
GALAHAD SBLS

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given a block, symmetric matrix

KH =

(

H AT

A −C

)

,

this package constructs a variety of preconditioners of the form

KG =

(

G AT

A −C

)

. (1.1)

Here, the leading-block matrix G is a suitably-chosen approximation to H; it may either be prescribed explicitly, in

which case a symmetric indefinite factorization of KG will be formed using the GALAHAD package SLS, or implicitly,

by requiring certain sub-blocks of G be zero. In the latter case, a factorization of KG will be obtained implicitly (and

more efficiently) without recourse to SLS. In particular, for implicit preconditioners, a reordering

KG = P





G11 GT
21 AT

1

G21 G22 AT
2

A1 A2 −C



PT (1.2)

involving a suitable permutation P will be found, for some invertible sub-block (“basis”) A1 of the columns of A;

the selection and factorization of A1 uses the GALAHAD package ULS. Once the preconditioner has been constructed,

solutions to the preconditioning system

(

G AT

A −C

)(

x

y

)

=

(

a

b

)

(1.3)

may be obtained by the package. Full advantage is taken of any zero coefficients in the matrices H, A and C.

ATTRIBUTES — Versions: GALAHAD SBLS single, GALAHAD SBLS double. Uses: GALAHAD CLOCK, GALAHAD -

SYMBOLS, GALAHAD SPACE, GALAHAD SMT, GALAHAD QPT, GALAHAD SLS, GALAHAD ULS, GALAHAD SPECFILE, Date:

April 2006. Origin: H. S. Dollar and N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 +

TR 15581 or Fortran 2003. Parallelism: Some options may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD SBLS single

with the obvious substitution GALAHAD SBLS double, GALAHAD SBLS single 64 and GALAHAD SBLS double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, QPT problem type,

SBLS time type, SBLS control type, SBLS inform type and SBLS data type (§2.4) and the subroutines SBLS initialize,

SBLS solve, SBLS terminate, (§2.5) and SBLS read specfile (§2.7) must be renamed on one of the USE state-

ments.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SBLS (May 24, 2024) 1

SBLS GALAHAD

2.1 Matrix storage formats

Each of the input matrices H, A and C may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H and C are symmetric, only the lower triangular parts (that

is the part hi j for 1 ≤ j ≤ i ≤ n and ci j for 1 ≤ j ≤ i ≤ m) need be held. In these cases the lower triangle will be stored

by rows, that is component i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji)

for 1 ≤ j ≤ i ≤ n. Similarly component i ∗ (i− 1)/2+ j of the storage array C%val will hold the value ci j (and, by

symmetry, c ji) for 1 ≤ j ≤ i ≤ m.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and value

ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The order

is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to H and C (thus,

for H, requiring integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the

entries in the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to H and C (thus, for H, requiring integer arrays

H%ptr, H%col, and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the

first n components of the array H%val may be used for the purpose. The same applies to C, but there is no sensible

equivalent for the non-square A.

2.1.5 Scaled-identity storage format

If H is a scalar multiple h of the identity matrix, hI, only the value h needs be stored, and the first component of the

array H%val may be used for the purpose. The same applies to C, but as before there is no sensible equivalent for the

non-square A.

2.1.6 Identity storage format

If H is the identity matrix, I, no numerical data need be stored. The same applies to C, but once again there is no

sensible equivalent for the non-square A.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 SBLS (May 24, 2024) GALAHAD

GALAHAD SBLS

2.1.7 Zero storage format

Finally, if H is the zero matrix, 0, no numerical data need be stored. The same applies to both A and C.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 Parallel usage

OpenMP may be used by the GALAHAD SBLS package to provide parallelism for some solvers in shared memory

environments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP

must be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number

of threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.4 The derived data types

Six derived data types are accessible from the package.

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices H, A and C. The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the storage scheme used.

