
GALAHAD ROOTS

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package uses classical formulae together with Newton’s method to find all the real roots of a real polynomial.

ATTRIBUTES — Versions: GALAHAD ROOTS single, GALAHAD ROOTS double. Uses: GALAHAD SYMBOLS, GALAHAD-

SPACE, GALAHAD SPECFILE, GALAHAD SORT. Date: November 2010. Origin: N. I. M. Gould, Rutherford Appleton

Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD ROOTS single

with the obvious substitution GALAHAD ROOTS double, GALAHAD ROOTS single 64 and GALAHAD ROOTS double 64

for the other variants.

If it is required to use more than one of the modules at the same time, the derived types ROOTS control type,

ROOTS inform type and ROOTS data type (Section 2.2) and the subroutine ROOTS solve, (Section 2.3) must be

renamed on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 The derived data types

Three derived data types are accessible from the package.

2.2.1 The derived data type for holding control parameters

The derived data type ROOTS control type is used to hold controlling data. Default values may be obtained by calling

ROOTS initialize (see Section 2.3.1), while components may also be changed by calling ROOTS read specfile

(see Section 2.5.1). The components of ROOTS control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in ROOTS solve and ROOTS terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in ROOTS solve is suppressed if out < 0. The default is out = 6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ROOTS (May 24, 2024) 1

ROOTS GALAHAD

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level ≥ 1, debugging

information will be provided. The default is print level = 0.

tol is an INTENT(IN) scalar of type REAL(rp) that should be set to the required accuracy of the roots. Every

effort will be taken to ensure that each computed root xc lies within ± tol xe of its exact equivalent xe, although

sometimes the required accuracy will not be possible. The default is tol = EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD ROOTS double).

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

2.2.2 The derived data type for holding informational parameters

The derived data type ROOTS inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of ROOTS inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.4 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

2.2.3 The derived data type for holding problem data

The derived data type ROOTS data type is used to hold all the data for a particular problem, between calls of ROOTS

procedures. This data should be preserved, untouched, from the initial call to ROOTS initialize to the final call to

ROOTS terminate.

2.3 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.5 for further features):

1. The subroutine ROOTS initialize is used to set default values, and initialize private data.

2. The subroutine ROOTS solve is called to find the real roots of the polynomial

d

∑
i=0

aix
i (2.1)

of degree d, where the coefficients ai, 0 ≤ i ≤ d are real.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 ROOTS (May 24, 2024) GALAHAD

GALAHAD ROOTS

3. The subroutine ROOTS terminate allows the user to automatically deallocate array components of the private

data, allocated by ROOTS solve, at the end of the solution process.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL ROOTS initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type ROOTS data type (see Section 2.2.3). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type ROOTS control type (see Section 2.2.1). On exit, control

contains default values for the components as described in Section 2.2.1. These values should only be changed

after calling ROOTS initialize.

inform is a scalar INTENT(OUT) argument of type ROOTS inform type (see Section 2.2.2). A successful call to

ROOTS initialize is indicated when the component status has the value 0.

2.3.2 The solution subroutine

The roots of the polynomial (2.1) are found as follows

CALL ROOTS solve(A, nroots, ROOTS, control, inform, data)

A is an INTENT(IN) rank-one array of type REAL(rp), whose lower bound must be 0 and whose upper bound

specifies the degree, d, of the polynomial. The entries A(i), i = 0, . . . , UBOUND(A), must contain the values of

the real coefficients ai, 0 ≤ i ≤ d. Restrictions: UBOUND(A,1) ≥ 0.

nroots is an INTENT(OUT) scalar of type INTEGER(ip), that gives the number of real roots of the polynomial.

ROOTS is an INTENT(OUT) rank-one array of length d and type REAL(rp). On exit, ROOTS(:nroots) give the values

of the real roots of the polynomial in increasing order. Restrictions: SIZE(ROOTS) ≥ UBOUND(A,1).

control is a scalar INTENT(IN) argument of type ROOTS control type (see Section 2.2.1). Default values may be

assigned by calling ROOTS initialize prior to the first call to ROOTS solve.

inform is a scalar INTENT(INOUT) argument of type ROOTS inform type (see Section 2.2.2). A successful call to

ROOTS solve is indicated when the component status has the value 0. For other return values of status, see

Section 2.4.

data is a scalar INTENT(INOUT) argument of type ROOTS data type (see Section 2.2.3). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to ROOTS initialize.

2.3.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL ROOTS terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type ROOTS data type exactly as for ROOTS solve, which must not

have been altered by the user since the last call to ROOTS initialize. On exit, array components will have

been deallocated.

control is a scalar INTENT(IN) argument of type ROOTS control type exactly as for ROOTS solve.

inform is a scalar INTENT(OUT) argument of type ROOTS inform type exactly as for ROOTS solve. Only the com-

ponent status will be set on exit, and a successful call to ROOTS terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.4.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ROOTS (May 24, 2024) 3

ROOTS GALAHAD

2.4 Warning and error messages

A negative value of inform%status on exit from ROOTS solve indicates that an error has occurred. No further calls

should be made until the error has been corrected. Possible values are:

-1. An allocation error occured. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occured. A message indicating the offending array is written on unit control%error and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. Either the specified degree of the polynomial in degree is less than 0, or the declared dimension of the array

ROOTS is smaller than the specified degree.

2.5 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type ROOTS control type (see Section 2.2.1), by reading an appropriate data specification file using

the subroutine ROOTS read specfile. This facility is useful as it allows a user to change ROOTS control parameters

without editing and recompiling programs that call ROOTS.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by ROOTS read specfile must start with a ”BEGIN ROOTS” command

and end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by CQP_read_specfile ..)

