
GALAHAD QPT

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package defines a derived type capable of supporting a variety of quadratic programming problem storage

schemes. Quadratic programming aims to minimize or maximize either a general objective function

1
2 xT Hx+ gT x+ f , (1.1)

or sometimes a (shifted) squared-least-distance objective function,

1
2

n

∑
j=1

w2
j(x j − x0

j)
2 + gT x+ f , (1.2)

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m,

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

where the n by n symmetric matrix H, the vectors g, w, x0, ai, cl , cu, xl, and xu, and the scalar f are given. Full

advantage is taken of any zero coefficients in the matrix H or the vectors ai. Any of the constraint bounds cl
i , cu

i , xl
j

and xu
j may be infinite.

The derived type is also capable of supporting parametric quadratic programming problems, in which an additional

objective term θδgT x is included, and the trajectory of solution are required for all 0 ≤ θ ≤ θmax for which

cl
i +θδcl

i ≤ aT
i x ≤ cu

i +θδcu
i , i = 1, . . . ,m,

and

xl
j +θxl

j ≤ x j ≤ xu
j + δxu

j , j = 1, . . . ,n.

The principal use of the package is to allow exchange of data between GALAHAD subprograms and other codes.

ATTRIBUTES — Versions: GALAHAD QPT single, GALAHAD QPT double. Uses: GALAHAD SMT. Date: April 2001.

Origin: N. I. M. Gould, Rutherford Appleton Laboratory, and Ph. L. Toint, University of Namur, Belgium. Language:

Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD QPT single

with the obvious substitution GALAHAD QPT double, GALAHAD QPT single 64 and GALAHAD QPT double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT TYPE and QPT problem type,

(Section 2.4) must be renamed on one of the USE statements.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPT (May 24, 2024) 1

QPT GALAHAD

2.1 Matrix storage formats

Both the Hessian matrix H and the constraint Jacobian A, the matrix whose rows are the vectors aT
i , i = 1, . . . ,m, may

be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The

order is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to H (thus

requiring integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in

the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to H (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square A.

2.1.5 Scaled-identity-matrix storage format

If H is a scalar multiple of the identity matrix (i.e., hii = h11 and hi j = 0 for all 1 ≤ i 6= j ≤ n) only the first diagonal

entry h11 needs be stored, and the first component of the array H%val may be used for the purpose. Again, there is no

sensible equivalent for the non-square A.

2.1.6 Identity-matrix storage format

If H is the identity matrix (i.e., hii = 1 and hi j = 0 for all 1 ≤ i 6= j ≤ n), no explicit entries needs be stored.

2.1.7 Zero-matrix storage format

If H = 0 (i.e., hi j = 0 for all 1 ≤ i, j ≤ n), no explicit entries needs be stored.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 QPT (May 24, 2024) GALAHAD

GALAHAD QPT

2.2 Optimality conditions

The required solution x necessarily satisfies the primal optimality conditions

Ax = c, cl ≤ c ≤ cu, and xl ≤ x ≤ xu,

the dual optimality conditions

Hx+ g = AT y+ z (or W2(x− x0)+ g = AT y+ z for the least-distance type objective)

where

y = yl + yu, z = zl + zu yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0,

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the diagonal matrix W2 has diagonal entries w2
j , j = 1, . . . ,n, where the vectors y and z are known as the

Lagrange multipliers for the general linear constraints, and the dual variables for the bounds, respectively, and where

the vector inequalities hold componentwise.

2.3 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.4 The derived data type

Two derived data types, SMT TYPE and QPT problem type, are accessible from the package. It is intended that, for

any particular application, only those components which are needed will be set.

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices A and H. The components of SMT TYPE used here are:

type is an allocatable array of rank one and type default CHARACTER, that holds a string which indicates the storage

scheme used.

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that may hold the number of matrix entries (see §2.1.2).

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of a symmetric matrix H is represented as a single entry (see §2.1.1–

2.1.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries (see §2.1.2).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPT (May 24, 2024) 3

QPT GALAHAD

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

2.4.2 The derived data type for holding quadratic programs

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

name is a rank-one allocatable array of type default CHARACTER that may be used to hold the name of the problem.

new problem structure is a scalar variable of type default LOGICAL, that is .TRUE. if this is the first (or only)

problem in a sequence of problems with identical ”structure” to be attempted, and .FALSE. if a previous

problem with the same ”structure” (but different numerical data) has been solved. Here, the term ”structure”

refers both to the sparsity patterns of the Jacobian matrices A involved (but not their numerical values), to the

zero/nonzero/infinity patterns (a bound is either zero, ± infinity, or a finite but arbitrary nonzero) of each of

the constraint bounds, and to the variables and constraints that are fixed (both bounds are the same) or free (the

lower and upper bounds are ± infinity, respectively).

