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USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package reorders to a standard form the variables and constraints for the quadratic programming problem

minimize 1
2 xT Hx+ gTx+ f (1.1)

or sometimes the (shifted, squared) least-distance problem

minimize 1
2

n

∑
i=1

w2
i (xi − x0

i )
2 + gT x+ f , (1.2)

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m,

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

where the n by n symmetric matrix H, the vectors g, w, x0, ai, cl , cu, xl , xu and the scalar f are given. Full advantage

is taken of any zero coefficients in the matrix H or the vectors ai. Any of the constraint bounds cl
i , cu

i , xl
j and xu

j may

be infinite.

The variables are rordered so that any free variables (ie, those without bounds) occur first, followed respectively

by non-negativities (i.e., those for which the only bounds are that x j ≥ 0), lower-bounded variables (i.e., those for

which the only bounds are that x j ≥ xl
j 6= 0), range-bounded variables (i.e., those for which the bounds satisfy −∞ <

xl
j < xu

j < ∞) upper-bounded variables (i.e., those for which the only bounds are that x j ≤ xu
j 6= 0), and finally non-

positivities (i.e., those for which the only bounds are that x j ≤ 0). Fixed variables will be removed. Within each of the

above categories, the variables are further ordered so that those with non-zero diagonal Hessian entries occur before

the remainder.

The constraints are reordered so that equality constraints (i.e., those for which cl
i = cu

i ) occur first, followed re-

spectively by those which are lower-bounded (i.e., those for which the only bounds are that aT
i x ≥ cl

i), those which

have ranges (i.e., those for which the bounds satisfy −∞ < cl
j < cu

j < ∞), and finally those which are upper-bounded

(i.e., those for which the only bounds are that aT
i x ≤ cu

i ). Free constraints, that is those for which cl
i =−∞ and cu

i = ∞,

are removed.

Procedures are provided to detetmine the required ordering, to reorder the problem to standard form, and to recover

the problem, or perhaps just the values of the original variables, once it has been converted to standard form.

The derived type is also capable of supporting parametric quadratic programming problems, in which an additional

objective term θδgT x is included, and the trajectory of solution are required for all 0 ≤ θ ≤ θmax for which

cl
i +θδcl

i ≤ aT
i x ≤ cu

i +θδcu
i , i = 1, . . . ,m,

and

xl
j +θxl

j ≤ x j ≤ xu
j + δxu

j , j = 1, . . . ,n.

It is anticipated that this module will principally be used as a pre- and post-processing tool for other GALAHAD

packages.

ATTRIBUTES — Versions: GALAHAD QPP single, GALAHAD QPP double. Uses: GALAHAD SYMBOLS, GALAHAD SMT,

GALAHAD QPT, GALAHAD SORT. Date: December 1999. Origin: N. I. M. Gould, Rutherford Appleton Laboratory, and

Ph. L. Toint, University of Namur, Belgium. Language: Fortran 95 + TR 15581 or Fortran 2003. The package is

thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.
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2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD QPP single

with the obvious substitution GALAHAD QPP double, GALAHAD QPP single 64 and GALAHAD QPP double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT TYPE, QPT problem type,

QPT dimensions type, QPP control type, QPP inform type and QPP map type (Section 2.3) and the subroutines

QPP initialize, QPP reorder, QPP apply, QPP get values, QPP restore and QPP terminate (Section 2.4) must

be renamed on one of the USE statements.

2.1 Matrix storage formats

Both the Hessian matrix H and the constraint Jacobian A, the matrix whose rows are the vectors aT
i , i = 1, . . . ,m, may

be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The

order is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to H (thus

requiring integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in

the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to H (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square A.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.
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2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp ) and INTEGER(ip ), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data types

Six derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices A and H. The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip ), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip ), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip ), that either holds the number of matrix entries or is used to flag the

storage scheme used.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.3.2).

val is a rank-one allocatable array of type REAL(rp ) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of a symmetric matrix H is represented as a single entry (see §2.1.1–

2.1.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip ), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip ), and dimension at least ne, that may the column indices

of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip ), and dimension at least n + 1, that may hold the pointers

to the first entry in each column (see §2.1.3).

2.3.2 The derived data type for holding quadratic programs

The derived data type QPT problem type is used to hold the data that defines the problem. The components of

QPT problem type used here are:

n is a scalar variable of type INTEGER(ip ), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip ), that holds the number of general linear constraints, m.

Hessian kind is a scalar variable of type INTEGER(ip ), that is used to indicate what type of Hessian the problem

involves. Possible values for Hessian kind are:

<0 In this case, a general quadratic program of the form (1.1) is given. The Hessian matrix H will be provided

in the component H (see below).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPP (May 24, 2024) 3



QPP GALAHAD

0 In this case, a linear program, that is a problem of the form (1.2) with weights w = 0, is given.

1 In this case, a least-distance problem of the form (1.2) with weights w j = 1 for j = 1, . . . ,n is given.

>1 In this case, a weighted least-distance problem of the form (1.2) with general weights w is given. The

weights will be provided in the component WEIGHT (see below).