If the dense storage scheme (see §2.1.1), is used, the first five components of type must contain the string

DENSE. For the sparse co-ordinate scheme (see §2.1.2), the first ten components of type must contain the string

COORDINATE, for the sparse row-wise storage scheme (see §2.1.3), the first fourteen components of type must

contain the string SPARSE BY ROWS, for the diagonal storage scheme (see §2.1.4), the first eight components

of type must contain the string DIAGONAL. for the scaled-identity storage scheme (see §2.1.5), the first fifteen

components of type must contain the string SCALED IDENTITY. and for the identity storage scheme (see §2.1.6),

the first eight components of type must contain the string IDENTITY. It is also permissible to set the first four

components of type to the either of the strings ZERO or NONE in the case of matrix C to indicate that C = 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SBLS (May 24, 2024) 3

SBLS GALAHAD

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into type. For example, if H is of derived type SMT type and we wish to use the co-ordinate storage

scheme, we may simply

CALL SMT_put(H%type, ’COORDINATE’, istat)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of a symmetric matrix H is represented as a single entry (see §2.1.1–

2.1.3); the same applies to C. Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes

will be summed. If the matrix is stored using the diagonal scheme (see §2.1.4), val should be of length n, and

the value of the i-th diagonal stored in val(i). If the matrix is stored using the scaled-identity scheme (see

§2.1.6), val(1) should be set to h.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

2.4.2 The derived data type for holding control parameters

The derived data type SBLS control type is used to hold controlling data. Default values may be obtained by calling

SBLS initialize (see §2.5.1), while components may also be changed by calling GALAHAD SBLS read spec (see

§2.7.1). The components of SBLS control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in SBLS solve and SBLS terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in SBLS solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

new h is a scalar variable of type INTEGER(ip), that is used to indicate how H has changed (if at all) since the

previous call to SBLS form and factorize. Possible values are:

0 H is unchanged

1 the values in H have changed, but its nonzero structure is as before.

2 both the values and structure of H have changed.

The default is new h = 2.

new a is a scalar variable of type INTEGER(ip), that is used to indicate how A has changed (if at all) since the

previous call to SBLS form and factorize. Possible values are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 SBLS (May 24, 2024) GALAHAD

GALAHAD SBLS

0 A is unchanged

1 the values in A have changed, but its nonzero structure is as before.

2 both the values and structure of A have changed.

The default is new a = 2.

new c is a scalar variable of type INTEGER(ip), that is used to indicate how C has changed (if at all) since the

previous call to SBLS form and factorize. Possible values are:

0 C is unchanged

1 the values in C have changed, but its nonzero structure is as before.

2 both the values and structure of C have changed.

The default is new c = 2.

preconditioner is a scalar variable of type INTEGER(ip), that specifies which preconditioner to be used; positive

values correspond to explicit-factorization preconditioners while negative values indicate implicit-factorization

ones. Possible values are:

0 the preconditioner is chosen automatically on the basis of which option looks most likely to be the most

efficient.

1 G is chosen to be the identity matrix.

2 G is chosen to be H

3 G is chosen to be the diagonal matrix whose diagonals are the larger of those of H and a positive constant

(see min diagonal below).

4 G is chosen to be the band matrix of given semi-bandwidth whose entries coincide with those of H within the

band. (see semi bandwidth below).

5 G is chosen to be a diagonal matrix D specified by the user.

11 G is chosen so that G11 = 0, G21 = 0 and G22 = H22.

12 G is chosen so that G11 = 0, G21 = H21 and G22 = H22.

-1 for the special case when C = 0, G is chosen so that G11 = 0, G21 = 0, G22 is the identity matrix, and the

preconditioner is computed implicitly.

-2 for the special case when C = 0, G is chosen so that G11 = 0, G21 = 0, G22 = H22 and the preconditioner is

computed implicitly.

Other values may be added in future. The default is preconditioner = 0.

semi bandwidth is a scalar variable of type INTEGER(ip), that specifies the semi-bandwidth of the band precondi-

tioner when precon = 3, if appropriate. The default is semi bandwidth = 5.

factorization is a scalar variable of type INTEGER(ip), that specifies which factorization of the preconditioner

should be used. Possible values are:

0 the factorization is chosen automatically on the basis of which option looks likely to be the most efficient.

