
GALAHAD SHA

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package computes a component-wise secant approximation to the Hessian matrix H(x), for which (H(x))i, j =
∂ f 2(x)/∂xi∂x j, 1 ≤ i, j ≤ n, using values of the gradient g(x) = ∇x f (x) of the function f (x) of n unknowns x =

(x1, . . . ,xn)
T at a sequence of given distinct {x(k)}, k ≥ 0. More specifically, given differences

s(k) = x(k+1)− x(k) and y(k) = g(x(k+1))− g(x(k))

the package aims to find an approximation B to H(x) for which the secant conditions Bs(k) ≈ y(k) hold for a chosen

set of values k. The methods provided take advantage of the entries in the Hessian that are known to be zero.

The package is particularly intended to allow gradient-based optimization methods, that generate iterates x(k+1) =
x(k)+ s(k) based upon the values g(x(k)) for k ≥ 0, to build a suitable approximation to the Hessian H(x(k+1)). This

then gives the method an opportunity to accelerate the iteration using the Hessian approximation.

ATTRIBUTES — Versions: GALAHAD SHA single, GALAHAD SHA double. Uses: GALAHAD SYMBOLS, GALAHAD SP-

ECFILE and GALAHAD SPACE. Date: August 2023. Origin: J. Fowkes and N. I. M. Gould, STFC-Rutherford Appleton

Laboratory, Language: Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD SHA single

with the obvious substitution GALAHAD SHA double, GALAHAD SHA single 64 and GALAHAD SHA double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SHA control type, SHA inform type,

SHA data type and NLPT userdata type, (Section 2.3) and the subroutines SHA initialize, SHA analyse, SHA -

estimate, SHA terminate, (Section 2.4) and SHA read specfile (Section 2.6) must be renamed on one of the USE

statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SHA (May 24, 2024) 1

SHA GALAHAD

2.2 Parallel usage

OpenMP may be used by the GALAHAD SHA package to provide parallelism for some solvers in shared memory envi-

ronments. To run in parallel, OpenMP must be enabled at compilation time by using the correct compiler flag (usually

some variant of -openmp). The number of threads may be controlled at runtime by setting the environment variable

OMP NUM THREADS.

The code may be compiled and run in serial mode.

2.3 The derived data types

Four derived data types are accessible from the package.

2.3.1 The derived data type for holding control parameters

The derived data type SHA control type is used to hold controlling data. Default values may be obtained by calling

SHA initialize (see Section 2.4.1), while components may also be changed by calling GALAHAD SHA read spec

(see Section 2.6.1). The components of SHA control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in SHA analyse, SHA estimate and SHA terminate is suppressed if error ≤ 0. The default is

error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing of

informational messages in SHA analyse and SHA estimate is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level > 01, details of

any data errors encountered will be reported. The default is print level = 0.

approximation algorithm is a scalar variable of type INTEGER(ip), that is used to select which approximation

algorithm employed. This may be

1. 1. unsymmetric, parallel (Algorithm 2.1 in paper)

2. 2. symmetric (Algorithm 2.2 in paper)

3. 3. composite, parallel (Algorithm 2.3 in paper)

4. 4. composite, block parallel (Algorithm 2.4 in paper)

Any value outside this range will be reset to the default; the default is approximation algorithm = 4.

dense linear solver is a scalar variable of type INTEGER(ip), that specifies which (LAPACK) dense linear equa-

tion solver to use when finding the values of entries in each row of B. This may be

1. 1. Gaussian elimination

2. 2. QR factorization

3. 3. singular-value decomposition

4. 4. singular-value decomposition with divide-and-conquer

Any value outside this range will be reset to the default; the default is dense linear solver = 3.

extra differences is a scalar variable of type INTEGER(ip), that is used to specify how may additional gradients

(in addition to the number output in inform%differences needed from SHA analyse) are available when

calling SHA estimate. The default is extra differences = 1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 SHA (May 24, 2024) GALAHAD

GALAHAD SHA

sparse row is a scalar variable of type INTEGER(ip), that is used to specify the maximum sparse degree if a com-

posite parallel algorithm (%approximation algorithm = 3 is employed. The default is sparse row = 100.

recursion max is a scalar variable of type INTEGER(ip), that puts a limit on the number of levels of recursion

that will be allowed if the composite block-parallel algorithm (%approximation algorithm = 4 is used. The

default is recursion max = 25.

recursion entries required is a scalar variable of type INTEGER(ip), that imposes the minimum number of

entries in a reduced row that are required if a further level of recuresion is allowed in the composite block-parallel

algorithm (%approximation algorithm = 4. The default is = recursion entries required = 10.