H is scalar variable of type SMT TYPE that contains the Hessian matrix H whenever Hessian kind > 1. The

following components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if prob is of derived type QPP problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put( prob%H%type, ’COORDINATE’ )

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip ), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type REAL(rp ), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of the storage schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type INTEGER(ip ), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any of

the other three schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip ), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip ), that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

If Hessian kind ≥ 0, the components of H need not be set.

WEIGHT is a rank-one allocatable array type REAL(rp ), that should be allocated to have length n, and its j-th compo-

nent filled with the value w j for j = 1, . . . ,n, whenever Hessian kind > 1. If Hessian kind ≤ 1, WEIGHT need

not be allocated.

target kind is a scalar variable of type INTEGER(ip ), that is used to indicate whether the components of the targets

x0 (if they are used) have special or general values. Possible values for target kind are:

0 In this case, x0 = 0.

1 In this case, x0
j = 1 for j = 1, . . . ,n.

6= 0,1 In this case, general values of x0 will be used, and will be provided in the component X0 (see below).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.
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X0 is a rank-one allocatable array type REAL(rp ), that should be allocated to have length n, and its j-th component

filled with the value x0
j for j = 1, . . . ,n, whenever Hessian kind > 0. If Hessian kind ≤ 0 or target kind

= 0,1, X0 need not be allocated.

gradient kind is a scalar variable of type INTEGER(ip ), that is used to indicate whether the components of the

gradient g have special or general values. Possible values for gradient kind are:

0 In this case, g = 0.

1 In this case, g j = 1 for j = 1, . . . ,n.

6= 0,1 In this case, general values of g will be used, and will be provided in the component G (see below).

G is a rank-one allocatable array type REAL(rp ), that should be allocated to have length n, and its j-th component

filled with the value g j for j = 1, . . . ,n, whenever gradient kind 6= 0,1. If gradient kind = 0, 1, G need not

be allocated.

DG is a rank-one allocatable array of dimension n and type REAL(rp ), that may hold the gradient δg of the para-

metric linear term of the quadratic objective function. The j-th component of DG, j = 1, . . . ,n, contains δg j.

f is a scalar variable of type REAL(rp ), that holds the constant term, f , in the objective function.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A. The following components are used:

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

Just as for H%type above, the procedure SMT put may be used to allocate sufficient space and insert the

required keyword into A%type. Once again, if prob is of derived type QPP problem type and involves a

Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put( prob%A%type, ’SPARSE_BY_ROWS’ )

A%ne is a scalar variable of type INTEGER(ip ), that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two schemes.

A%val is a rank-one allocatable array of type REAL(rp ), that holds the values of the entries of the Jacobian

matrix A in any of the storage schemes discussed in Section 2.1.

A%row is a rank-one allocatable array of type INTEGER(ip ), that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

A%col is a rank-one allocatable array variable of type INTEGER(ip ), that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip ), that holds the starting position

of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage scheme

(see Section 2.1.3). It need not be allocated when the other schemes are used.

C l is a rank-one allocatable array of dimension m and type REAL(rp ), that holds the vector of lower bounds cl

on the general constraints. The i-th component of C l, i = 1, . . . ,m, contains cl
i . Infinite bounds are allowed

by setting the corresponding components of C l to any value smaller than -infinity, where infinity is a

solver-dependent value that will be recognised as infinity.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.
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C u is a rank-one allocatable array of dimension m and type REAL(rp ), that holds the vector of upper bounds cu on

the general constraints. The i-th component of C u, i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed by

setting the corresponding components of C u to any value larger than infinity, where infinity is a solver-

dependent value that will be recognised as infinity.

DC l is a rank-one allocatable array of dimension m and type REAL(rp ), that may hold the vector of parametric lower

bounds δcl on the general constraints. The i-th component of DC l, i = 1, . . . ,m, contains δcl
i . Only components

corresponding to finite lower bounds cl
i need be set.

DC u is a rank-one allocatable array of dimension m and type REAL(rp ), that may hold the vector of parametric upper

bounds δcu on the general constraints. The i-th component of DC u, i = 1, . . . ,m, contains δcu
i . Only components

corresponding to finite upper bounds cu
i need be set.

X l is a rank-one allocatable array of dimension n and type REAL(rp ), that holds the vector of lower bounds xl on

the variables. The j-th component of X l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting the

corresponding components of X l to any value smaller than -infinity, where infinity is a solver-dependent

value that will be recognised as infinity.