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip), that holds the number of general linear constraints, m.

Hessian kind is a scalar variable of type INTEGER(ip), that is used to indicate what type of Hessian the problem

involves. Possible values for Hessian kind are:

<0 In this case, a general quadratic program of the form (1.1) is given. The Hessian matrix H will be provided

in the component H (see below).

0 In this case, a linear program, that is a problem of the form (1.2) with weights w = 0, is given.

1 In this case, a least-distance problem of the form (1.2) with weights w j = 1 for j = 1, . . . ,n is given.

>1 In this case, a weighted least-distance problem of the form (1.2) with general weights w is given. The

weights will be provided in the component WEIGHT (see below).

H is scalar variable of type SMT TYPE that contains the Hessian matrix H whenever Hessian kind < 0. The

following components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, for

the diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the

string DIAGONAL, for the scaled-identity matrix storage scheme (see Section 2.1.5), the first fifteen com-

ponents of H%type must contain the string SCALED IDENTITY, for the identity matrix storage scheme (see

Section 2.1.6), the first eight components of H%type must contain the string IDENTITY, and for the zero

matrix storage scheme (see Section 2.1.7), the first four components of H%type must contain the string

ZERO.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if prob is of derived type QPT problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(prob%H%type, ’COORDINATE’)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 QPT (May 24, 2024) GALAHAD

GALAHAD QPT

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

schemes.

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of non-trivial storage schemes mentioned in Sections 2.1.2–

2.1.4. For the scaled-identity scheme (see Section 2.1.5), the first component, H%val(1), holds the scale

factor h11. It need not be allocated for any of the remaining schemes.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any of

the other schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when any of the other storage schemes are used.

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

If Hessian kind ≥ 0, the components of H need not be set.

WEIGHT is a rank-one allocatable array type REAL(rp), that should be allocated to have length n, and its j-th compo-

nent filled with the value w j for j = 1, . . . ,n, whenever Hessian kind > 1. If Hessian kind ≤ 1, WEIGHT need

not be allocated.

target kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the components of the targets

x0 (if they are used) have special or general values. Possible values for target kind are:

0 In this case, x0 = 0.

1 In this case, x0
j = 1 for j = 1, . . . ,n.

6= 0,1 In this case, general values of x0 will be used, and will be provided in the component X0 (see below).

X0 is a rank-one allocatable array type REAL(rp), that should be allocated to have length n, and its j-th component

filled with the value x0
j for j = 1, . . . ,n, whenever Hessian kind> 0 and target kind 6= 0,1. If Hessian kind

≤ 0 or target kind = 0,1, X0 need not be allocated.

gradient kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the components of the

gradient g have special or general values. Possible values for gradient kind are:

0 In this case, g = 0.

1 In this case, g j = 1 for j = 1, . . . ,n.

6= 0,1 In this case, general values of g will be used, and will be provided in the component G (see below).

G is a rank-one allocatable array type REAL(rp), that should be allocated to have length n, and its j-th component

filled with the value g j for j = 1, . . . ,n, whenever gradient kind 6= 0,1. If gradient kind = 0, 1, G need not

be allocated.

DG is a rank-one allocatable array of dimension n and type REAL(rp), that may hold the gradient δg of the para-

metric linear term of the quadratic objective function. The j-th component of DG, j = 1, . . . ,n, contains δg j.

f is a scalar variable of type REAL(rp), that holds the constant term, f , in the objective function.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A. The following components are used:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPT (May 24, 2024) 5

QPT GALAHAD

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

Just as for H%type above, the procedure SMT put may be used to allocate sufficient space and insert the

required keyword into A%type. Once again, if prob is of derived type QPT problem type and involves a

Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’)

A%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two appropriate schemes.

A%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian

matrix A in any of the appropriate storage schemes discussed in Section 2.1.

A%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two appropriate

schemes.

A%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip), that holds the starting position

of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage scheme

(see Section 2.1.3). It need not be allocated when the other appropriate schemes are used.

C l is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of lower bounds cl

on the general constraints. The i-th component of C l, i = 1, . . . ,m, contains cl
i . Infinite bounds are allowed

by setting the corresponding components of C l to any value smaller than -infinity, where infinity is a

solver-dependent value that will be recognised as infinity.

C u is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of upper bounds cu on

the general constraints. The i-th component of C u, i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed by

setting the corresponding components of C u to any value larger than infinity, where infinity is a solver-

dependent value that will be recognised as infinity.

DC l is a rank-one allocatable array of dimension m and type REAL(rp), that may hold the vector of parametric lower

bounds δcl on the general constraints. The i-th component of DC l, i = 1, . . . ,m, contains δcl
i . Only components

corresponding to finite lower bounds cl
i need be set.