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

2.3.2 The derived data type for holding informational parameters

The derived data type SHA inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of SHA inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.5 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

max degree is a scalar variable of type INTEGER(ip), that holds the maximum degree in the adjacency graph.

differences needed is a scalar variable of type INTEGER(ip), that holds the number of differences that will be

needed (more may be helpful) by SHA estimate. This value is computed by SHA analyse.

max reduced degree is a scalar variable of type INTEGER(ip), that holds the maximum reduced degree in the

adjacency graph.

approximation algorithm used is a scalar variable of type INTEGER(ip), that specifies the actual approximation

algorithm used (see control%approximation algorithm).

bad row is a scalar variable of type INTEGER(ip), that holds the index of the first row for which a failure occurred

when forming its Hessian values (or 0 if the data if no failures occurred).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SHA (May 24, 2024) 3

SHA GALAHAD

2.3.3 The derived data type for holding problem data

The derived data type SHA data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of SHA procedures. This data should be preserved, untouched from the initial

call to SHA initialize to the final call to SHA terminate.

2.4 Argument lists and calling sequences

There are four procedures for user calls (see Section 2.6 for further features):

1. The subroutine SHA initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine SHA analyse is called to analyze the sparsity pattern of the Hessian and to generate information

that will be used when estimating its values.

3. The subroutine SHA estimate is called to estimate the Hessian by component-wise secant approximation. This

must be preceded by a call to SHA analyse.

4. The subroutine SHA terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by SHA solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem with a different structure since SHA initialize cannot test for this

situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONAL arguments.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL SHA initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type SHA data type (see Section 2.3.3). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type SHA control type (see Section 2.3.1). On exit, control con-

tains default values for the components as described in Section 2.3.1. These values should only be changed after

calling SHA initialize.

inform is a scalar INTENT(OUT) argument of type SHA inform type (see Section 2.3.2). A successful call to

SHA initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

2.4.2 The analysis subroutine

The analysis phase, in which the given sparsity pattern of the Hessian is used to generate information that will be used

when estimating its values, is called as follows:

CALL SHA analyse(n, nz, ROW, COL, data, control, inform)

n is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that must be set to n the dimension of the

Hessian matrix, i.e. the number of variables in the function f . Restrictions: n > 0.

nz is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that must be set to the number of nonzero entries

on and above the diagonal of the Hessian matrix. Restrictions: nz ≥ 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 SHA (May 24, 2024) GALAHAD

GALAHAD SHA

ROW and COL are a scalar INTENT(IN) rank-one array arguments of type INTEGER(ip) and dimension nz, that are

used to describe the sparsity structure of the Hessian matrix, H(x). They must be set so that ROW(i) and COL(i),

i = 1, . . . , nz, contains the row and column indices of the nonzero elements of the upper triangular part,

including the diagonal, of the Hessian matrix. The entries may appear in any order. Restrictions: 1 ≤ ROW(j)

≤ COL(j) ≤ n, j = 1, . . . , nz.

data is a scalar INTENT(INOUT) argument of type SHA data type (see Section 2.3.3). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to SHA initialize.

control is a scalar INTENT(IN) argument of type SHA control type (see Section 2.3.1). Default values may be

assigned by calling SHA initialize prior to the first call to SHA analyse.

inform is a scalar INTENT(INOUT) argument of type SHA inform type (see Section 2.3.2). A successful call to

SHA analyse is indicated when the component status has the value 0. For other return values of status, see

Section 2.5.

