
GALAHAD SCU

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

GALAHAD SCU is a suite of Fortran procedures for computing the the solution to an extended system of n+m sparse

real linear equations in n+m unknowns,

(

A B

C D

)(

x1

x2

)

=

(

b1

b2

)

. (1.1)

in the case where the n by n matrix A is nonsingular and solutions to the systems

Ax = b and AT y = c

may be obtained from an external source, such as an existing factorization. The subroutine uses reverse communication

to obtain the solution to such smaller systems. The method makes use of the Schur complement matrix

S = D−CA−1B.

The Schur complement is stored and factorized as a dense matrix and the subroutine is thus appropriate only if there is

sufficient storage for this matrix. Special advantage is taken of symmetry and definiteness in the coefficient matrices.

Provision is made for introducing additional rows and columns to, and removing existing rows and columns from, the

extended matrix.

ATTRIBUTES — Versions: GALAHAD SCU single, GALAHAD SCU double, Uses: ROT, ROTG. Date: October

2001. Origin: N. I. M. Gould, Rutherford Appleton Laboratory, and Ph. L. Toint, University of Namur, Belgium.

Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD SCU single

with the obvious substitution GALAHAD SCU double, GALAHAD SCU single 64 and GALAHAD SCU double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SCU matrix type, SCU inform type,

and SCU data type (Section 2.2), and the subroutines SCU factorize, SCU solve, SCU append, SCU delete, and

SCU terminate (Section 2.3) must be renamed on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp ) and INTEGER(ip ), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SCU (May 24, 2024) 1



SCU GALAHAD

2.2 The derived data types

Three derived data types are accessible from the package.

2.2.1 The derived data type for holding matrix information

The derived data type SCU matrix type is used to hold data about the extended matrix and its factors. The components

of SCU matrix type are:

n is a scalar of type INTEGER(ip ), that holds the value of n, the dimension of the matrix A.

m is a scalar of type INTEGER(ip ), that holds the value of m, dimension of the matrix D.

m max is an scalar of type INTEGER(ip ), that holds the dimension of the largest possible matrix D to be permitted by

the package.

class is a scalar of type INTEGER(ip ), that indicates the type of matrix to be processed. Permitted values are:

1 the extended matrix is unsymmetric,

2 the extended matrix is symmetric,

3 the extended matrix is symmetric and the Schur complement matrix S is known to be positive definite.

4 the extended matrix is symmetric and the Schur complement matrix S is known to be negative definite.

BD val is a rank-one allocatable of type REAL(rp ), that holds the values of the entries in the partitioned matrix

(

B

DU

)

, (2.1)

where DU is the upper triangular part of D, ie, (DU )i j = (D)i j if i ≤ j and zero otherwise. The entries must

be ordered by columns, with the entries in each column contiguous and those of column j preceding those of

column j+ 1 ( j = 1, ....,m). The ordering within each column is unimportant.

BD row is a rank-one allocatable of type INTEGER(ip ), that holds the row indices of the corresponding entries in

BD val.

BD col start is a rank-one allocatable of type INTEGER(ip ), that must be set so that BD col start(j) holds the

positions in the arrays BD val and BD row of the first entry in column j ( j = 1, ....,m). BD col start(m+1)

must be set to the number of entries in the matrix (2.1) plus one.

CD val is a rank-one allocatable of type default REAL(rp ), that need not be set in the symmetric case. In the

unsymmetric case, it holds the values of the entries in the partitioned matrix

(C DL), (2.2)

where DL is the strict lower triangular part of D, ie, (DL)i j = (D)i j if i > j and zero otherwise. The entries must

be ordered by rows, with the entries in each row contiguous and those of row i preceding those of row i+ 1

(i = 1, ....,m). The ordering within each row is unimportant.

CD col is a rank-one allocatable of type INTEGER(ip ), that need not be set in the symmetric case. In the unsymmetric

case, it holds the column indices of the corresponding entries in CD val.

