
GALAHAD RPD

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Read and write data for the linear program (LP)

minimize gT x+ f subject to cl ≤ Ax ≤ cu and xl ≤ x ≤ xu,

the linear program with quadratic constraints (QCP)

minimize gT x+ f subject to cl ≤ Ax+
1

2
vec(x.Hc.x)≤ cu and xl ≤ x ≤ xu,

the bound-constrained quadratic program (BQP)

minimize
1

2
xT Hx+ gT x+ f subject to xl ≤ x ≤ xu,

the quadratic program (QP)

minimize
1

2
xT Hx+ gT x+ f subject to cl ≤ Ax ≤ cu and xl ≤ x ≤ xu,

or the quadratic program with quadratic constraints (QCQP)

minimize
1

2
xT Hx+ gT x+ f subject to cl ≤ Ax+

1

2
vec(x.Hc.x)≤ cu and xl ≤ x ≤ xu,

involving the n by n symmetric matrices H and (Hc)i, i = 1, . . . ,m, the m by n matrix A, the vectors g, cl , cu, xl , xu,

the scalar f , and where vec(x.Hc.x) is the vector whose i-th component is xT (Hc)ix for the i-th constraint, from and

to a QPLIB-format data file. Any of the constraint bounds cl
i , cu

i , xl
j and xu

j may be infinite. Full advantage is taken

of any zero coefficients in the matrices H, (Hc)i and A.

ATTRIBUTES — Versions: GALAHAD RPD single, GALAHAD RPD double. Uses: GALAHAD CLOCK, GALAHAD SY-

MBOLS, GALAHAD SPACE, GALAHAD NORMS, GALAHAD SMT, GALAHAD QPT, GALAHAD SPECFILE, GALAHAD SORT, GALAH-

AD LMS Date: January 2006 Origin: N. I. M. Gould. Language: Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD RPD single

with the obvious substitution GALAHAD RPD double, GALAHAD RPD single 64 and GALAHAD RPD double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT TYPE, RPD control type,

RPD inform type, RPD data type, (Section 2.3) and the subroutines RPD read problem data, must be renamed on

one of the USE statements.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD RPD (May 24, 2024) 1

RPD GALAHAD

2.1 Matrix storage formats

The objective Hessian matrix H, the constraint Hessians (Hc)i and the constraint Jacobian A will be available in a

sparse co-ordinate storage format.

2.1.1 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The

order is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to H (thus

requiring integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in

the lower triangle need be stored. For the constraint Hessians, a third index giving the constraint involved is required

for each entry, and is stored in the integer array H%ptr. Once again, only the lower traingle is stored.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data types

Five derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices H, (Hc)i and A. The components of SMT TYPE used here

are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored.

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of the symmetric matrix H is represented as a single entry (see §2.1.1).

Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.1).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.1).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may holds the indices of

the constraints involved when storing (Hc)i (see §2.1.1). This component is not required when storing H or A.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 RPD (May 24, 2024) GALAHAD

GALAHAD RPD

2.3.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip), that holds the number of general linear constraints, m.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H, if required, in the sparse co-ordinate storage

scheme (see Section 2.1.1). The following components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. Specifically, the first ten components of H%type will contain the string COORDINATE,

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.1).

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in the sparse co-ordinate storage scheme.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of the matrix (Hc)i in the sparse co-ordinate scheme.

The components of H will only be set if the problem has a nonlinear objective function.

G is a rank-one allocatable array type REAL(rp), that will be allocated to have length n, and its j-th component

filled with the value g j for j = 1, . . . ,n.

f is a scalar variable of type REAL(rp), that holds the constant term, f , in the objective function.

H c is scalar variable of type SMT TYPE that holds the constraint Hessian matrices (Hc)i, if required, in the sparse

co-ordinate storage scheme (see Section 2.1.1). The following components are used:

H c%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. Specifically, the first ten components of H c%type will contain the string COORDINATE,

H c%ne is a scalar variable of type INTEGER(ip), that holds the total number of entries in the lower trian-

gular part of the collection of constraint Hessians (Hc)i in the sparse co-ordinate storage scheme (see

Section 2.1.1).