2.4.3 The estimation subroutine

The estimation phase, in which the nonzero entries of the Hessian are found by component-wise secant approximation,

is called as follows:

CALL SHA estimate(n, nz, ROW, COL, m available, S, ls1, ls2, &

Y, ly1, ly2, VAL, data, control, inform[, ORDER])

n, nz, ROW and COL are INTENT(IN) arguments exactly as described and input to SHA analyse, and must not have

been changed in the interim.

m available is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that should be set to the number of dif-

ferences provided; ideally this will be as large as inform%differences needed as reported by SHA analyse,

but better still there should be a further control%extra differences to allow for unlikely singularities.

S is a scalar INTENT(IN) rank-two array argument of type REAL(rp), and dimension (ls1, ls2), that should be

set on input so that the i-th entry of the k-th difference s
(k)
i lies in S(i,k).

ls1 is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that must be set to the length of the leading

dimension of S, and must be at least n.

ls2 is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that must be set to the length of the trailing

dimension of S, and must be at least m available.

Y is a scalar INTENT(IN) rank-two array argument of type REAL(rp), and dimension (ly1, ly2), that should be

set on input so that the i-th entry of the k-th difference y
(k)
i lies in Y(i,k).

ly1 is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that must be set to the length of the leading

dimension of Y, and must be at least n.

ly2 is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that must be set to the length of the trailing

dimension of Y, and must be at least m available.

VAL is a scalar INTENT(OUT) rank-one array argument of type REAL(rp), and dimension nz, that will be set on

output to the non-zeros of the Hessian approximation B in the order defined by the list stored in ROW and COL.

data is a scalar INTENT(INOUT) argument of type SHA data type (see Section 2.3.3). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to SHA analyse.

control is a scalar INTENT(IN) argument of type SHA control type (see Section 2.3.1) exactly as for SHA analyse.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SHA (May 24, 2024) 5

SHA GALAHAD

inform is a scalar INTENT(INOUT) argument of type SHA inform type (see Section 2.3.2) exactly as for SHA analyse.

A successful call to SHA estimate is indicated when the component status has the value 0. For other return

values of status, see Section 2.5.

ORDER is an OPTIONAL scalar INTENT(IN) rank-one array argument of type default integer and dimension m available,

that can be set to the preferred order of access of the differences stored in S and Y. The calculation of each row

of the Hessian approximation B depends on the number of nonzeros in the row, and ORDER allows the user to

specify the order in which the columns of S and Y are accessed to determine these row values. If ORDER is

PRESENT the i-th accessed column will be ORDER(i). Otherwise the columns will be accessed in their natural

order i, i = 1, . . . , m available.

2.4.4 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL SHA terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type SHA data type exactly as for SHA solve, which must not have

been altered by the user since the last call to SHA initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type SHA control type exactly as for SHA analyse.

inform is a scalar INTENT(OUT) argument of type SHA inform type exactly as for SHA analyse. Only the com-

ponent status will be set on exit, and a successful call to SHA terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.5.

2.5 Warning and error messages

A positive value of inform%status on exit from SHA estimate provides a warning. Possible values are:

1. Insufficient data pairs (si,yi) have been provided, as m is too small. The returned B is likely not fully accurate.

A negative value of inform%status on exit from SHA analyse, SHA estimate or SHA terminate indicates that

an error has occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. One or more of the restrictions n > 0, nz ≥ 0, 1 ≤ ROW(j) ≤ COL(j) ≤ n, j = 1, . . . , nz, has been violated.

-10. The LAPACK dense linear equation solver used to find the values of the rows of B has failed.

-31. SHA estimate has been called before SHA analyse.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 SHA (May 24, 2024) GALAHAD

GALAHAD SHA

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type SHA control type (see Section 2.3.1), by reading an appropriate data specification file using the

subroutine SHA read specfile. This facility is useful as it allows a user to change SHA control parameters without

editing and recompiling programs that call SHA.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by SHA read specfile must start with a ”BEGIN SHA” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by SHA_read_specfile ..)

BEGIN SHA

keyword value

.......

keyword value

END

(.. lines ignored by SHA_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN SHA” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN SHA SPECIFICATION

and

END SHA SPECIFICATION

are acceptable. Furthermore, between the “BEGIN SHA” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when SHA read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

SHA read specfile.

