of-core-real-factor-file %out of core real factor file character

out-of-core-real-work-file %out of core real work file character

out-of-core-indefinite-file %out of core indefinite file character

output-line-prefix %prefix character

Table 2.3: Specfile commands and associated components of control.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

22 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

The solver MUMPS is available from Mumps Technologies in France, and version 5.5.1 or above is sufficient. To obtain

MUMPS, see

https://mumps-solver.org .

The solver PARDISO is available from the Pardiso Project; version 4.0.0 or above is required. To obtain PARDISO, see

http://www.pardiso-project.org/ .

The solver MKL PARDISO is available as part of Intel’s oneAPI Math Kernel Library (oneMKL). To obtain this version

of PARDISO, see

https://software.intel.com/content/www/us/en/develop/tools/oneapi.html .

The solver PaStix is available from Inria in France, and version 6.2 or above is sufficient. To obtain PaStiX, see

https://solverstack.gitlabpages.inria.fr/pastix .

The solver WSMP is available from the IBM alpha Works; version 10.9 or above is required. To obtain WSMP, see

http://www.alphaworks.ibm.com/tech/wsmp .

The solvers POTR, SYTR and PBTR, are available as S/DPOTRF/S, S/DSYTRF/S and S/DPBTRF/S as part of LAPACK.

Reference versions are provided by GALAHAD, but for good performance machined-tuned versions should be used.

Explicit sparsity re-orderings are obtained by calling the HSL package HSL MC68. Both this, HSL MA57 and PARDISO

rely optionally on the ordering package METIS from the Karypis Lab. To obtain METIS, see

http://glaros.dtc.umn.edu/gkhome/views/metis/ .

Bandwidth, Profile and wavefront reduction is supported by calling HSL’s MC61.

References:

The methods used are described in the user-documentation for

HSL 2011, A collection of Fortran codes for large-scale scientific computation (2011).

http://www.hsl.rl.ac.uk

and papers

E. Agullo, P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, A. Guermouche and F.-H. Rouet. Robust memory-aware

mappings for parallel multifrontal factorizations, SIAM Journal on Scientific Computing, 38(3) (2016), C256–C279,

P. R. Amestoy, I. S. Duff, J. Koster and J.-Y. L’Excellent. A fully asynchronous multifrontal solver using distributed

dynamic scheduling, SIAM Journal on Matrix Analysis and Applications 23(1) (2001) 15-41.

A. Gupta, “WSMP: Watson Sparse Matrix Package Part I - direct solution of symmetric sparse systems”. IBM Re-

search Report RC 21886, IBM T. J. Watson Research Center. NY 10598, USA (2010),

J.D. Hogg, E. Ovtchinnikov and J.A. Scott. A sparse symmetric indefinite direct solver for GPU architectures. ACM

Transactions on Mathematical Software 42(1) (2014), Article 1,

P. Hénon, P. Ramet and J. Roman. PaStiX: A High-Performance Parallel Direct Solver for Sparse Symmetric Definite

Systems. Parallel Computing, 28(2) (2002) 301–321,

O. Schenk and K. Gärtner, “Solving Unsymmetric Sparse Systems of Linear Equations with PARDISO”. Journal of

Future Generation Computer Systems, 20(3) (2004) 475–487, and

O. Schenk and K. Gärtner, “On fast factorization pivoting methods for symmetric indefinite systems”. Electronic

Transactions on Numerical Analysis 23 (2006) 158–179.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 23

SLS GALAHAD

5 EXAMPLE OF USE

We illustrate the use of the package on the solution of the single set of equations

2 3

3 4 6

4 1 5

5

6 1

x =

8

45

31

15

17

(Note that this example does not illustrate all the facilities). Then, choosing the solver SILS, we may use the following

code:

PROGRAM SLS_EXAMPLE ! GALAHAD 4.1 - 2022-11-27 AT 15:15 GMT.