X u is a rank-one allocatable array of dimension n and type REAL(rp ), that holds the vector of upper bounds xu on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity, where infinity is a solver-dependent

value that will be recognised as infinity.

DX l is a rank-one allocatable array of dimension n and type REAL(rp ), that may hold the vector of parametric

lower bounds δxl on the variables. The j-th component of DX l, j = 1, . . . ,n, contains δxl
j. Only components

corresponding to finite lower bounds xl
j need be set.

DX u is a rank-one allocatable array of dimension n and type REAL(rp ), that may hold the vector of parametric

upper bounds δxu on the variables. The j-th component of DX u, j = 1, . . . ,n, contains δxu
j . Only components

corresponding to finite upper bounds xu
j need be set.

X is a rank-one allocatable array of dimension n and type REAL(rp ), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

Z is a rank-one allocatable array of dimension n and type default REAL(rp ), that holds the values z of estimates

of the dual variables corresponding to the simple bound constraints (see Section 4). The j-th component of Z,

j = 1, . . . ,n, contains z j .

Z l is a rank-one allocatable array of dimension n and type default REAL(rp ), that holds the values zl of estimates

of the dual variables corresponding to the lower simple bound constraints xl ≤ x (see Section 4). The j-th

component of Z l, j = 1, . . . ,n, contains zl
j.

Z u is a rank-one allocatable array of dimension n and type default REAL(rp ), that holds the values zu of estimates

of the dual variables corresponding to the upper simple bound constraints x ≤ xu (see Section 4). The j-th

component of Z l, j = 1, . . . ,n, contains zl
j.

C is a rank-one allocatable array of dimension m and type default REAL(rp ), that holds the values Ax of the

constraints. The i-th component of C, i = 1, . . . ,m, contains aT
i x ≡ (Ax)i.

Y is a rank-one allocatable array of dimension m and type REAL(rp ), that holds the values y of estimates of the

Lagrange multipliers corresponding to the general linear constraints (see Section 4). The i-th component of Y,

i = 1, . . . ,m, contains yi.

Y l is a rank-one allocatable array of dimension m and type REAL(rp ), that holds the values yl of estimates of the

Lagrange multipliers corresponding to the lower general constraints cl ≤Ax (see Section 4). The i-th component

of Y l, i = 1, . . . ,m, contains yl
i .

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 QPP (May 24, 2024) GALAHAD



GALAHAD QPP

Y u is a rank-one allocatable array of dimension m and type REAL(rp ), that holds the values yu of estimates of

the Lagrange multipliers corresponding to the upper general constraints Ax ≤ cu (see Section 4). The i-th

component of Y u, i = 1, . . . ,m, contains yu
i .

2.3.3 The derived data type for holding the problem dimensions

The derived data type QPT dimensions type is used to hold scalar data that defines the problem partitioning for the

reordered problem. The components of QPT dimensions type are:

x free is a scalar variable of type INTEGER(ip ), that holds the number of free variables.

x l start is a scalar variable of type INTEGER(ip ), that holds the index of the first variable with a nonzero lower

(or lower range) bound.

x l end is a scalar variable of type INTEGER(ip ), that holds the index of the last variable with a nonzero lower (or

lower range) bound.

x u start is a scalar variable of type INTEGER(ip ), that holds the index of the first variable with a nonzero upper

(or upper range) bound.

x u end is a scalar variable of type INTEGER(ip ), that holds the index of the last variable with a nonzero upper (or

upper range) bound.

c equality is a scalar variable of type INTEGER(ip ), that holds the number of equality constraints.

c l start is a scalar variable of type INTEGER(ip ), that holds the index of the first inequality constraint with a

lower (or lower range) bound.

c l end is a scalar variable of type INTEGER(ip ), that holds the index of the last inequality constraint with a lower

(or lower range) bound.

c u start is a scalar variable of type INTEGER(ip ), that holds the index of the first inequality constraint with an

upper (or upper range) bound.

c u end is a scalar variable of type INTEGER(ip ), that holds the index of the last inequality constraint with an upper

(or upper range) bound.

h diag end free is a scalar variable of type INTEGER(ip ), that holds the index of the last free variable for which

the Hessian has a diagonal entry.

h diag end nonneg is a scalar variable of type INTEGER(ip ), that holds the index of the last non-negative variable

for which the Hessian has a diagonal entry

h diag end lower is a scalar variable of type INTEGER(ip ), that holds the index of the last lower-bounded variable

for which the Hessian has a diagonal entry

h diag end range is a scalar variable of type INTEGER(ip ), that holds the index of the last range variable for which

the Hessian has a diagonal entry

h diag end upper is a scalar variable of type INTEGER(ip ), that holds the index of the last upper-bounded variable

for which the Hessian has a diagonal entry

h diag end nonpos is a scalar variable of type INTEGER(ip ), that holds the index of the last non-positive variable

for which the Hessian has a diagonal entry

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.
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2.3.4 The derived data type for holding control parameters