CD row start is a rank-one allocatable of type INTEGER(ip ), that need not be set in the symmetric case. In the

unsymmetric case, it must be set so that CD row start(i) points to the positions in the arrays CD val and

CD col of the first entry in row i (i = 1, ....,m). CD row start(m+1) must be set to the number of entries in the

matrix (2.2) plus one.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 SCU (May 24, 2024) GALAHAD



GALAHAD SCU

2.2.2 The derived data type for holding problem data

The derived data type SCU data type is used to hold all the data for a particular problem between calls of SCU

procedures. This data should be preserved, untouched, from the initial call to SCU factorize to the final call to

SCU terminate. All components of SCU data type are private.

2.2.3 The derived data type for holding informational parameters

The derived data type SCU inform type is used to hold parameters that give information about the factorization. The

components of SCU inform type are:

alloc status is a scalar of type INTEGER(ip ), that contains the return status from the last attempted internal

workspace array allocation or deallocation. A non-zero value indicates that the allocation or deallocation was

unsuccessful, and corresponds to the STAT= value on the user’s system. Consult local compiler documentation

for further details.

inertia is a rank-one array of length 3 and type INTEGER(ip ), that holds the inertia of S when the extended matrix

is symmetric. Specifically, inertia(i), i=1,2,3, give the number of positive, negative and zero eigenvalues

of S respectively.

For backward compatibility with an earlier version of the package, there is an equivalent type SCU info type, and the

two names may be used interchangeably.

2.3 Argument lists and calling sequences

To solve the extended system, the user must first call SCU factorize to form and factorize the Schur complement,

and then call SCU solve to compute the solution to the extended system. The solution of additional extended systems,

with the same coefficient matrix but different right-hand sides, may be found by further calls to SCU solve.

The solution of further-extended systems of the form





A B c1

C D c2

rT
1 rT

2 d









x1

x2

xn+m+1



=





b1

b2

bn+m+1



 .

may be found by firstly calling SCU append to update the existing factorization of S (obtained from SCU factorize)

to give that of the Schur complement of A in the further-extended coefficient matrix and then by calling SCU solve.

Likewise, the solution of extended systems of the form

(

A B̄

C̄ D̄

)(

x1

x2

)

=

(

b1

b2

)

.

in which a row and column are removed from the coefficient matrix of (1.1), may be found by firstly calling SCU delete

to update the existing factorization of S (obtained from SCU factorize) to give that of the Schur complement of A

in the new extended coefficient matrix and then once again by calling SCU solve.

Finally, the user may call SCU terminate to deallocate any workspace used to hold the factors of S.

We use square brackets [ ] to indicate OPTIONALarguments.

2.3.1 The factorization stage

The Schur complement matrix may be factorized as follows:

CALL SCU factorize( matrix, data, VECTOR, status, info )

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SCU (May 24, 2024) 3



SCU GALAHAD

matrix is a scalar INTENT(INOUT) argument of type SCU matrix type (see Section 2.2.1). The following compo-

nents are used by SCU factorize :

n must be set to n, the dimension of the matrix A. It is unchanged by the subroutine. Restriction: n≥ 0.

m max must be set to the dimension of the largest matrix D that will be allowed by the package. Internal

workspace of dimension m max ∗ (m max+3)/2 (or 3m max ∗ (m max+1)/2 if class = 1) will be used by

the package. Thus care should be taken not to set m max larger than is absolutely necessary to account for

the sequence of extended matrices likely to be encountered. Restriction: m max≥ 0.

m must be set to m, dimension of the matrix D. It is unchanged by the subroutine. Restriction: 0≤ m≤ m max.

class must be set to indicate the type of matrix that will be processed (see Section 2.2.1). If S is known to be

(positive or negative) definite throughout the sequence of extended matrices to be considered, it is more

efficient to set class = 3 or 4. Likewise, if the matrix is known to be symmetric throughout the sequence

of extended matrices to be considered, it is more efficient to set class > 1. Restriction: 1 ≤ class≤ 4.