USE GALAHAD_SLS_double

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

TYPE (SMT_type) :: matrix

TYPE (SLS_data_type) :: data

TYPE (SLS_control_type) control

TYPE (SLS_inform_type) :: inform

INTEGER, PARAMETER :: n = 5

INTEGER, PARAMETER :: ne = 7

REAL (KIND = wp) :: B(n), X(n)

INTEGER :: s

! allocate and set lower triangle of matrix in co-ordinate form

CALL SMT_put(matrix%type, ’COORDINATE’, s)

matrix%n = n ; matrix%ne = ne

ALLOCATE(matrix%val(ne), matrix%row(ne), matrix%col(ne))

matrix%row(: ne) = (/ 1, 2, 3, 3, 4, 5, 5 /)

matrix%col(: ne) = (/ 1, 1, 2, 3, 3, 2, 5 /)

matrix%val(: ne) = (/ 2.0_wp, 3.0_wp, 4.0_wp, 1.0_wp, 5.0_wp, &

6.0_wp, 1.0_wp /)

! problem setup complete

! set right-hand side

B(: n) = (/ 8.0_wp, 45.0_wp, 31.0_wp, 15.0_wp, 17.0_wp /)

! specify the solver (in this case ssids)

CALL SLS_initialize(’ssids’, data, control, inform, check = .TRUE.)

WRITE(6, "(’ solver ’, A, ’ used’)") TRIM(inform%solver)

! analyse

CALL SLS_analyse(matrix, data, control, inform)

IF (inform%status < 0) THEN

WRITE(6, ’(A, I0)’) &

’ Failure of SLS_analyse with status = ’, inform%status

STOP

END IF

! factorize

CALL SLS_factorize(matrix, data, control, inform)

IF (inform%status < 0) THEN

WRITE(6, ’(A, I0)’) &

’ Failure of SLS_factorize with status = ’, inform%status

STOP

END IF

! solve using iterative refinement and ask for high relative accuracy

X = B

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

24 SLS (May 24, 2024) GALAHAD

GALAHAD SLS

control%max_iterative_refinements = 1

control%acceptable_residual_relative = 0.0_wp

CALL SLS_solve(matrix, X, data, control, inform)

IF (inform%status == 0) WRITE(6, ’(A, (5F5.2))’) &

’ Solution is’, X

! clean up

CALL SLS_terminate(data, control, inform)

DEALLOCATE(matrix%type, matrix%val, matrix%row, matrix%col)

STOP

END PROGRAM SLS_EXAMPLE

This produces the following output:

solver ssids used

Solution is 1.00 2.00 3.00 4.00 5.00

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! allocate and set lower triangle of matrix in co-ordinate form

...

! problem setup complete

by

! allocate and set lower triangle of matrix in spares row form

CALL SMT_put(matrix%type, ’SPARSE_BY_ROWS’, s)

matrix%n = n

ALLOCATE(matrix%val(ne), matrix%col(ne), matrix%ptr(n + 1))

matrix%ptr = (/ 1, 2, 3, 5, 6, 8 /)

matrix%col = (/ 1, 1, 2, 3, 3, 2, 5 /)

matrix%val = (/ 2.0_wp, 3.0_wp, 4.0_wp, 1.0_wp, 5.0_wp, 6.0_wp, 1.0_wp /)

! problem setup complete

or using a dense storage format with the replacement lines

! allocate and set lower triangle of matrix in dense form

CALL SMT_put(matrix%type, ’DENSE’, s)

matrix%n = n

ALLOCATE(matrix%val(n * (n + 1) / 2))

matrix%val = (/ 2.0_wp, 3.0_wp, 0.0_wp, 0.0_wp, 4.0_wp, 1.0_wp, &

0.0_wp, 0.0_wp, 5.0_wp, 0.0_wp, 0.0_wp, 6.0_wp, &

0.0_wp, 0.0_wp, 1.0_wp /)

! problem setup complete

respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SLS (May 24, 2024) 25