1 if G is diagonal and non-singular, a Schur-complement factorization, involving factors of G and AG−1AT ,

will be used. Otherwise an augmented-system factorization, involving factors of KG, will be used.

2 an augmented-system factorization, involving factors of KG, will be used.

3 a null-space factorization (see §4) will be used provided that C = 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SBLS (May 24, 2024) 5

SBLS GALAHAD

The default is factorization = 0.

max col is a scalar variable of type INTEGER(ip), that specifies the maximum number of nonzeros in a column of

A which is permitted by the Schur-complement factorization. The default is max col = 35.

itref max is a scalar variable of type INTEGER(ip), that specifies the maximum number of iterative refinements

allowed with each application of the preconditioner. The default is itref max = 1.

pivot tol for basis is a scalar variable of type default REAL(rp), that holds the relative pivot tolerance used by

the package ULS when computing the non-singular basis matrix A1 for an implicit-factorization preconditioner.

Since the calculation of a suitable basis is crucial, it is sensible to pick a larger value of pivot tol for basis

than the default value relative pivot tolerance provided by ULS. The default is pivot tol for basis =

0.5.

min diagonal is a scalar variable of type REAL(rp), that specifies the smallest permitted diagonal in G for some of

the preconditioners provided. See preconditioner above. The default is min diagonal = 0.00001.

remove dependencies is a scalar variable of type default LOGICAL, that must be set .TRUE. if linear dependent rows

from the second block equation Ax−Cy= b from (1.3) should be removed and .FALSE. otherwise. The default

is remove dependencies = .TRUE..

check basis is a scalar variable of type default LOGICAL, that must be set .TRUE. if the basis matrix A1 constructed

when using an implicit-factorization preconditioner or null-space factorization should be assessed for ill condi-

tioning and corrected if necessary. If these precautions are not thought necessary, check basis should be set

.FALSE.. The default is check basis = .TRUE..

find basis by transpose is a scalar variable of type default LOGICAL, that must be set .TRUE. if the invertible sub-

block A1 of the columns of A is computed by analysing the transpose of A and .FALSE. if the analysis is based

on A itself. Generally an analysis based on the transpose is faster. The default is find basis by transpose =

.TRUE..

affine is a scalar variable of type default LOGICAL, that must be set .TRUE. if the component b of the right-hand side

of the required system (1.3) is zero, and .FALSE. otherwise. Computational savings are possible when b = 0.

The default is affine = .FALSE..

perturb to make definite is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wants to

guarantee that the computed preconditioner is suitable by boosting the diagonal of the requested G and .FALSE.

otherwise. The default is perturb to make definite = .TRUE..

get norm residual is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes the pack-

age to return the value of the norm of the residuals for the computed solution when applying the preconditioner

and .FALSE. otherwise. The default is get norm residual = .FALSE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

symmetric linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any general symmetric linear systems that might arise. Possible choices are ’sils’,

’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma97’, ’ssids’, ’pardiso’, ’wsmp’, ’sytr’, although only ’sils’,

’sytr’ and, for OMP 4.0-compliant compilers, ’ssids’ are installed by default. See the documentation for

the GALAHAD package SLS for further details. The default is symmetric linear solver = ’sils’.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 SBLS (May 24, 2024) GALAHAD

GALAHAD SBLS

definite linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any symmetric positive-definite linear system that might arise. Possible choices are

’sils’, ’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma87’, ’ma97’, ’ssids’, ’pardiso’, ’mkl pardiso’, ’wsmp’,

’potr’ and ’pbtr’, although only ’sils’, ’potr’, ’pbtr’ and, for OMP 4.0-compliant compilers, ’ssids’

are installed by default. See the documentation for the GALAHAD package SLS for further details. The default

is definite linear solver = ’sils’.

unsymmetric linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any unsymmetric linear systems that might arise. Possible choices are ’gls’,

’ma28’ and ’ma48’, although only ’gls’ is installed by default. See the documentation for the GALAHAD

package ULS for further details. The default is unsymmetric linear solver = ’gls’.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

SLS control is a scalar variable argument of type SLS control type that is used to pass control options to external

packages used to solve any symmetric linear systems that might arise. See the documentation for the GALAHAD

package SLS for further details. In particular, default values are as for SLS.