BD val and BD row must be set as described in Section 2.2.1 to hold the values and row indices, respectively,

of the matrix (2.1). Before use, the arrays must be ALLOCATEd to be of sufficient length to hold any matrix

of the form (2.1) to be encountered in the sequence of extended matrices to be considered. Any elements

in BD val and BD row that lie below the diagonal of D will be removed by SCU factorize.

BD col start must be set as described in Section 2.2.1 to hold the positions of the start of the columns of (2.1),

as well as to the first position past the end of the last column. Before use, this array must be ALLOCATEd to

be of length at least m max+1. The values of this array may be altered if entries that lie below the diagonal

of D are removed by SCU factorize.

CD val and CD col. When class=1, these must be set as described in Section 2.2.1 to hold the values and

column indices, respectively, of the matrix (2.2). Before use, the arrays must be ALLOCATEd to be of

sufficient length to hold any matrix of the form (2.2) to be encountered in the sequence of extended matrices

to be considered. Any elements in CD val and CD col that lie on or to the right of the diagonal of D will

be removed by SCU factorize. This component need not be ALLOCATEd or set if class > 1.

CD row start . When class=1, this must be set as described in Section 2.2.1 to hold the positions of the start

of the rows in (2.2), as well as to the first position past the end of the last row. Before use, this array

must be ALLOCATEd to be of length at least m max+1. The values of this array may be altered if entries that

lie on or to the right of the diagonal of D are removed by SCU factorize. This component need not be

ALLOCATEd or set if class > 1.

data is a scalar INTENT(INOUT) argument of type SCU data type. It must not have been altered since the last call to

SCU factorize, SCU append or SCU delete.

VECTOR is an INTENT(INOUT) rank-one array argument of length matrix%n and type REAL(rp ), that needs not be

set by the user on initial (status=1) entry. If status is greater than 1 on exit, a re-entry must be made with

VECTOR set appropriately (see Section 2.4).

status is an scalar INTENT(INOUT) argument of type default INTEGER, that must be set by the user on initial input

to 1. On output, the value of status is used to request additional information, to signal an error in the input

data or to indicate a successful call to the subroutine. A successful call is indicated by the exit value status=0.

For other values, see Sections 2.4 and 2.5.

info is a scalar INTENT(INOUT) argument of type SCU inform type (see Section 2.2.3).

2.3.2 The solution stage

Solve the extended system of equations using the factorization produced by a previous call to SCU factorize,

SCU append or SCU delete, as follows:

CALL SCU solve( matrix, data, RHS, X, VECTOR, status )

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 SCU (May 24, 2024) GALAHAD



GALAHAD SCU

matrix is a scalar INTENT(IN) argument of type SCU matrix type (see Section 2.2.1), that must not have been

changed since the last call to SCU factorize, SCU append or SCU delete.

data is a scalar INTENT(INOUT) argument of type SCU data type. It must not have been altered since the last call to

SCU factorize, SCU append or SCU delete.

RHS is an INTENT(IN) rank-one array argument of length matrix%n+matrix%m and type REAL(rp ), that must be set

on entry to the values of the right-hand-side vector

(

b1

b2

)

of the extended system of equations. RHS is not altered by the subroutine.

X is an INTENT(OUT) rank-one array argument of length matrix%n+matrix%m and type REAL(rp ). On final (status=0)

exit, X contains the values of the solution
(

x1

x2

)

to the extended system of equations.

VECTOR is an INTENT(INOUT) rank-one array argument of length matrix%n and type REAL(rp ), that needs not be

set by the user on initial (status=1) entry. If status is greater than 1 on exit, a re-entry must be made with

VECTOR set appropriately (see Section 2.4).

status is an scalar INTENT(INOUT) argument of type default INTEGER, that must be set by the user on initial input

to 1. On output, the value of status is used to request additional information, to signal an error in the input

data or to indicate a successful call to the subroutine. A successful call is indicated by the exit value status=0.

For other values, see Section 2.4.