H c%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the constraint Hessian matrices (Hc)i in the sparse co-ordinate storage scheme.

H c%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower trian-

gular part of (Hc)i in the sparse co-ordinate storage scheme.

H c%col is a rank-one allocatable array variable of type default INTEGER(ip), that holds the column indices

of the lower triangular part of (Hc)i in the sparse co-ordinate scheme.

H c%ptr is a rank-one allocatable array of variable of type INTEGER(ip), that holds the constraint indices i of

the constraint Hessians (Hc)i in the sparse co-ordinate storage scheme.

The components of H c will only be set if the problem has a nonlinear constraints.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A, if required, in the sparse co-ordinate storage

scheme (see Section 2.1.1). The following components are used:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD RPD (May 24, 2024) 3

RPD GALAHAD

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. Specifically, the first ten components of A%type will contain the string COORDINATE,

A%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in A, if any, in the sparse

co-ordinate storage scheme (see Section 2.1.1).

A%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian

matrix A in the sparse co-ordinate storage scheme.

A%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of A in the sparse

co-ordinate storage scheme.

A%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of A in

either the sparse co-ordinate scheme.

The components of A will only be set if the problem has general consraints.

infinity is a scalar variable of type REAL(rp), that indicates when a variable or consraint bound is actually infinite.

Any component of C l or X l (see below) that is smaller than -infinity should be viewed as −∞, while those

of of C u or X u (see below) that are larger than infinity should be viewed as ∞,

C l is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of lower bounds cl on

the general constraints. The i-th component of C l, i = 1, . . . ,m, contains cl
i . Infinite bounds are allowed by

setting the corresponding components of C l to any value smaller than -infinity.

C u is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of upper bounds cu on

the general constraints. The i-th component of C u, i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed by

setting the corresponding components of C u to any value larger than infinity.

X l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xl on

the the variables. The j-th component of X l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting

the corresponding components of X l to any value smaller than -infinity.

X u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xu on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity.

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

Y is a rank-one allocatable array of dimension m and type REAL(rp), that holds the values y of estimates of the

Lagrange multipliers corresponding to the general linear constraints (see Section 4). The i-th component of Y,

i = 1, . . . ,m, contains yi.

Z is a rank-one allocatable array of dimension n and type default REAL(rp), that holds the values z of estimates

of the dual variables corresponding to the simple bound constraints (see Section 4). The j-th component of Z,

j = 1, . . . ,n, contains z j .

X type is a rank-one allocatable array of dimension n and type INTEGER(ip), that defines the types of variables. If

X type(i) = 0, variable xi is allowed to take continuous values, if X type(i) = 1, it may only take integer

values, and if X type(i) = 2, it is restricted to the binary choice, 0 or 1.

2.3.3 The derived data type for holding control parameters

The derived data type RPD control type is used to hold controlling data. Default values may be obtained by calling

RPD initialize (see Section 2.4.1). The components of RPD control type are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 RPD (May 24, 2024) GALAHAD

GALAHAD RPD

qplib is a scalar variable of type INTEGER(ip), that holds the stream number for input QPLIB file. The default is

qplib = 21.

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in RPD read problem data and RPD terminate is suppressed if error≤ 0. The default is error =

6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in RPD read problem data is suppressed if out< 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level≤ 0. If print level = 1 a single line

of output will be produced for each iteration of the process. If print level ≥ 2 this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

space critical is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the package

to allocate as little internal storage as possible, and .FALSE. otherwise. The package may be more efficient if

space critical is set .FALSE.. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the

package to return to the user in the unlikely event that an internal array deallocation fails, and .FALSE. if the

package should be allowed to try to continue. The default is deallocate error fatal = .FALSE..