ULS control is a scalar variable argument of type ULS control type that is used to pass control options to exter-

nal packages used to solve any unsymmetric linear systems that might arise. See the documentation for the

GALAHAD package ULS for further details. In particular, default values are as for ULS.

2.4.3 The derived data type for holding timing information

The derived data type SBLS time type is used to hold elapsed CPU and system clock times for the various parts of

the calculation. The components of SBLS time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time (in seconds) spent in the package.

assemble is a scalar variable of type REAL(rp), that gives the CPU time spent forming the preconditioner.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the preconditioner.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent applying the preconditioner.

update is a scalar variable of type REAL(rp), that gives the CPU time spent updating the factorization.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time (in seconds) spent

in the package.

clock assemble is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent forming the

preconditioner.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the preconditioner.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent applying the

preconditioner.

clock update is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent updating the

factorization.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SBLS (May 24, 2024) 7

SBLS GALAHAD

2.4.4 The derived data type for holding informational parameters

The derived data type SBLS inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of SBLS inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See §2.6 for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

factorization integer is a scalar variable of type INTEGER(int64), that reports the number of integers required

to hold the factorization.

factorization real is a scalar variable of type INTEGER(int64), that reports the number of reals required to hold

the factorization.

preconditioner is a scalar variable of type INTEGER(ip), that indicates the preconditioner method used. The range

of values returned corresponds to those requested in control%preconditioner, excepting that the requested

value may have been altered to a more appropriate one during the factorization. In particular, if the automatic

choice control%preconditioner = 0 is requested, preconditioner reports the actual choice made.

factorization is a scalar variable of type INTEGER(ip), that indicates the factorization method used. The range of

values returned corresponds to those requested in control%factorization, excepting that the requested value

may have been altered to a more appropriate one during the factorization. In particular, if the automatic choice

control%factorization = 0 is requested, factorization reports the actual choice made.

rank is a scalar variable of type INTEGER(ip), that gives the computed rank of A.

rank def is a scalar variable of type default LOGICAL, that has the value .TRUE. if SBLS form and factorize

believes that A is rank defficient, and .FALSE. otherwise

perturbed is a scalar variable of type default LOGICAL, that has the value .TRUE. if and only if the original choice

of G has been perturbed to ensure that KG is an appropriate preconditioner. This will only happen if control-

%perturb to make definite has been set .TRUE..

norm residual is a scalar variable of type REAL(rp), that holds the infinity norm of the residual of the system (1.3)

after a call to SBLS solve if control%get norm residual has been set .TRUE.. Otherwise it will have the

value -1.0.

time is a scalar variable of type SBLS time type whose components are used to hold elapsed CPU and system clock

times (in seconds) for the various parts of the calculation (see Section 2.4.3).

SLS inform is a scalar variable argument of type SLS inform type that is used to pass information concerning

the progress of the external packages used to solve any symmetric linear systems that might arise. See the

documentation for the GALAHAD package SLS for further details.

ULS inform is a scalar variable argument of type ULS inform type that is used to pass information concerning

the progress of the external packages used to solve any unsymmetric linear systems that might arise. See the

documentation for the GALAHAD package ULS for further details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 SBLS (May 24, 2024) GALAHAD

GALAHAD SBLS

2.4.5 The derived data type for holding problem data

The derived data types SBLS explicit factor type, SBLS implicit factor type and SBLS data type are used

to hold all the data for the problem and the factors of its preconditioners between calls of SBLS procedures. This data

should be preserved, untouched, from the initial call to SBLS initialize to the final call to SBLS terminate.

2.5 Argument lists and calling sequences

There are four procedures for user calls (see §2.7 for further features):

1. The subroutine SBLS initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine SBLS form and factorize is called to form and factorize the preconditioner.