2.3.3 The updating stage

Call SCU append to extend the factorization of the Schur complement when a new row and column are appended

to the extended matrix. Subsequent systems of equations with the larger coefficient matrix may then be solved

by calls to SCU solve. Note in particular that the arrays matrix CD val, matrix CD col, matrix CD row start,

matrix BD val, matrix BD row and matrix BD col start must be sufficiently large to allow for the incoming row

and column. The factorization may be extended as follows:

CALL SCU append( matrix, data, VECTOR, status, info )

matrix is a scalar INTENT(INOUT) argument of type SCU matrix type (see Section 2.2.1). The following compo-

nents are used by SCU append :

n , m max, m and class. These should not have been changed since the last call to SCU factorize, SCU append

or SCU delete. On a successful exit (status = 0) from SCU append, n will be unaltered and m will have

been increased by 1 to account for the appended row and column. Restriction: 0≤ m≤ m max− 1.

BD val and BD row. These must be set as described in Section 2.2.1 to hold the values and row indices, respec-

tively, of the further extended matrix




B c1

DU c2

d



 . (2.3)

Specifically, the first col start(m+1)-1 elements of BD val and BD row should not have been changed

since the last call to SCU factorize, SCU append or SCU delete, while elements col start(m+1), ...

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SCU (May 24, 2024) 5



SCU GALAHAD

should contain the values and row indices of the appended column





c1

c2

d



 ,

the ordering within this column being unimportant.

BD col start must be set as described in Section 2.2.1 to hold the positions of the start of the columns of

(2.3), as well as to the first position past the end of the last column. Specifically, the first m+1 elements

of BD col start should not have been changed since the last call to SCU factorize, SCU append or

SCU delete, while BD col start(m+2) should be set to the number of entries in (2.3) plus one.

CD val and CD col. When SCU factorize was last called with matrix%class=1, these must be set as de-

scribed in Section 2.2.1 to hold the values and column indices respectively of the further extended matrix

(

C DL

rT
1 rT

2

)

. (2.4)

Specifically, the first row start(m+1)-1 elements of CD val and CD col should not have been changed

since the last call to SCU factorize, SCU append or SCU delete, while elements row start(m+1), ...

should contain the values and column indices of the appended row

(r1 rT
2 ),

the ordering within this row being unimportant. This component need not be ALLOCATEd or set if SCU fac-

torize was last called with matrix%class > 1.

CD row start. When SCU factorize was last called with matrix%class=1, this must be set as described in

Section 2.2.1 to hold the positions of the start of the rows of (6), as well as to the first position past the end

of the last row. Specifically, the first m+1 elements of CD row start should not have been changed since

the last call to SCU factorize, SCU append or SCU delete, while CD row start(m+2) should be set to

the number of entries in (2.4) plus one. This component need not be ALLOCATEd or set if SCU factorize

was last called with matrix%class > 1.

data is a scalar INTENT(INOUT) argument of type SCU data type. It must not have been altered since the last call to

SCU factorize, SCU append or SCU delete.

VECTOR is an INTENT(INOUT) rank-one array argument of length matrix%n and type REAL(rp ), that needs not be

set by the user on initial (status=1) entry. If status is greater than 1 on exit, a re-entry must be made with

VECTOR set appropriately (see Section 2.4).

status is an scalar INTENT(INOUT) argument of type default INTEGER, that must be set by the user on initial input

to 1. On output, the value of status is used to request additional information, to signal an error in the input

data or to indicate a successful call to the subroutine. A successful call is indicated by the exit value status=0.

For other values, see Section 2.4 and 2.5.

info is a scalar INTENT(INOUT) argument of type SCU inform type (see Section 2.2.3).