The derived data type QPP control type is used to hold controlling data. Default values may be obtained by calling

QPP initialize (see Section 2.4.1). The components of QPP control type are:

error is a scalar variable of type INTEGER(ip ), that holds the stream number for error messages. Printing of error

messages in QPP reorder and QPP terminate is suppressed if error ≤ 0. The default is error = 6.

infinity is a scalar variable of type REAL(rp ), that is used to specify which constraint bounds are infinite. Any

bound larger than infinity in modulus will be regarded as infinite. The default is infinity = 1019.

treat zero bounds as general is a scalar variable of type default LOGICAL. If it is set to .FALSE., variables which

are only bounded on one side, and whose bound is zero, will be recognised as non-negativities/non-positivities

rather than simply as lower- or upper-bounded variables. If it is set to .TRUE., any variable bound xl
j or xu

j

which has the value 0.0 will be treated as if it had a general value. Setting treat zero bounds as general to

.TRUE. has the advantage that if a sequence of problems are reordered, then bounds which are “accidentally”

zero will be considered to have the same structure as those which are nonzero. However, GALAHAD QPP is able to

take special advantage of non-negativities/non-positivities, so if a single problem, or if a sequence of problems

whose bound structure is known not to change, is/are to be solved, it will pay to set the variable to .FALSE..

The default is treat zero bounds as general = .FALSE..

2.3.5 The derived data type for holding informational parameters

The derived data type QPP inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of QPP inform type are:

status is a scalar variable of type INTEGER(ip ), that gives the exit status of the algorithm. See Sections 2.5 and 2.6

for details.

alloc status is a scalar variable of type INTEGER(ip ), that gives the status of the last attempted array allocation

or deallocation.

2.3.6 The derived data type for holding reordering data

The derived data type QPP map type is used to hold all the reordering and workspace data for a particular problem,

or sequences of problems with the same structure, between calls of QPP procedures. This data should be preserved,

untouched, from the initial call to QPP initialize to the final call to QPP terminate.

2.4 Argument lists and calling sequences

There are six procedures for user calls:

1. The subroutine QPP initialize is used to set default values, and initialize private data, before reordered one

or more problems with the same sparsity and bound structure. Here, the term ”structure” refers both to the

sparsity patterns of the Hessian matrices H and Jacobian matrices A involved (but not their numerical values),

to the zero/nonzero/infinity patterns (a bound is either zero, ± infinity, or a finite but arbitrary nonzero) of each

of the constraint bounds, and to the variables and constraints that are fixed (both bounds are the same) or free

(the lower and upper bounds are ± infinity, respectively).

2. The subroutine QPP reorder is called to reorder a problem, or the first of a sequence of structurally identical

problems.

3. The subroutine QPP apply may be called to reorder real data for subsequent structurally identical problems.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.
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4. The subroutine QPP get values may be used to obtain the values of the original primal and dual variables and

Lagrange multipliers from those for the reordered problem.

5. The subroutine QPP restore may be used to recover the original problem from the data for the reordered one.

6. The subroutine QPP terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by QPP reorder, at the end of the reordering process. It is important to do this if

the data object is re-used for another problem with a different structure since QPP initialize cannot test for

this situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [ ] to indicate OPTIONAL arguments.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL QPP initialize( map, control )

map is a scalar INTENT(OUT) argument of type QPP map type (see Section 2.3.6). It is used to hold all the reordering

and workspace data for the problem.

control is a scalar INTENT(OUT) argument of type QPP control type (see Section 2.3.4). On exit, control con-

tains default values for the components as described in Section 2.3.4. These values should only be changed after

calling QPP initialize.

2.4.2 The initial reordering subroutine

The initial reordering algorithm is applied as follows:

CALL QPP_reorder( map, control, info, dims, prob, &

get_x, get_y, get_z [, parametric ] )

map is a scalar INTENT(INOUT) argument of type QPP map type. It is used to hold reordering and workspace data

for the problem. It must not have been altered by the user since the last call to QPP initialize.

control is a scalar INTENT(IN) argument of type QPP control type (see Section 2.3.4). Default values may be

assigned by calling QPP initialize prior to the first call to QPP reorder.

info is a scalar INTENT(OUT) argument of type QPP inform type (see Section 2.3.5). A successful call to QPP reor-

der is indicated when the component status has the value 0. For other return values of status, see Section 2.5.

dims is a scalar INTENT(OUT) argument of type QPT dimensions type that is used to hold scalar data that defines

the reordered problem. On successful exit, all components will have been set to values that define the reordered

problem (see Section 2.3.3).

prob is a scalar INTENT(INOUT) argument of type QPT problem type that is used to hold data that defines the original

and reordered problem. On entry, components f, gradient kind, G, A, C l, C u, X l and X u must be appro-

priately allocated and set (see Section 2.3.2). The same is true of component H in the quadratic programming

case and components Hessian kind, target kind, WEIGHT and X0 in the least-distance case. In addition, for

parametric problems DG, DC l, DC u, DX l and DX u must be allocated appropriately and set. If the user wishes

to provide suitable starting values for x, y (or alternatively yl and yu) and z (or alternatively zl and zu), they

should be placed in X, Y (or Y l and Y u) and Z (or Z l and Z u) respectively, and the arguments get x, get y

and get z set appropriately (see below).