BEGIN CQP

keyword value

.......

keyword value

END

(.. lines ignored by CQP_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN ROOTS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN CQP SPECIFICATION

and

END CQP SPECIFICATION

are acceptable. Furthermore, between the “BEGIN ROOTS” and “END” delimiters, specification commands may occur

in any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 ROOTS (May 24, 2024) GALAHAD

GALAHAD ROOTS

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when ROOTS read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by ROOTS read specfile.

2.5.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL CQP_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type ROOTS control type (see Section 2.2.1). Default values

should have already been set, perhaps by calling ROOTS initialize. On exit, individual components of

control may have been changed according to the commands found in the specfile. Specfile commands and

the component (see Section 2.2.1) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

root-tolerance %tol real

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: ROOTS solve calls the GALAHAD packages GALAHAD SYMBOLS, GALAHAD SPACE, GALAHAD SPECFILE

and GALAHAD SORT.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ROOTS (May 24, 2024) 5

ROOTS GALAHAD

4 METHOD

Littlewood and Ferrari’s algorithms are used to find estimates of the real roots of cubic and quartic polynomials,

respectively; a stabilized version of the well-known formula is used in the quadratic case. Newton’s method and/or

methods based on the companion matrix are used to further refine the computed roots if necessary. Madsen and Reid’s

(1975) method is used for polynomials whose degree exceeds four.

References:

The basic method is that given by

K. Madsen and J. K. Reid, “FORTRAN Subroutines for Finding Polynomial Zeros”. Technical Report A.E.R.E.

R.7986, Computer Science and System Division, A.E.R.E. Harwell, Oxfordshire, U.K. (1975)

5 EXAMPLE OF USE

Suppose we wish to solve the quadratic, cubic, quartic and quintic equations

x
2 − 3x+ 2= 0

x
3 − 6x

2 + 11x− 6= 0

x
4 − 10x

3+ 35x
2 − 50x+ 24= 0 and

x
5 − 15x

4+ 85x
3 − 225x

2+ 274x− 120= 0.

Then we may use the following code:

! THIS VERSION: GALAHAD 2.1 - 22/03/2007 AT 09:00 GMT.

PROGRAM GALAHAD_ROOTS_EXAMPLE

USE GALAHAD_ROOTS_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: one = 1.0_wp

INTEGER :: degree, nroots

REAL (KIND = wp) :: A(0 : 5), ROOTS(5)

TYPE (ROOTS_data_type) :: data

TYPE (ROOTS_control_type) :: control

TYPE (ROOTS_inform_type) :: inform

control%tol = EPSILON(one) ** 0.75 ! accuracy requested

DO degree = 2, 5 ! polynomials of degree 2 to 5

IF (degree == 2) THEN

A(0) = 2.0_wp

A(1) = - 3.0_wp

A(2) = 1.0_wp

WRITE(6, "(’ Quadratic ’)")

CALL ROOTS_solve(A(: degree), nroots, ROOTS(: degree), &

control, inform, data)

ELSE IF (degree == 3) THEN

A(0) = - 6.0_wp

A(1) = 11.0_wp

A(2) = - 6.0_wp

A(3) = 1.0_wp

WRITE(6, "(/, ’ Cubic ’)")

CALL ROOTS_solve(A(: degree), nroots, ROOTS(: degree), &

control, inform, data)

ELSE IF (degree == 4) THEN

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 ROOTS (May 24, 2024) GALAHAD

GALAHAD ROOTS

A(0) = 24.0_wp

A(1) = - 50.0_wp

A(2) = 35.0_wp

A(3) = - 10.0_wp

A(4) = 1.0_wp

WRITE(6, "(/, ’ Quartic ’)")

CALL ROOTS_solve(A(: degree), nroots, ROOTS(: degree), &

control, inform, data)

ELSE IF (degree == 5) THEN

A(0) = - 120.0_wp

A(1) = 274.0_wp

A(2) = - 225.0_wp

A(3) = 85.0_wp

A(4) = - 15.0_wp

A(5) = 1.0_wp

WRITE(6, "(/, ’ Quintic ’)")

CALL ROOTS_solve(A(: degree), nroots, ROOTS(: degree), &

control, inform, data)

END IF

IF (nroots == 0) THEN

WRITE(6, "(’ no real roots ’)")

ELSE IF (nroots == 1) THEN

WRITE(6, "(’ 1 real root ’)")

ELSE IF (nroots == 2) THEN

WRITE(6, "(’ 2 real roots ’)")

ELSE IF (nroots == 3) THEN

WRITE(6, "(’ 3 real roots ’)")

ELSE IF (nroots == 4) THEN

WRITE(6, "(’ 4 real roots ’)")

ELSE IF (nroots == 5) THEN

WRITE(6, "(’ 5 real roots ’)")

END IF

IF (nroots /= 0) WRITE(6, "(’ roots: ’, 5ES10.2)") ROOTS(: nroots)

END DO

END PROGRAM GALAHAD_ROOTS_EXAMPLE

This produces the following output:

Quadratic

2 real roots

roots: 1.00E+00 2.00E+00

Cubic

3 real roots

roots: 1.00E+00 2.00E+00 3.00E+00

Quartic

4 real roots

roots: 1.00E+00 2.00E+00 3.00E+00 4.00E+00

Quintic

5 real roots

roots: 1.00E+00 2.00E+00 3.00E+00 4.00E+00 5.00E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ROOTS (May 24, 2024) 7