DC u is a rank-one allocatable array of dimension m and type REAL(rp), that may hold the vector of parametric upper

bounds δcu on the general constraints. The i-th component of DC u, i = 1, . . . ,m, contains δcu
i . Only components

corresponding to finite upper bounds cu
i need be set.

X l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xl on

the variables. The j-th component of X l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting the

corresponding components of X l to any value smaller than -infinity, where infinity is a solver-dependent

value that will be recognised as infinity.

X u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xu on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity, where infinity is a solver-dependent

value that will be recognised as infinity.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 QPT (May 24, 2024) GALAHAD

GALAHAD QPT

DX l is a rank-one allocatable array of dimension n and type REAL(rp), that may hold the vector of parametric

lower bounds δxl on the variables. The j-th component of DX l, j = 1, . . . ,n, contains δxl
j. Only components

corresponding to finite lower bounds xl
j need be set.

DX u is a rank-one allocatable array of dimension n and type REAL(rp), that may hold the vector of parametric

upper bounds δxu on the variables. The j-th component of DX u, j = 1, . . . ,n, contains δxu
j . Only components

corresponding to finite upper bounds xu
j need be set.

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

X status is a rank-one allocatable array of dimension m and type INTEGER(ip), that holds the status of the problem

variables (active or inactive). Variable j is said to be inactive if its value is fixed to the current value of X(j), in

which case it can be interpreted as a parameter of the problem.

Z is a rank-one allocatable array of dimension n and type default REAL(rp), that holds the values z of estimates

of the dual variables corresponding to the simple bound constraints (see Section 2.2). The j-th component of Z,

j = 1, . . . ,n, contains z j.

Z l is a rank-one allocatable array of dimension n and type REAL(rp), that may be used to hold a vector of lower

bounds zl on the dual variables. The j-th component of Z l, j = 1, . . . ,n, contains zl
j. Infinite bounds are allowed

by setting the corresponding components of Z l to any value smaller than -infinity, where infinity is a

solver-dependent value that will be recognised as infinity.

Z u is a rank-one allocatable array of dimension n and type REAL(rp), that may be used to hold a vector of upper

bounds zu on the dual variables. The j-th component of Z u, j = 1, . . . ,n, contains zu
j . Infinite bounds are allowed

by setting the corresponding components of Z u to any value larger than that infinity, where infinity is a

solver-dependent value that will be recognised as infinity.

C is a rank-one allocatable array of dimension m and type default REAL(rp), that holds the values Ax of the

constraints. The i-th component of C, i = 1, . . . ,m, contains aT
i x ≡ (Ax)i.

C status is a rank-one allocatable array of dimension m and type INTEGER(ip), that holds the status of the problem

constraints (active or inactive). A constraint is said to be inactive if it is not included in the formulation of the

problem under consideration.

Y is a rank-one allocatable array of dimension m and type REAL(rp), that holds the values y of estimates of the

Lagrange multipliers corresponding to the general linear constraints (see Section 2.2). The i-th component of Y,

i = 1, . . . ,m, contains yi.

Y l is a rank-one allocatable array of dimension n and type REAL(rp), that may be used to hold a vector of lower

bounds yl on the Lagrange multipliers The i-th component of Y l, i = 1, . . . ,m, contains yl
i . Infinite bounds are

allowed by setting the corresponding components of Y l to any value smaller than -infinity, where infinity

is a solver-dependent value that will be recognised as infinity.

Y u is a rank-one allocatable array of dimension n and type REAL(rp), that may be used to hold a vector of upper

bounds yu on the Lagrange multipliers The i-th component of Y u, i = 1, . . . ,m, contains yu
i . Infinite bounds

are allowed by setting the corresponding components of Y u to any value larger than that infinity, where

infinity is a solver-dependent value that will be recognised as infinity.

3 GENERAL INFORMATION

Other modules used directly: GALAHAD SMT.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPT (May 24, 2024) 7

QPT GALAHAD

Input/output: None.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 EXAMPLE OF USE

Suppose we wish to present the data for the problem, “QPprob”, of minimizing the objective function 1
2 x2

1+x2
2 +

3
2 x2

3 +
4x1x3 +2x2+1 subject to the general linear constraints 1 ≤ 2x1 +x2 ≤ 2, x2 +x3 = 2, and simple bounds −1 ≤ x1 ≤ 1

and x3 ≤ 2 to a minimizer in sparse co-ordinate format. Then, on writing the data for this problem as

H =





1 4

2

4 3



 , g =





0

2

2



 , xl =





−1

−∞

−∞



 and xu =





1

∞

2



 ,

and

A =

(

2 1

1 1

)

, cl =

(

1

2

)

, and cu =

(

2

2

)

we may use the following code segment:

PROGRAM GALAHAD_QPT_EXAMPLE

USE GALAHAD_QPT_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20 ! solver-dependent

TYPE (QPT_problem_type) :: p

INTEGER, PARAMETER :: n = 3, m = 2, h_ne = 4, a_ne = 4

! start problem data

ALLOCATE(p%name(6))

ALLOCATE(p%G(n), p%X_l(n), p%X_u(n))

ALLOCATE(p%C(m), p%C_l(m), p%C_u(m))

ALLOCATE(p%X(n), p%Y(m), p%Z(n))

p%name = TRANSFER(’QPprob’, p%name) ! name

p%new_problem_structure = .TRUE. ! new structure

p%Hessian_kind = - 1 ; p%gradient_kind = - 1 ! generic quadratic program

p%n = n ; p%m = m ; p%f = 1.0_wp ! dimensions & objective constant

p%G = (/ 0.0_wp, 2.0_wp, 0.0_wp /) ! objective gradient

p%C_l = (/ 1.0_wp, 2.0_wp /) ! constraint lower bound

p%C_u = (/ 2.0_wp, 2.0_wp /) ! constraint upper bound

p%X_l = (/ - 1.0_wp, - infinity, - infinity /) ! variable lower bound

p%X_u = (/ 1.0_wp, infinity, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ; p%Y = 0.0_wp ; p%Z = 0.0_wp ! start from zero

! sparse co-ordinate storage format

CALL SMT_put(p%H%type, ’COORDINATE’) ! Specify co-ordinate

CALL SMT_put(p%A%type, ’COORDINATE’) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%row(h_ne), p%H%col(h_ne))

ALLOCATE(p%A%val(a_ne), p%A%row(a_ne), p%A%col(a_ne))

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /) ! Hessian H

p%H%row = (/ 1, 2, 3, 3 /) ! NB lower triangle

p%H%col = (/ 1, 2, 3, 1 /) ; p%H%ne = h_ne

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%row = (/ 1, 1, 2, 2 /)

p%A%col = (/ 1, 2, 2, 3 /) ; p%A%ne = a_ne

! problem data complete

! now call minimizer

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 QPT (May 24, 2024) GALAHAD

GALAHAD QPT

! ...

! ... minimization call completed. Deallocate arrays

DEALLOCATE(p%name, p%G, p%X_l, p%X_u, p%C, p%C_l, p%C_u, p%X, p%Y, p%Z)

DEALLOCATE(p%H%val, p%H%row, p%H%col, p%A%val, p%A%row, p%A%col)

END PROGRAM GALAHAD_QPT_EXAMPLE

The same problem may be handled holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! problem data complete

and

DEALLOCATE(p%H%val, p%H%row, p%H%col, p%A%val, p%A%row, p%A%col)

by

! sparse row-wise storage format

CALL SMT_put(p%H%type, ’SPARSE_BY_ROWS’) ! Specify sparse row-wise

CALL SMT_put(p%A%type, ’SPARSE_BY_ROWS’) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%col(h_ne), p%H%ptr(n + 1))

ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /) ! Hessian H

p%H%col = (/ 1, 2, 3, 1 /)

p%H%ptr = (/ 1, 2, 3, 5 /) ! Set row pointers

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%col = (/ 1, 2, 2, 3 /)

p%A%ptr = (/ 1, 3, 5 /) ! Set row pointers

! problem data complete

and

DEALLOCATE(p%H%val, p%H%col, p%H%ptr, p%A%val, p%A%col, p%A%ptr)

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(p%H%type, ’DENSE’) ! Specify dense

CALL SMT_put(p%A%type, ’DENSE’) ! storage for H and A

ALLOCATE(p%H%val(n*(n+1)/2), p%A%val(n*m))

p%H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 4.0_wp, 0.0_wp, 3.0_wp /) ! Hessian

p%A%val = (/ 2.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian

! problem data complete

and

! dense storage format: real components

DEALLOCATE(p%H%val, p%A%val)

! real components complete

respectively.

If instead H had been the diagonal matrix

H =





1

0

3





but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPT (May 24, 2024) 9

QPT GALAHAD

CALL SMT_put(p%H%type, ’DIAGONAL’) ! Specify dense storage for H

ALLOCATE(p%H%val(n))

p%H%val = (/ 1.0_wp, 0.0_wp, 3.0_wp /) ! Hessian values

Notice here that zero diagonal entries are stored.

For examples of how the derived data type packagename problem type may be used in conjunction with GALA-

HAD quadratic and least-distance programming codes, see the specification sheets for the packages GALAHAD QPA,

GALAHAD QPB, GALAHAD LSQP and GALAHAD PRESOLVE.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 QPT (May 24, 2024) GALAHAD