3. The subroutine SBLS solve is called to apply the preconditioner, that is to solve a linear system of the form

(1.3).

4. The subroutine SBLS terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by SBLS form and factorize at the end of the solution process.

We use square brackets [] to indicate OPTIONALarguments.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL SBLS initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type SBLS data type (see §2.4.5). It is used to hold data about the

problem being solved.

control is a scalar INTENT(OUT) argument of type SBLS control type (see §2.4.2). On exit, control contains

default values for the components as described in §2.4.2. These values should only be changed after calling

SBLS initialize.

inform is a scalar INTENT(OUT) argument of type SBLS inform type (see Section 2.4.4). A successful call to

SBLS initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.6.

2.5.2 The subroutine for forming and factorizing the preconditioner

A preconditioner of the form (1.1) is formed and factorized as follows:

CALL SBLS form and factorize(n, m, H, A, C, data, control, inform[, D])

n is a scalar INTENT(IN) argument of type INTEGER(ip) that specifies the number of rows of H (and columns of

A).

m is a scalar INTENT(IN) argument of type INTEGER(ip) that specifies the number of rows of A and C.

H is a scalar INTENT(IN) argument of type SMT type whose components must be set to specify the data defining the

matrix H (see §2.4.1).

A is a scalar INTENT(IN) argument of type SMT type whose components must be set to specify the data defining the

matrix A (see §2.4.1).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SBLS (May 24, 2024) 9

SBLS GALAHAD

C is a scalar INTENT(IN) argument of type SMT type whose components must be set to specify the data defining the

matrix C (see §2.4.1).

data is a scalar INTENT(INOUT) argument of type SBLS data type (see §2.4.5). It is used to hold data about the

problem being solved. It must not have been altered by the user since the last call to SBLS initialize.

control is a scalar INTENT(IN) argument of type SBLS control type (see §2.4.2). Default values may be assigned

by calling SBLS initialize prior to the first call to SBLS solve.

inform is a scalar INTENT(OUT) argument of type SBLS inform type (see §2.4.4). A successful call to SBLS solve

is indicated when the component status has the value 0. For other return values of status, see §2.6.

D is a rank-one OPTIONAL INTENT(IN) argument of type REAL(rp) and length at least n, whose i-th component give

the value of the i-th diagonal entry of the matrix D used when control%preconditioner = 5 (see §2.4.2). D

need not be PRESENT for other values of control%preconditioner.

2.5.3 The subroutine for applying the preconditioner

The preconditioner may be applied to solve a system of the form (1.3) as follows:

CALL SBLS solve(n, m, A, C, data, control, inform, SOL)

Components n, m, A, C, data and control are exactly as described for SBLS form and factorize and must not have

been altered in the interim.

inform is a scalar INTENT(OUT) argument of type SBLS inform type (see §2.4.4), that should be passed unaltered

since the last call to SBLS form and factorize or SBLS solve. A successful call to SBLS solve is indicated

when the component status has the value 0. For other return values of status, see §2.6.

SOL is a rank-one INTENT(INOUT) array of type default REAL and length at least n+m, that must be set on entry to hold

the composite vector (aT bT)T . In particular SOL(i), i = 1, . . .n should be set to ai, and SOL(n+ j), j = 1, . . . , m
should be set to b j. On successful exit, SOL will contain the solution (xT yT)T to (1.3), that is SOL(i), i = 1, . . . ,
n will give xi, and SOL(n+ j), j = 1, . . . , m will contain y j.

2.5.4 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL SBLS terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type SBLS data type exactly as for SBLS solve, which must not have

been altered by the user since the last call to SBLS initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type SBLS control type exactly as for SBLS solve.

inform is a scalar INTENT(OUT) argument of type SBLS inform type exactly as for SBLS solve. Only the com-

ponent status will be set on exit, and a successful call to SBLS terminate is indicated when this component

status has the value 0. For other return values of status, see §2.6.