2.3.4 The deletion stage

Call SCU delete to extend the factorization of the Schur complement when a row and column of the existing extended

matrix are to be removed. Subsequent systems of equations with the smaller coefficient matrix may then be solved

by calls to SCU solve. The data structures for holding B, C and D will be automatically updated to account for the

row and column deletions. Compute the factorization of the extended matrix following a row and column removal as

follows:

CALL SCU delete( matrix, data, VECTOR, status, info, col del [, row del ] )

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 SCU (May 24, 2024) GALAHAD



GALAHAD SCU

matrix is a scalar INTENT(INOUT) argument of type SCU matrix type (see Section 2.2.1). The following compo-

nents are used by SCU delete :

n , m max, m, class, BD val, BD row, BD col start, CD val, CD col and CD row start. These should not

have been changed since the last call to SCU factorize, SCU append or SCU delete. On a successful

exit (status = 0) from SCU delete, n will be unchanged, m will have been decreased by 1 to account for

the deleted row and column, and the contents of the arrays may have been changed.

data is a scalar INTENT(INOUT) argument of type SCU data type. It must not have been altered since the last call to

SCU factorize, SCU append or SCU delete.

VECTOR is an INTENT(OUT) rank-one array argument of length matrix%n and type REAL(rp ), that is used as workspace.

status is an scalar INTENT(OUT) argument of type default INTEGER(ip ). On output, the value of status is used to

signal an error in the input data or to indicate a successful call to the subroutine. A successful call is indicated

by the exit value status=0. For other values, see Section 2.5.

info is a scalar INTENT(INOUT) argument of type SCU inform type (see Section 2.2.3).

col del is an scalar INTENT(IN) argument of type INTEGER(ip ). On input, this must be set by the user to the index

of the column of (2.1) that is to be removed. Restriction: 1≤ col del≤ m.

row del is an optional scalar INTENT(IN) argument of type INTEGER(ip ). If SCU factorize was last called with

matrix%class=1, this can be set by the user to the index of the row of (2.2) that is to be removed. If the

argument is absent, or if matrix%class > 1, row col del will be removed. Restriction: 1≤ row del≤ m.

2.3.5 The final stage

Deallocate the space required to hold the factors of the (sequence of) Schur complement(s) as follows:

CALL SCU terminate( data, status, info )

data is a scalar INTENT(INOUT) argument of type SCU data type. It must not have been altered since the last call

to SCU factorize, SCU append or SCU delete.

status is an scalar INTENT(OUT) argument of type default INTEGER, that contains the exit status following a call to

SCU terminate. A successful call is indicated by the exit value status=0. For other values, see Section 2.5.

info is a scalar INTENT(OUT) argument of type SCU inform type (see Section 2.2.3).

2.4 Reverse communication

If one of the subroutines SCU factorize, SCU solve or SCU append returns with a strictly possible value of status,

the subroutine in question requires the user to manipluate the vector VECTOR, and to re-enter with status and all other

arguments unchanged. Possible values of status and their consequences are as follows:

2 The user must obtain the solution to the system of equations Ax = b. The particular vector b is returned in the array

VECTOR; the user must calculate x and pass this vector back in VECTOR.

3 The user must obtain the solution to the system of equations AT y = c. The particular vector c is returned in the

array VECTOR; the user must calculate y and pass this vector back in VECTOR.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SCU (May 24, 2024) 7



SCU GALAHAD

2.5 Warning and error messages

A negative value of status on exit from any of the preceding subroutines indicates that an error has occurred. No

further calls should be made until the error has been corrected. Possible values are:

-1 One or more of the stated restrictions on the components 1≤ matrix%class≤ 4, matrix%n≥ 0, 0≤ matrix%m

≤ matrix%m max, (0 ≤ matrix%m ≤ matrix%m max− 1 in SCU append ) 1 ≤ col del ≤ matrix%m and

1 ≤ row del≤ matrix%m has been violated.

-2 The subroutine has been called with an initial value status ≤ 0.

-3 The factors of S have not yet been formed in data. This indicates that either SCU factorize has not yet been

called, or that the last call to SCU factorize, SCU append or SCU delete ended in a failure.

-4 One or more of the arrays matrix%BD val, matrix%BD row and matrix%BD col start has not been allocated.