On successful exit, all provided components will have been set to values that define the reordered problem

(see Section 2.2.1). The reordered arrays A and, if appropriate, H will be stored using the row-wise scheme. In

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD QPP (May 24, 2024) 9



QPP GALAHAD

addition the components X, Y, Z and C will contain values of x, y, z and Ax for the reordered problem. The user

should be aware that fixed variables and free constraints will have been removed, and thus that the components

prob%n and prob%m may be smaller than their values on entry.

get x is a scalar INTENT(IN) argument of type default LOGICAL, that must be set .FALSE. if the user wishes to

provide suitable values for the primal variables in X, and .TRUE., if appropriate values should be calculated by

the subroutine.

get y is a scalar INTENT(IN) argument of type default LOGICAL, that must be set .FALSE. if the user wishes to

provide suitable values for the Lagrange multiplies for the general linear constraints in Y (or alternatively in Y l

and Y u), and .TRUE., if appropriate values should be calculated by the subroutine. In the latter case, the array

Y (or the arrays Y l and Y u) must have been allocated.

get z is a scalar INTENT(IN) argument of type default LOGICAL, that must be set .FALSE. if the user wishes to

provide suitable values for the dual variables for the simple bound constraints in Z (or alternatively in Z l and

Z u), and .TRUE., if appropriate values should be calculated by the subroutine. In the latter case, the array Z (or

the arrays Z l and Z u) must have been allocated.

parametric is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If parametric is present, the

problem will be assumed to include parametric data δg, δxl , δxu, δxl and δxu as part of prob, and this data will

be reordered. If If parametric is absent, no parametric data will be processed.

2.4.3 The subsequent reordering subroutine

The reordering calculated by a previous call to QPP reorder may be applied to a structurally identical problem with

different real data as follows:

CALL QPP_apply( map, info, dims, prob [, get_all, get_all_parametric, &

get_g, get_dg, get_x, get_y, get_z, &

get_x_bounds, get_dx_bounds, get_c, get_c_bounds, &

get_dc_bounds, get_A, get_H ] )

The arguments map, and info are exactly as for QPP reorder. The values of the integers prob%n,

prob%m, prob%h ne, prob%a ne, prob%gradient%type and prob%weight%type, the integer arrays prob%H%col,

prob%H%ptr, prob%A%col, prob%A%ptr, and the remaining (integer) components of dims must have been preserved

exactly as they were on exit from the most recent call to QPP reorder or QPP restore, and are not altered by the

subroutine.

New REAL(rp ), values may be assigned to the arguments prob%f, prob%H%val, prob%G, prob%A%val,

prob%WEIGHT, prob%X0, prob%C l, prob%C l, prob%X l, prob%X u, prob%X, prob%Y (or alternatively prob%Y l and

prob%Y u), and prob%Z (or alternatively prob%Z l and prob%Z u), (and optionally prob%DC, prob%DC l, prob%DC l,

prob%DX l and prob%DX u for parametric problems), but the components of these arrays must be in exactly the same

order as originally presented to QPP reorder. The exit values of all of these real values depend on the following,

remaining arguments:

get all is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get all is present, the entire non-

parametric problem input in prob will be reordered according to the mappings generated by the last successful

call to QPP reorder. Any parametric data will be ignored.

get all parametric is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If

get all parametric is present, the entire parametric problem input in prob will be reordered accord-

ing to the mappings generated by the last successful call to QPP reorder.

get f is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get f is present, the constant objec-

tive term f , input in prob%f will be adjusted for the the reordered problem according to the mappings generated

by the last successful call to QPP reorder.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.
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get g is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get g is present, the gradient g,

input in prob%G will be adjusted for the the reordered problem according to the mappings generated by the last

successful call to QPP reorder.

get dg is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get dg is present, the paramet-

ric gradient δg, input in prob%DG), will be adjusted for the the reordered problem according to the mappings

generated by the last successful call to QPP reorder.

get x is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get x is present, the vector of primal

variables x, input in prob%X, will be adjusted for the the reordered problem according to the mappings generated

by the last successful call to QPP reorder.