2.3.4 The derived data type for holding informational parameters

The derived data type RPD inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of RPD inform type are:

status is a scalar variable of type INTEGER(ip), that gives the current status of the algorithm. See Section 2.5 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last internal array allocation or

deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

io status is a scalar variable of type INTEGER(ip), that gives the status of the last read attempt. This will be 0 if

status = 0.

line is a scalar variable of type INTEGER(ip), that gives the number of the last line read from the input file. This

may be used to track an incorrectly-formated file.

p type is a scalar variable of type default CHARACTER and length 3 that contains a key that describes the problem. The

first character indicates the type of objective function used. It will be one of the following:

L a linear objective function.

D a convex quadratic objective function whose Hessian is a diagonal matrix.

C a convex quadratic objective function.

Q a quadratic objective function whose Hessian may be indefinite.

The second character indicates the types of variables that are present. It will be one of the following:

C all the variables are continuous.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD RPD (May 24, 2024) 5

RPD GALAHAD

B all the variables are binary (0-1).

M the variables are a mix of continuous and binary.

I all the variables are integer.

G the variables are a mix of continuous, binary and integer.

The third character indicates the type of the (most extreme) constraint function used; other constraints may be

of a lesser type. It will be one of the following:

N there are no constraints.

B some of the variables lie between lower and upper bounds (box constraint).

L the constraint functions are linear.

D the constraint functions are convex quadratics with diagonal Hessians.

C the constraint functions are convex quadratics.

Q the constraint functions are quadratics whose Hessians may be indefinite.

Thus for continuous problems, we would have

LCL a linear program.

LCC or LCQ a linear program with quadratic constraints.

CCB or QCB a bound-constrained quadratic program.

CCL or QCL a quadratic program.

CCC or CCQ or QCC or QCQ a quadratic program with quadratic constraints.

For integer problems, the second character would be I rather than C, and for mixed integer problems, the second

character would by M or G.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.6 for further features):

1. The subroutine RPD initialize is used to set default values and initialize private data.

2. The subroutine RPD read problem data is called to read the prolem from a specified QPLIB file into a QPT problem type

structure.

3. The subroutine RPD terminate is provided to allow the user to automatically deallocate array components of

the problem structure set by RPD read problem data once the input file has been proccessed.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL RPD initialize(control, inform)

control is a scalar INTENT(OUT)argument of type RPD control type (see Section 2.3.3). On exit, control contains

default values for the components as described in Section 2.3.3. These values should only be changed after

calling RPD initialize.

inform is a scalar INTENT(OUT) argument of type RPD inform type (see Section 2.3.4). A successful call to

RPD initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 RPD (May 24, 2024) GALAHAD

GALAHAD RPD

2.4.2 Subroutine to extract the data from a QPLIB format file

Extract the data from a QPLIB format file as follows:

CALL RPD read problem data(problem, control, inform)

problem is a scalar INTENT(INOUT) argument of type qpt problem type (see Section 2.3.2) whose components will

be filled with problem data extracted from the QPLIB file.

control is a scalar INTENT(IN) argument of type RPD control type (see Section 2.3.3). Default values may be

assigned by calling RPD initialize prior to the first call to RPD read problem data. Of particular note, the

component control%qplib specifies the stream number for input QPLIB file.

inform is a scalar INTENT(INOUT)argument of type RPD inform type (see Section 2.3.4) whose components need

not be set on entry. A successful call to RPD read problem data is indicated when the component status has

the value 0. For other return values of status, see Section 2.5.

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL RPD terminate(data, control, inform)

data is a scalar INTENT(INOUT)argument of type RPD data type exactly as for RPD read problem data that must

not have been altered by the user since the last call to RPD initialize. On exit, array components will have

been deallocated.

control is a scalar INTENT(IN)argument of type RPD control type exactly as for RPD read problem data.

inform is a scalar INTENT(OUT)argument of type RPD inform type exactly as for RPD read problem data. Only

the component status will be set on exit, and a successful call to RPD terminate is indicated when this

component status has the value 0. For other return values of status, see Section 2.5.