-5 When the extended matrix is unsymmetric, one or more of the arrays matrix%CD val, matrix%CD col and

matrix%CD row start has not been allocated.

-6 One or more of the arrays matrix%BD val, matrix%BD row and matrix%BD col start is not large enough.

Check that the dimension of matrix%BD col start is no smaller than matrix%m+1 (matrix%m+2 for SCU app-

end ), and that those of matrix%BD val and matrix%BD row are no smaller than matrix%BD col start(mat-

rix%m+1)-1, and re-enter. (matrix%BD col start(matrix%m+2)-1 for SCU append and matrix%BD col st-

art(matrix%m+1)+ |matrix%col del-matrix%row del|-1 for SCU delete ).

-7 When the extended matrix is unsymmetric, one or more of the arrays matrix%CD val, matrix%CD col and

matrix%CD row start is not large enough. Check that the dimension of matrix%CD row start is no smaller

than matrix%m+1 (matrix%m+2 for SCU append ), and that those of matrix%CD val and matrix%CD col are no

smaller than matrix%CD row start(matrix%m+1)-1 (matrix%CD row start(matrix%m+2)-1 for SCU app-

end and matrix%CD row start(matrix%m+1)+ |matrix%col del-matrix%row del|-1 for SCU delete ).

-8 The value recorded in matrix m does not correspond to the dimension of D.

-9 The Schur complement matrix is singular; this has been detected during the QR factorization of S.

-10 The Schur complement matrix is expected to be positive definite, but this has been found not to be the case during

the Cholesky factorization of S.

-11 The Schur complement matrix is expected to be negative definite, but this has been found not to be the case

during the Cholesky factorization of −S.

-12 An internal array allocation or deallocation failed. See info%alloc status for further details.

2.6 Multiple updates

Once SCU append or SCU delete has been used to update the factorization of the Schur complement matrix, it is as

if the enlarged or reduced matrix were that originally factorized by SCU factorize. Consequently sequences of row

and column additions and removals may be performed so long as sufficient storage is available.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 SCU (May 24, 2024) GALAHAD



GALAHAD SCU

Other routines called directly: the basic linear algebra subprograms (BLAS) SROT and SROTG (DROT and DROTG in

GALAHAD SCU DOUBLE ) are called.

Other modules used directly: None.

Input/output: None.

Restrictions: matrix%n≥ 0, 0≤ matrix%m≤ matrix%m max and 1≤ matrix%class≤ 4. Also 1≤ row del≤

matrix%m and 1≤ col del≤ matrix%m for SCU delete.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The subroutine SCU factorize forms the Schur complement S =D−CA−1B of A in the extended matrix by repeated

reverse communication to obtain the columns of A−1B. The Schur complement or its negative is then factorized into

its QR or, if possible, Cholesky factors.

The subroutine SCU solve solves the extended system using the following well-known scheme:

(i) Compute the solution to Au = b1;

(ii) Compute x2 from Sx2 = b2 −Cu;

(iii) Compute the solution to Av = Bx2; and

(iv) Compute x1 = u− v.

The subroutines SCU append and SCU delete compute the factorization of the Schur complement after a row and

column have been appended to, and removed from, the extended matrix, respectively. The existing factorization is

updated to obtain the new one; this is normally more efficient than forming the factorization from scratch.

5 EXAMPLE OF USE

As a simple example, suppose we wish to solve the system of equations





















1 0 0 0 0 1 0

0 2 0 0 0 1 0

0 0 3 0 0 1 0

0 0 0 4 0 1 0

0 0 0 0 5 1 1

1 1 1 1 1 1 2

1 0 1 0 1 3 4









































x1

x2

x3

x4

x5

x6

x7





















=





















2

3

4

5

7

8

10





















.