2.6 Warning and error messages

A negative value of inform%status on exit from SBLS form and factorize, SBLS solve or SBLS terminate in-

dicates that an error has occurred. No further calls should be made until the error has been corrected. Possible values

are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 SBLS (May 24, 2024) GALAHAD

GALAHAD SBLS

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n> 0 or prob%m≥ 0 or requirements that prob%A type, prob%H type and prob%C type

contain its relevant string ’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’, ’SCALED IDENTITY’,

’IDENTITY’, ’ZERO’ or ’NONE’ has been violated.

-9. An error was reported by SLS analyse. The return status from SLS analyse is given in inform%SLS inform%status.

See the documentation for the GALAHAD package SLS for further details.

-10. An error was reported by SLS factorize. The return status from SLS factorize is given in inform%SLS inform%status.

See the documentation for the GALAHAD package SLS for further details.

-11. An error was reported by SLS solve. The return status from SLS solve is given in inform%SLS inform%status.

See the documentation for the GALAHAD package SLS for further details.

-13. An error was reported by ULS factorize. The return status from ULS factorize is given in inform%uls factorize -

status. See the documentation for the GALAHAD package ULS for further details.

-14. An error was reported by ULS solve. The return status from ULS solve is given in inform%uls solve status.

See the documentation for the GALAHAD package ULS for further details.

-15. The computed preconditioner is singular and is thus unsuitable.

-20. The computed preconditioner has the wrong inertia and is thus unsuitable.

-24. An error was reported by SORT reorder by rows. The return status from SORT reorder by rows is given in

inform%sort status. See the documentation for the GALAHAD package SORT for further details.

-26. The requested linear equation solver is not available.

A positive value of inform%status on exit from SBLS form and factorize warns of unexpected behaviour. A

possible values is:

1. The matrx A is rank defficient.

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type SBLS control type (see §2.4.2), by reading an appropriate data specification file using the subrou-

tine SBLS read specfile. This facility is useful as it allows a user to change SBLS control parameters without editing

and recompiling programs that call SBLS.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by SBLS read specfile must start with a ”BEGIN SBLS” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SBLS (May 24, 2024) 11

SBLS GALAHAD

(.. lines ignored by SBLS_read_specfile ..)

BEGIN SBLS

keyword value

.......

keyword value

END

(.. lines ignored by SBLS_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN SBLS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN SBLS SPECIFICATION

and

END SBLS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN SBLS” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when SBLS read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by SBLS read specfile.

Control parameters corresponding to the components SLS control and ULS control may be changed by includ-

ing additional sections enclosed by “BEGIN SLS” and “END SLS”, and “BEGIN ULS” and “END ULS”, respectively. See

the specification sheets for the packages GALAHAD SLS and GALAHAD ULS for further details.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL SBLS_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type SBLS control type (see §2.4.2). Default values should have

already been set, perhaps by calling SBLS initialize. On exit, individual components of control may have

been changed according to the commands found in the specfile. Specfile commands and the component (see

§2.4.2) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 SBLS (May 24, 2024) GALAHAD

GALAHAD SBLS

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-refinements %itref max integer

preconditioner-used %preconditioner integer

semi-bandwidth-for-band-preconditioner %semi bandwidth integer

factorization-used %factorization integer

maximum-column-nonzeros-in-schur-complement %max col integer

has-a-changed %new a integer

has-h-changed %new h integer

has-c-changed %new c integer

minimum-diagonal %min diagonal real

pivot-tolerance-used-for-basis %pivot tol for basis real

find-basis-by-transpose %find basis by transpose logical

remove-linear-dependencies %remove dependencies logical

affine-constraints %affine logical

check-for-reliable-basis %check basis logical

perturb-to-make-+ve-definite %perturb to make definite logical

get-norm-residual %get norm residual logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

symmetric-linear-equation-solver %symmetric linear solver character

definite-linear-equation-solver %definite linear solver character

unsymmetric-linear-equation-solver %unsymmetric linear solver character

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, statistics concerning the factorization, as well as warning and error messages

will be reported. If control%print level = 2, additional information about the progress of the factorization and the

solution phases will be given. If control%print level > 2, debug information, of little interest to the general user,

may be returned.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: SBLS solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS,