2.5 Warning and error messages

A negative value of inform%status on exit from RPD read problem data or RPD terminate indicates that an error

might have occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-22. An input/output error occurred.

-25. The end of the input file was encountered before the problem specification was complete.

-29. The problem type was not recognised.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD RPD (May 24, 2024) 7

RPD GALAHAD

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type RPD control type (see Section 2.3.3), by reading an appropriate data specification file using the

subroutine RPD read specfile. This facility is useful as it allows a user to change RPD control parameters without

editing and recompiling programs that call RPD.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by RPD read specfile must start with a ”BEGIN RPD” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by RPD_read_specfile ..)

BEGIN RPD

keyword value

.......

keyword value

END

(.. lines ignored by RPD_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN RPD” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN RPD SPECIFICATION

and

END RPD SPECIFICATION

are acceptable. Furthermore, between the “BEGIN RPD” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when RPD read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

RPD read specfile.

Control parameters corresponding to the components SLS control and IR control may be changed by including

additional sections enclosed by “BEGIN SLS” and “END SLS”, and “BEGIN IR” and “END IR”, respectively. See the

specification sheets for the packages GALAHAD SLS and GALAHAD IR for further details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 RPD (May 24, 2024) GALAHAD

GALAHAD RPD

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL RPD_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type RPD control type (see Section 2.3.3). Default values should

have already been set, perhaps by calling RPD initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.3) of control that each affects are given in Table 2.1.

command component of control value type

qplib-file-device %qplib integer

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level is positive, information about the progress of the algorithm may be printed on unit control-

%out.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: RPD read problem data calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SY-

MBOLS, GALAHAD SPACE, GALAHAD SMT, GALAHAD QPT, GALAHAD SPECFILE, GALAHAD SORT and GALAHAD LMS.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Portability: ISO Fortran 2003. The package is thread-safe.

4 METHOD

The QPBLIB format is defined in

F. Furini, E. Traversi, P. Belotti, A. Frangioni, A. Gleixner, N. Gould, L. Liberti, A. Lodi, R. Misener, H. Mittel-

mann, N. V. Sahinidis, S. Vigerske and A. Wiegele (2019). QPLIB: a library of quadratic programming instances,

Mathematical Programming Computation 11 237–265.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD RPD (May 24, 2024) 9

RPD GALAHAD

5 EXAMPLE OF USE

Suppose we wish to read the data encoded in the QPLIB file ALLINIT.qplib that may be found in the directory

examples of the GALAHAD distribution. Then we may use the following code:

! THIS VERSION: GALAHAD 4.1 - 2022-11-27 AT 14:00 GMT.

PROGRAM GALAHAD_RPD_example

USE GALAHAD_RPD_double ! double precision version

IMPLICIT NONE

TYPE (RPD_control_type) :: control

TYPE (RPD_inform_type) :: inform

TYPE (QPT_problem_type) :: prob

INTEGER :: i, length

INTEGER :: qplib_unit = 21

CHARACTER (LEN = 8) :: galahad_var = ’GALAHAD’

CHARACTER(LEN = :), ALLOCATABLE :: galahad

! open the QPLIB file ALLINIT.qplib for reading on unit 21

CALL GET_ENVIRONMENT_VARIABLE(galahad_var, length = length)

ALLOCATE(CHARACTER(LEN = length):: galahad)

CALL GET_ENVIRONMENT_VARIABLE(galahad_var, value = galahad)

OPEN(qplib_unit, file = galahad // "/examples/ALLINIT.qplib", &

FORM = ’FORMATTED’, STATUS = ’OLD’)

CALL RPD_initialize(control, inform)

control%qplib = qplib_unit

! collect the problem statistics

CALL RPD_read_problem_data(prob, control, inform)