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL SHA_read_specfile(control, device)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SHA (May 24, 2024) 7

SHA GALAHAD

control is a scalar INTENT(INOUT)argument of type SHA control type (see Section 2.3.1). Default values should

have already been set, perhaps by calling SHA initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.1) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

approximation-algorithm %approximation algorithm integer

dense-linear-solver %dense linear solver integer

extra-differences %extra differences integer

maximum-degree-considered-sparse %sparse row integer

maximum-recursion-levels %recursion max integer

recursion-entries-required %recursion entries required integer

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level is positive, information about errors encountered will be printed on unit control%out.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: SHA solve calls the GALAHAD packages GALAHAD SYMBOLS, GALAHAD SPECFILE and

GALAHAD NLPT.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: 0 < n, 0 ≤ nz, 1 ≤ ROW(j) ≤ COL(j) ≤ n, j = 1, . . . , nz.

Portability: Fortran 2003. The package is thread-safe.

4 METHOD

The package computes the entries in the each row of B one at a time. The entries bi j in row i may be chosen to

minimize
bi, j

∑
k∈Ii

[

∑
nonzeros j

bi, js
(k)
j − y

(k)
i

]2

, (4.1)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 SHA (May 24, 2024) GALAHAD

GALAHAD SHA

where Ii is ideally chosen to be sufficiently large so that (4.1) has a unique minimizer. Since this requires that there

are at least as many (s(k),y(k)) pairs as the maximum number of nonzeros in any row, this may be prohibitive in some

cases. We might then be content with a minimum-norm (under-determined) least-squares solution; each row may then

be processed in parallel. Or, we may take advantage of the symmetry of the Hessian, and note that if we have already

found the values in row j, then the value bi, j = b j,i in (4.1) is known before we process row i. Thus by ordering the

rows and exploiting symmetry we may reduce the numbers of unknowns in future unprocessed rows.

In the analysis phase, we order the rows by constructing the connectivity graph—a graph comprising nodes 1 to

n and edges connecting nodes i and j if hi, j is everywhere nonzero—of H(x). The nodes are ordered by increasing

degree (that is, the number of edges emanating from the node) using a bucket sort. The row chosen to be ordered next

corresponds to a node of minimum degree, the node is removed from the graph, the degrees updated efficiently, and

the process repeated until all rows have been ordered. This often leads to a significant reduction in the numbers of

unknown values in each row as it is processed in turn, but numerical rounding can lead to inaccurate values in some

cases. A useful remedy is to process all rows for which there are sufficient (s(k),y(k)) as before, and then process the

remaining rows taking into account the symmetry. That is, the rows and columns are rearranged so that the matrix is

in block form

B =

(

B11 B12

BT
12 B22

)

,

the (B11 B12) rows are processed without regard for symmetry but give the 2,1 block BT
12, and finally the 2,2 block

B22 is processed knowing BT
12 again without respecting symmetry. The rows in blocks (B11 B12) and B22 may be

computed in parallel. It is also possible to generalise this so that B is decomposed into r blocks, and the blocks

processed one at a time recursively using the symmetry from previos rows. More details of the precise algorithms

(Algorithms 2.1–2.4) are given in the reference below. The linear least-squares problems (4.1) themselves are solved

by a choice of LAPACK packages.

Reference:

The method is described in detail in

J. M. Fowkes, N. I. M. Gould and J. A. Scott, Approximating large-scale Hessians using secant equations. Preprint

P-2024-001, Rutherford Appleton Laboratory.

5 EXAMPLES OF USE

Suppose we wish to estimate the Hessian matrix whose values at a given x are

H(x) =













1 2 3 4 5

2 6 0 0 0

3 0 7 0 0

4 0 0 8 0

5 0 0 0 9













and that we have (artificially) sampled the matrix via y(k) = H(x)s(k) along random vectors s(k) for k = 1, . . . ,ks; a

suitable value for ks is returned by SHA analyse. Then we may recover H(x) as follows:

! THIS VERSION: GALAHAD 4.1 - 2023-08-19 AT 15:40 GMT.