GALAHAD SPACE, GALAHAD SMT, GALAHAD QPT, GALAHAD SLS, GALAHAD ULS and GALAHAD SPECFILE,

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SBLS (May 24, 2024) 13

SBLS GALAHAD

Restrictions: prob%n> 0, prob%m≥ 0, prob%H type, prob%A type and prob%C type ∈ {’DENSE’, ’COORDINATE’,

’SPARSE BY ROWS’, ’DIAGONAL’, ’SCALED IDENTITY’, ’IDENTITY’ }, ’ZERO’, ’NONE’.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The method used depends on whether an explicit or implicit factorization is required. In the explicit case, the package

is really little more than a wrapper for the symmetric, indefinite linear solver SLS in which the system matrix KG is

assembled from its constituents A, C and whichever G is requested by the user. Implicit-factorization preconditioners

are more involved, and there is a large variety of different possibilities. The essential ideas are described in detail in

H. S. Dollar, N. I. M. Gould and A. J. Wathen. “On implicit-factorization constraint preconditioners”. In Large

Scale Nonlinear Optimization (G. Di Pillo and M. Roma, eds.) Springer Series on Nonconvex Optimization and Its

Applications, Vol. 83, Springer Verlag (2006) 61–82

and

H. S. Dollar, N. I. M. Gould, W. H. A. Schilders and A. J. Wathen “On iterative methods and implicit-factorization

preconditioners for regularized saddle-point systems”. SIAM Journal on Matrix Analysis and Applications, 28(1)

(2006) 170–189.

The range-space factorization is based upon the decomposition

KG =

(

G 0

A I

)(

G−1 0

0 −S

)(

G AT

0 I

)

,

where the “Schur complement” S = C+AG−1AT . Such a method requires that S is easily invertible. This is often the

case when G is a diagonal matrix, in which case S is frequently sparse, or when m ≪ n in which case S is small and a

dense Cholesky factorization may be used.

When C = 0, the null-space factorization is based upon the decomposition

KG = P





G11 0 I

G21 I AT
2 A−T

1

A1 0 0









0 0 I

0 R 0

I 0 −G11









G11 GT
21 AT

1

0 I 0

I A−1
1 A2 0



PT ,

where the “reduced Hessian”

R = (−AT
2 A−T

1 I)

(

G11 GT
21

G21 G22

)(

−A−1
1 A2

I

)

and P is a suitably-chosen permutation for which A1 is invertible. The method is most useful when m ≈ n as then the

dimension of R is small and a dense Cholesky factorization may be used.

5 EXAMPLE OF USE

Suppose we wish to solve the linear system (1.3) with matrix data

H =





1 4

2

4 3



 , A =

(

2 1

1 1

)

and C =

(

1

1

)

and right-hand sides

a =





7

4

8



 and b =

(

2

1

)

.

Then storing the matrices in sparse co-ordinate format, we may use the following code:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 SBLS (May 24, 2024) GALAHAD

GALAHAD SBLS

! THIS VERSION: GALAHAD 2.1 - 22/03/2007 AT 09:00 GMT.

PROGRAM GALAHAD_SBLS_EXAMPLE

USE GALAHAD_SBLS_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (SMT_type) :: H, A, C

REAL (KIND = wp), ALLOCATABLE, DIMENSION(:) :: SOL

TYPE (SBLS_data_type) :: data

TYPE (SBLS_control_type) :: control

TYPE (SBLS_inform_type) :: inform

INTEGER :: s

INTEGER :: n = 3, m = 2, h_ne = 4, a_ne = 4, c_ne = 1

! start problem data

ALLOCATE(SOL(n + m))

SOL(1 : n) = (/ 7.0_wp, 4.0_wp, 8.0_wp /) ! RHS a

SOL(n + 1 : n + m) = (/ 2.0_wp, 1.0_wp /) ! RHS b

! sparse co-ordinate storage format

CALL SMT_put(H%type, ’COORDINATE’, s) ! Specify co-ordinate

CALL SMT_put(A%type, ’COORDINATE’, s) ! storage for H, A and C

CALL SMT_put(C%type, ’COORDINATE’, s)