WRITE(6, "(’ read status = ’, I0)") inform%status

WRITE(6, "(’ qplib example ALLINIT type = ’, A)") inform%p_type

WRITE(6, "(’ n, m, h_ne, a_ne, h_c_ne =’, 5I3)") &

prob%n, prob%m, prob%H%ne, prob%A%ne, prob%H_c%ne

! close the QPLIB file after reading

CLOSE(qplib_unit)

WRITE(6, "(’ G =’, 5F5.1)") prob%G

WRITE(6, "(’ f =’, F5.1)") prob%f

WRITE(6, "(’ X_l =’, 5F4.1)") prob%X_l

WRITE(6, "(’ X_u =’, 5F4.1)") prob%X_u

WRITE(6, "(’ C_l =’, 2F4.1)") prob%C_l

WRITE(6, "(’ C_u =’, 2ES8.1)") prob%C_u

IF (ALLOCATED(prob%H%row) .AND. ALLOCATED(prob%H%col) .AND. &

ALLOCATED(prob%H%val)) THEN

DO i = 1, prob%H%ne

WRITE(6, "(’ H(row, col, val) =’, 2I3, F5.1)") &

prob%H%row(i), prob%H%col(i), prob%H%val(i)

END DO

END IF

IF (ALLOCATED(prob%A%row) .AND. ALLOCATED(prob%A%col) .AND. &

ALLOCATED(prob%A%val)) THEN

DO i = 1, prob%A%ne

WRITE(6, "(’ A(row, col, val) =’, 2I3, F5.1)") &

prob%A%row(i), prob%A%col(i), prob%A%val(i)

END DO

END IF

IF (ALLOCATED(prob%H_c%ptr) .AND. ALLOCATED(prob%H_c%row) .AND. &

ALLOCATED(prob%H_c%col) .AND. ALLOCATED(prob%H_c%val)) THEN

DO i = 1, prob%H_c%ne

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 RPD (May 24, 2024) GALAHAD

GALAHAD RPD

WRITE(6, "(’ H_c(ptr, row, col, val) =’, 3I3, F5.1)") &

prob%H_c%ptr(i), prob%H_c%row(i), prob%H_c%col(i), &

prob%H_c%val(i)

END DO

END IF

WRITE(6, "(’ X_type =’, 5I2)") prob%X_type

WRITE(6, "(’ X =’, 5F4.1)") prob%X

WRITE(6, "(’ Y =’, 2F4.1)") prob%Y

WRITE(6, "(’ Z =’, 5F4.1)") prob%Z

! deallocate internal array space

CALL RPD_terminate(prob, control, inform)

END PROGRAM GALAHAD_RPD_example

This produces the following output:

read status = 0

qplib example ALLINIT type = QGQ

n, m, h_ne, a_ne, h_c_ne = 5 2 9 4 1

G = -0.2 -0.4 -0.6 -0.8 -1.0

f = 0.0

X_l = 0.0 0.0 0.0 0.0 0.0

X_u = 2.0 2.0 2.0 2.0 2.0

C_l = 1.0 1.0

C_u = 1.0E+20 1.0E+20

H(row, col, val) = 1 1 2.0

H(row, col, val) = 2 1 -1.0

H(row, col, val) = 2 2 2.0

H(row, col, val) = 3 2 -1.0

H(row, col, val) = 3 3 2.0

H(row, col, val) = 4 3 -1.0

H(row, col, val) = 4 4 2.0

H(row, col, val) = 5 4 -1.0

H(row, col, val) = 5 5 2.0

A(row, col, val) = 1 1 1.0

A(row, col, val) = 1 3 1.0

A(row, col, val) = 2 2 1.0

A(row, col, val) = 2 4 1.0

H_c(ptr, row, col, val) = 1 1 1 2.0

X_type = 0 0 0 1 2

X = 0.0 0.0 0.0 0.0 0.0

Y = 0.0 0.0

Z = 0.0 0.0 0.0 0.0 0.0

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD RPD (May 24, 2024) 11