get y is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get y is present, the Lagrange mul-

tipliers y, input in prob%Y (or alternatively in prob%Y l and prob%Y u), will be adjusted for the the reordered

problem according to the mappings generated by the last successful call to QPP reorder.

get z is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get z is present, the vector of dual

variables z, input in prob%Z (or alternatively in prob%Z l and prob%Z u), will be adjusted for the reordered

problem according to the mappings generated by the last successful call to QPP reorder.

get x bounds is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get x bounds is present, the

vectors of variable bounds xl and xu, input in prob%X l and prob%X u respectively will be reordered according

to the mappings generated by the last successful call to QPP reorder.

get dx bounds is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get dx bounds is present,

the vectors of parametric variable bounds δxl and δxu, input in prob%DX l and prob%DX u respectively, will be

reordered according to the mappings generated by the last successful call to QPP reorder.

get c is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get c is present, the vector Ax for

the reordered problem will be returned in prob%C.

get c bounds is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get c bounds is present, the

vectors of constraint bounds cl and cu, input in prob%C l and prob%C u respectively will be reordered according

to the mappings generated by the last successful call to QPP reorder.

get dc bounds is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get dc bounds is present,

the vectors of parametric constraint bounds δcl and δcu, input in prob%DC l and prob%DC u respectively, will

be reordered according to the mappings generated by the last successful call to QPP reorder.

get A is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get A is present, the entries of the

matrix A, input in prob%A%val, will be reordered according to the mappings generated by the last successful

call to QPP reorder.

get H is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get H is present, the Hessian matrix

will be reordered according to the mappings generated by the last successful call to QPP reorder. Specifically,

if Hessian kind < 0, the entries of the lower triangular part of the matrix H, input in prob%H%val, will be

reordered. If Hessian kind > 0, the components of x0 input in prob%X0 will be reordered, and additionally if

Hessian kind > 1 so will the weights w input in prob%WEIGHT.

2.4.4 The variable recovery reordering subroutine

The values of minimization variables that have been determined for the reordered problem may be recovered for the

original problem as follows:

CALL QPP_get_values( map, info, prob [, X_val, Y_val, Z_val ] )

All use is subject to the conditions of a BSD-3-Clause License.
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GALAHAD QPP (May 24, 2024) 11



QPP GALAHAD

The arguments map and info are exactly as for QPP reorder. The INTENT(IN) argument prob must contain reordered

problem data from a previous call to QPP reorder or QPP apply.

X val is an OPTIONAL rank-one INTENT(OUT) array argument of type REAL(rp ). If present, it will be filled with the

values of the primal variables x for the original problem, corresponding to those for the the reordered problem

input in X.

Y val is an OPTIONAL rank-one INTENT(OUT) array argument of type REAL(rp ). If present, it will be filled with

the values of the Lagrange multipliers y for the original problem, corresponding to those for the the reordered

problem input in Y (or Y l + Y u). .

Z val is an OPTIONAL rank-one INTENT(OUT) array argument of type REAL(rp ). If present, it will be filled with the

values of the primal variables z for the original problem, corresponding to those for the the reordered problem

input in Z (or Z l + Z u).

2.4.5 The problem restoration subroutine

The data for the original problem may be recovered from its reordered variant as follows:

CALL QPP_restore( map, info, dims, prob [, get_all, get_all_parametric, &

get_g, get_dg, get_x, get_y, get_z, &

get_x_bounds, get_dx_bounds, get_c, get_c_bounds, &

get_dc_bounds, get_A, get_H ] )

The arguments map, info, dims and prob are exactly as described as output from QPP reorder or QPP apply, and

correspond to data for the reordered problem. They may be restored to data for the original problem by appropriate

settings for the remaining arguments:

get all is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get all is present, the entire non-

parametric problem input in prob and dims will be restored using the mappings generated by the last successful

call to QPP reorder. Any parametric data will be ignored.

get all parametric is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If

get all parametric is present, the entire parametric problem input in prob and dims will be recov-

ered from the mappings generated by the last successful call to QPP reorder.

get g is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get g is present, the gradient g will be

recovered from the reordered problem and placed in prob%G using the mappings generated by the last successful

call to QPP reorder.

will be recovered from the reordered problem using the mappings generated by the last successful call to

QPP reorder.

get dg is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get dg is present, the parametric

gradient δg will be recovered from the reordered problem and placed in prob%DG using the mappings generated

by the last successful call to QPP reorder.

get x is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get x is present, the vector of primal

variables x will be recovered from the reordered problem and placed in prob%X using the mappings generated

by the last successful call to QPP reorder.

get y is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get y is present and prob%Y is

allocated, the Lagrange multipliers y will be recovered from the reordered problem and placed in prob%Y using

the mappings generated by the last successful call to QPP reorder. If prob%Y l and prob%Y u are allocated,

the Lagrange multipliers yl and yu will be recovered from the reordered problem and placed in prob%Y l and

prob%Y u respectively.