PROGRAM GALAHAD_SHA_EXAMPLE

USE GALAHAD_SHA_double ! double precision version

USE GALAHAD_RAND_double

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (SHA_data_type) :: data

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SHA (May 24, 2024) 9

SHA GALAHAD

TYPE (SHA_control_type) :: control

TYPE (SHA_inform_type) :: inform

INTEGER :: i, j, k, k_s, l

REAL (KIND = wp) :: v

INTEGER, ALLOCATABLE, DIMENSION(:) :: ORDER

REAL (KIND = wp), ALLOCATABLE, DIMENSION(: , :) :: S, Y

TYPE (RAND_seed) :: seed

INTEGER, PARAMETER :: n = 5, nz = 9 ! set problem data

INTEGER :: ROW(nz), COL(nz)

REAL (KIND = wp) :: VAL(nz), VAL_est(nz)

ROW = (/ 1, 1, 1, 1, 1, 2, 3, 4, 5 /) ! N.B. upper triangle only

COL = (/ 1, 2, 3, 4, 5, 2, 3, 4, 5 /)

VAL = (/ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 /) ! artificial values

CALL SHA_initialize(data, control, inform) ! initialize

control%approximation_algorithm = 2 ! symmetric approximation

CALL SHA_analyse(n, nz, ROW, COL, data, control, inform) ! analyse sparsity

IF (inform%status /= 0) THEN ! Failure

WRITE(6, "(’ return with nonzero status ’, I0, ’ from SHA_analyse’)") &

inform%status ; STOP

END IF

WRITE(6, "(1X, I0, ’ differences are needed,’, &

& ’ one or more extra might help’)") inform%differences_needed

control%extra_differences = 1 ! use as many differences as required + 1

k_s = inform%differences_needed + control%extra_differences

! artifical setup: compute random s_i and then form y_i = Hessian * s_i

ALLOCATE(S(n, k_s), Y(n, k_s), ORDER(k_s))

CALL RAND_initialize(seed)

DO k = 1, k_s

DO i = 1, n ! choose random S

CALL RAND_random_real(seed, .FALSE., S(i, k))

CALL RAND_random_real(seed, .FALSE., Y(i, k))

Y(i, k) = Y(i, k) * 0.001

END DO

Y(: n, k) = 0.0_wp ! form Y = H * S

DO l = 1, nz

i = ROW(l) ; j = COL(l) ; v = VAL(l)

Y(i, k) = Y(i, k) + v * S(j, k)

IF (i /= j) Y(j, k) = Y(j, k) + v * S(i, k)

END DO

ORDER(k) = k_s - k + 1 ! pick the (s,y) vectors in reverse order

END DO

! approximate the Hessian

CALL SHA_estimate(n, nz, ROW, COL, k_s, S, n, k_s, Y, n, k_s, VAL_est, &

data, control, inform, ORDER = ORDER)

IF (inform%status /= 0) THEN ! Failure

WRITE(6, "(’ return with nonzero status ’, I0, ’ from SHA_estimate’)")&

inform%status ; STOP

ELSE

WRITE(6, "(/, ’ Successful run with ’, I0, &

& ’ differences, estimated matrix:’)") k_s

DO l = 1, nz

WRITE(6, "(’ (row,col,val) = (’, I0, ’,’, I0, ’,’, ES9.2, ’)’)") &

ROW(l), COL(l), VAL_est(l)

END DO

END IF

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 SHA (May 24, 2024) GALAHAD

GALAHAD SHA

CALL SHA_terminate(data, control, inform) ! Delete internal workspace

END PROGRAM GALAHAD_SHA_EXAMPLE

The code produces the following output:

2 differences are needed, one or more extra might help

Successful run with 3 differences, estimated matrix:

(row,col,val) = (1,1, 1.00E+00)

(row,col,val) = (1,2, 2.00E+00)

(row,col,val) = (1,3, 3.00E+00)

(row,col,val) = (1,4, 4.00E+00)

(row,col,val) = (1,5, 5.00E+00)

(row,col,val) = (2,2, 6.00E+00)

(row,col,val) = (3,3, 7.00E+00)

(row,col,val) = (4,4, 8.00E+00)

(row,col,val) = (5,5, 9.00E+00)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SHA (May 24, 2024) 11