Notice that the leading 5 by 5 coefficient matrix is diagonal and hence easily invertible. So we might choose n = 5,

m = 2, and use SCU factorize/SCU solve to find the required solution. As the matrix is unsymmetric, we must set

matrix%class=1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SCU (May 24, 2024) 9



SCU GALAHAD

Now suppose that we have solved this system as described and are now confronted with the further system

























1 0 0 0 0 1 0 1

0 2 0 0 0 1 0 0

0 0 3 0 0 1 0 0

0 0 0 4 0 1 0 0

0 0 0 0 5 1 1 0

1 1 1 1 1 1 2 1

1 0 1 0 1 3 4 0

1 0 0 0 0 0 1 1

















































x1

x2

x3

x4

x5

x6

x7

x8

























=

























5

5

4

5

7

12

12

4

























.

Rather than applying SCU factorize /SCU solve with n = 5, m = 3, we note that the new coefficient matrix differs

from the old one merely in having an extra row and column. Thus, we can use SCU append with n = 5, m = 2 to

update the existing factorization and then call SCU solve with n = 5, m = 3 to calculate the desired solution.

Finally, suppose that we have solved this second system and now wish to solve





















1 0 0 0 0 1 1

0 2 0 0 0 1 0

0 0 3 0 0 1 0

0 0 0 4 0 1 0

0 0 0 0 5 1 0

1 0 1 0 1 3 0

1 0 0 0 0 0 1









































x1

x2

x3

x4

x5

x6

x7





















=





















3

5

4

5

6

6

2





















.

Again, rather than applying SCU factorize /SCU solve with n = 5, m = 2, we note that this third coefficient matrix

is the second one with its n+1-st row and n+2-nd column removed. Thus, we can use SCU delete with n = 5, m = 3

to update the existing factorization and then call SCU solve with n = 5, m = 2 to calculate the desired solution.

To carry out these calculations, we might use the following piece of code. Notice how the extra row and column

for the second problem are simply introduced at the end of the existing data structures.

PROGRAM GALAHAD_SCU_EXAMPLE

USE GALAHAD_SCU_DOUBLE ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND( 1.0D+0 ) ! set precision

INTEGER :: i, row_del, col_del, status

INTEGER, PARAMETER :: n = 5, m = 2, mmax = m + 1

TYPE ( SCU_matrix_type ) :: mat

TYPE ( SCU_data_type ) :: data

TYPE ( SCU_info_type ) :: info

REAL ( KIND = wp ) :: X1( n + m ), RHS1( n + m )

REAL ( KIND = wp ) :: X2( n + m + 1 ), RHS2( n + m + 1 )

REAL ( KIND = wp ) :: X3( n + m ), RHS3( n + m ), VECTOR( n )

mat%m_max = mmax ; mat%class = 1

mat%n = n ; mat%m = m

ALLOCATE ( mat%BD_val( 15 ), mat%BD_row( 15 ), mat%BD_col_start( mmax+1 ),&

mat%CD_val( 13 ), mat%CD_col( 13 ), mat%CD_row_start( mmax+1 ) )

mat%BD_col_start( : 3 ) = (/1, 7, 10/)

mat%CD_row_start( : 3 ) = (/1, 6, 10/)

mat%BD_row( : 9 ) = (/1, 2, 3, 4, 5, 6, 5, 6, 7/)

mat%BD_val( : 9 ) = (/1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, &

1.0_wp, 1.0_wp, 1.0_wp, 2.0_wp, 4.0_wp/)

mat%CD_col( : 9 ) = (/1, 2, 3, 4, 5, 1, 3, 5, 6/)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 SCU (May 24, 2024) GALAHAD



GALAHAD SCU

mat%CD_val( : 9 ) = (/1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, &

1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 3.0_wp/)

RHS1 = (/2.0_wp, 3.0_wp, 4.0_wp, 5.0_wp, 7.0_wp, 8.0_wp, 10.0_wp/)

RHS2 = (/5.0_wp, 5.0_wp, 4.0_wp, 5.0_wp, 7.0_wp, 12.0_wp, 12.0_wp, 4.0_wp/)

RHS3 = (/3.0_wp, 5.0_wp, 4.0_wp, 5.0_wp, 6.0_wp, 6.0_wp, 2.0_wp/)