ALLOCATE(H%val(h_ne), H%row(h_ne), H%col(h_ne))

ALLOCATE(A%val(a_ne), A%row(a_ne), A%col(a_ne))

ALLOCATE(C%val(c_ne), C%row(c_ne), C%col(c_ne))

H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /) ! matrix H

H%row = (/ 1, 2, 3, 3 /) ! NB lower triangle

H%col = (/ 1, 2, 3, 1 /) ; H%ne = h_ne

A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! matrix A

A%row = (/ 1, 1, 2, 2 /)

A%col = (/ 1, 2, 2, 3 /) ; A%ne = a_ne

C%val = (/ 1.0_wp /) ! matrix C

C%row = (/ 2 /) ! NB lower triangle

C%col = (/ 1 /) ; C%ne = c_ne

! problem data complete

CALL SBLS_initialize(data, control, inform) ! Initialize control parameters

control%preconditioner = 2 ! Exact factorization

! factorize matrix

CALL SBLS_form_and_factorize(n, m, H, A, C, data, control, inform)

IF (inform%status < 0) THEN ! Unsuccessful call

WRITE(6, "(’ SBLS_form_and_factorize exit status = ’, I0) ") &

inform%status

STOP

END IF

! solve system

CALL SBLS_solve(n, m, A, C, data, control, inform, SOL)

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ SBLS: Solution = ’, /, (5ES12.4))") SOL

ELSE ! Error returns

WRITE(6, "(’ SBLS_solve exit status = ’, I6) ") inform%status

END IF

CALL SBLS_terminate(data, control, inform) ! delete internal workspace

END PROGRAM GALAHAD_SBLS_EXAMPLE

This produces the following output:

SBLS: Solution =

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD SBLS (May 24, 2024) 15

SBLS GALAHAD

1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(H%type, ’SPARSE_BY_ROWS’, s) ! Specify sparse-by-rows

CALL SMT_put(A%type, ’SPARSE_BY_ROWS’, s) ! storage for H, A and C

CALL SMT_put(C%type, ’SPARSE_BY_ROWS’, s)

ALLOCATE(H%val(h_ne), H%col(h_ne), H%ptr(n + 1))

ALLOCATE(A%val(a_ne), A%col(a_ne), A%ptr(m + 1))

ALLOCATE(C%val(c_ne), C%col(c_ne), C%ptr(m + 1))

H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /) ! matrix H

H%col = (/ 1, 2, 3, 1 /) ! NB lower triangular

H%ptr = (/ 1, 2, 3, 5 /) ! Set row pointers

A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! matrix A

A%col = (/ 1, 2, 2, 3 /)

A%ptr = (/ 1, 3, 5 /) ! Set row pointers

C%val = (/ 1.0_wp /) ! matrix C

C%col = (/ 1 /) ! NB lower triangular

C%ptr = (/ 1, 1, 2 /) ! Set row pointers

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(H%type, ’DENSE’, s) ! Specify dense

CALL SMT_put(A%type, ’DENSE’, s) ! storage for H, A and C

CALL SMT_put(C%type, ’DENSE’, s)

ALLOCATE(H%val(n * (n + 1) / 2))

ALLOCATE(A%val(n * m))

ALLOCATE(C%val(m * (m + 1) / 2))

H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 4.0_wp, 0.0_wp, 3.0_wp /) ! H

A%val = (/ 2.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, 1.0_wp /) ! A

C%val = (/ 0.0_wp, 1.0_wp, 0.0_wp /) ! C

! problem data complete

respectively.

If instead H had been the diagonal matrix

H =





1

0

3





but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’, s) ! Specify dense storage for H

ALLOCATE(p%H%val(n))

p%H%val = (/ 1.0_wp, 0.0_wp, 3.0_wp /) ! Hessian values

Notice here that zero diagonal entries are stored.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 SBLS (May 24, 2024) GALAHAD