All use is subject to the conditions of a BSD-3-Clause License.
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get z is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get z is present and prob%Z is

allocated, the vector of dual variables z will be recovered from the reordered problem and placed in prob%Z using

the mappings generated by the last successful call to QPP reorder. If prob%Z l and prob%Z u are allocated,

the dual variables zl and zu will be recovered from the reordered problem and placed in prob%Z l and prob%Z u

respectively.

get x bounds is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get x bounds is present, the

vectors of variable bounds xl and xu will be recovered from the reordered problem and placed in prob%X l and

prob%X u using the mappings generated by the last successful call to QPP reorder.

get dx bounds is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get dx bounds is present,

the vectors of parametric variable bounds δxl and δxu will be recovered from the reordered problem and placed

in prob%DX l and prob%DX u using the mappings generated by the last successful call to QPP reorder.

get c is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get c is present, the vector Ax will be

recovered from the reordered problem and placed in prob%C using the mappings generated by the last successful

call to QPP reorder.

get c bounds is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get c bounds is present, the

vectors of constraint bounds cl and cu will be recovered from the reordered problem and placed in prob%C l

and prob%C u using the mappings generated by the last successful call to QPP reorder.

get dc bounds is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get dc bounds is present,

the vectors of parametric constraint bounds δcl and δcu will be recovered from the reordered problem and placed

in prob%DC l and prob%DC u using the mappings generated by the last successful call to QPP reorder.

get A is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get A is present, the matrix A will be

recovered from the reordered problem and placed in prob%A using the mappings generated by the last successful

call to QPP reorder.

get H is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If get H is present, the Hessian ma-

trix will be recovered from the reordered problem using the mappings generated by the last successful call to

QPP reorder. Specifically, if Hessian kind < 0, the entries of the recovered lower triangular part of the matrix

H will be placed in prob%H%val. If Hessian kind > 0, the components of x0 will be recovered and placed in

prob%X0, and additionally if Hessian kind > 1 the weights w will be placed in prob%WEIGHT.

2.4.6 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL QPP terminate( map, control, info )

map is a scalar INTENT(INOUT) argument of type QPP map type exactly as for QPP reorder which must not have

been altered by the user since the last call to QPP initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type QPP control type exactly as for QPP reorder.

info is a scalar INTENT(OUT) argument of type QPP inform type exactly as for QPP reorder. Only the component

status will be set on exit, and a successful call to QPP terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.5.

All use is subject to the conditions of a BSD-3-Clause License.
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2.5 Warning and error messages

A negative value of info%status on exit from QPP solve or QPP terminate indicates that an error has occurred. No

further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status is given by the value inform%alloc status.

-3. One of the restrictions prob%n > 0 or prob%m ≥ 0 or requirements that prob%A%type and prob%H%type contain

its relevant string ’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’ or ’DIAGONAL’ has been violated.

-5. The constraints are inconsistent.

-23. An entry from the strict upper triangle of H has been specified.

-31. An attempt to use QPP apply, QPP get values or QPP restore has been made before a successful call to

QPP reorder.

-52. An attempt to change a matrix storage format has been made without first recalling QPP reorder.

-53. At least one of the matrices A or H has not been reordered, while the current subroutine call requires it to have

been.

-54. Neither the array prob%Y nor the pair prob%Y l and prob%Y u have been allocated.

-55. Neither the array prob%Z nor the pair prob%Z l and prob%Z u have been allocated.

2.6 Information printed

The only information printed will be error messages, corresponding to nonzero values of info%status, on unit

control%error.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: GALAHAD SYMBOLS, GALAHAD SMT, GALAHAD QPT, and GALAHAD SORT.

Input/output: Output is under control of the argument control%error.

Restrictions: prob%n > 0, prob%m ≥ 0, prob%A%type and prob%H%type ∈ {’DENSE’, ’COORDINATE’,

’SPARSE BY ROWS’}.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.
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4 METHOD

The required solution x necessarily satisfies the primal optimality conditions

Ax = c, (4.1)

where

cl ≤ c ≤ cu and xl ≤ x ≤ xu, (4.2)

the dual optimality conditions

Hx+ g= AT y+ z (or W2(x− x0)+ g = AT y+ z for the least-distance type objective), (4.3)

where

y = yl + yu, z = zl + zu, yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0, (4.4)

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0, (4.5)

where the diagonal matrix W2 has diagonal entries w2
j , j = 1, . . . ,n, where the vectors y and z are known as the

Lagrange multipliers for the general linear constraints, and the dual variables for the bounds, respectively, and where

the vector inequalities hold componentwise.