! First system

status = 1

DO

CALL SCU_factorize( mat, data, VECTOR, status, info )

IF ( status <= 0 ) EXIT

DO i = 1, n

VECTOR( i ) = VECTOR( i ) / DBLE( FLOAT( i ) )

END DO

END DO

WRITE( 6, "( /, ’ On exit from SCU_factorize, status = ’, I3 )" ) status

IF ( status < 0 ) STOP

status = 1

DO

CALL SCU_solve( mat, data, RHS1, X1, VECTOR, status )

IF ( status <= 0 ) EXIT

DO i = 1, n ! multiply by the inverse of A

VECTOR( i ) = VECTOR( i ) / DBLE( FLOAT( i ) )

END DO

END DO

WRITE( 6, "( ’ On exit from SCU_solve, status = ’, I3 )" ) status

IF ( status < 0 ) STOP

WRITE( 6, "( /, ’ Solution (first system)’, /, ( 8ES9.2 ) )" ) X1( : )

! Second system

mat%BD_row( 10 : 12 ) = (/ 1, 6, 8 /)

mat%BD_val( 10 : 12 ) = (/ 1.0_wp, 1.0_wp, 1.0_wp /)

mat%BD_col_start( 4 ) = 13

mat%CD_col( 10 ) = 1

mat%CD_val( 10 ) = 1.0_wp

mat%CD_row_start( 4 ) = 11

status = 1

DO

CALL SCU_append( mat, data, VECTOR, status, info )

IF ( status <= 0 ) EXIT

DO i = 1, n

VECTOR( i ) = VECTOR( i ) / DBLE( FLOAT( i ) )

END DO

END DO

WRITE( 6, "( /, ’ On exit from SCU_append, status = ’, I3 )" ) status

IF ( status < 0 ) STOP

status = 1

DO

CALL SCU_solve( mat, data, RHS2, X2, VECTOR, status )

IF ( status <= 0 ) EXIT

DO i = 1, n

VECTOR( i ) = VECTOR( i ) / DBLE( FLOAT( i ) )

END DO

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SCU (May 24, 2024) 11



SCU GALAHAD

END DO

WRITE( 6, "( ’ On exit from SCU_solve, status = ’, I3 )" ) status

IF ( status < 0 ) STOP

WRITE( 6, "( /, ’ Solution (second system)’, /, ( 8ES9.2 ) )" ) X2

! Third system

row_del = 1

col_del = 2

status = 1

CALL SCU_delete( mat, data, VECTOR, status, info, col_del, &

row_del = row_del )

WRITE( 6, "( /, ’ On exit from SCU_delete, status = ’, I3 )" ) status

IF ( status < 0 ) STOP

status = 1

DO

CALL SCU_solve( mat, data, RHS3, X3, VECTOR, status )

IF ( status <= 0 ) EXIT

DO i = 1, n

VECTOR( i ) = VECTOR( i ) / DBLE( FLOAT( i ) )

END DO

END DO

WRITE( 6, "( ’ On exit from SCU_solve, status = ’, I3 )" ) status

IF ( status < 0 ) STOP

WRITE( 6, "( /, ’ Solution (third system)’, /, ( 8ES9.2 ) )" ) X3

CALL SCU_terminate( data, status, info )

WRITE( 6, "( /, ’ On exit from SCU_terminate, status = ’, I3 )" ) status

END PROGRAM GALAHAD_SCU_EXAMPLE

This produces the following output:

On exit from SCU_factorize, status = 0

On exit from SCU_solve, status = 0

Solution (first system)

1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

On exit from SCU_append, status = 0

On exit from SCU_solve, status = 0

Solution (second system)

3.00E+00 2.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

On exit from SCU_delete, status = 0

On exit from SCU_solve, status = 0

Solution (third system)

1.00E+00 2.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

On exit from SCU_terminate, status = 0

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 SCU (May 24, 2024) GALAHAD