Two passes are made through the sets of bounds on the variables. In the first, the number belonging to each of

the required categories (free, non-negativities, lower-bounded, range-bounded, upper-bounded, non-positivities and

fixed) is computed, with further subdivisions within each categories according to those which have nonzero diagonal

Hessian entries being recorded. On the second pass, a permutation of the variables to rearange them into the required

standard form is obtained. A mapping array of the original Hessian entries into their permuted form is then obtained,

and the permutations applied in place (ie, without resorting to further storage) to H, x, z, g, xl and xu, suitable values

of x and z satisfying (4.2) and (4.4) having optionally been computed.

Next, two passes are made through the sets of constraint bounds. In the first, the number belonging to each of

the required categories (equality, lower-bounded, range-bounded, upper-bounded, and free) is computed, while in the

second the required permutation of the constraints into the required standard form is obtained. A mapping array of

the original Jacobian entries into their permuted form is then obtained, and the permutations applied in place to A, c,

y, cl and cu, suitable values of c and y, satisfying (4.4), having, as before, optionally been computed. Both sets of

permutations, and the matrix mapping arrays are saved for possible later use.

Any fixed variables and free constraints are removed. Fixing variables results in changes to the values of f , g, cl

and cu. Subsequent reorderings for structurally similar problems, or restorations of data from reordered problems, are

easily obtained from the permuation and mapping arrays, and their inverses.

5 EXAMPLE OF USE

Suppose we wish to minimize 1
2 x2

1 + x2
2 +

5
2 x2

3 +
3
2 x2

4 − x2x3 + 4x1x4 + x1 + 2x2 + 3x3 + 4x4 + 1 subject to the general

linear constraints 1 ≤ 2x1+x2 ≤ 2, x2 +x3 +x4 = 2, and simple bounds −1 ≤ x1 ≤ 1, x3 = 1 and x4 ≤ 2, but first wish

to convert the problem to our standard form. Then, on writing the data for this problem as

H =









1 4

2 −1

−1 5

4 3









, g =









1

2

3

4









, xl =









−1

−∞

1

−∞









and xu =









1

∞

1

2









,

and

A =

(

2 1

1 1 1

)

, cl =

(

1

2

)

, and cu =

(

2

2

)

we may use the following code:

All use is subject to the conditions of a BSD-3-Clause License.
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PROGRAM GALAHAD_QPP_EXAMPLE

USE GALAHAD_QPP_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND( 1.0D+0 ) ! set precision

REAL ( KIND = wp ), PARAMETER :: infinity = 10.0_wp ** 20

TYPE ( QPT_dimensions_type ) :: d

TYPE ( QPP_map_type ) :: map

TYPE ( QPP_control_type ) :: control

TYPE ( QPP_inform_type ) :: info

TYPE ( QPT_problem_type ) :: p

INTEGER :: i, j

INTEGER, PARAMETER :: n = 4, m = 2, h_ne = 5, a_ne = 5

REAL ( KIND = wp ) :: X_orig( n )

! sparse co-ordinate storage format

CALL SMT_put( p%H%type, ’COORDINATE’ ) ! Specify co-ordinate

CALL SMT_put( p%A%type, ’COORDINATE’ ) ! storage for H and A

ALLOCATE( p%H%val( h_ne ), p%H%row( h_ne ), p%H%col( h_ne ) )

ALLOCATE( p%A%val( a_ne ), p%A%row( a_ne ), p%A%col( a_ne ) )

p%H%val = (/ 1.0_wp, 2.0_wp, -1.0_wp, 5.0_wp, 4.0_wp /) ! Hessian H

p%H%row = (/ 1, 2, 3, 3, 4 /) ! NB lower triangle

p%H%col = (/ 1, 2, 2, 3, 1 /) ; p%H%ne = h_ne

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%row = (/ 1, 1, 2, 2, 2 /)

p%A%col = (/ 1, 2, 2, 3, 4 /) ; p%A%ne = a_ne

! arrays complete

ALLOCATE( p%G( n ), p%X_l( n ), p%X_u( n ) )

ALLOCATE( p%C( m ), p%C_l( m ), p%C_u( m ) )

ALLOCATE( p%X( n ), p%Y( m ), p%Z( n ) )

p%n = n ; p%m = m ; d%f = 1.0_wp ! dimensions & objective constant

p%Hessian_kind = - 1 ; p%gradient_kind = - 1 ! generic quadratic program

p%G = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /) ! objective gradient

p%C_l = (/ 1.0_wp, 2.0_wp /) ! constraint lower bound

p%C_u = (/ 2.0_wp, 2.0_wp /) ! constraint upper bound

p%X_l = (/ - 1.0_wp, - infinity, 1.0_wp, - infinity /) ! variable lower bound

p%X_u = (/ 1.0_wp, infinity, 1.0_wp, 2.0_wp /) ! variable upper bound

CALL QPP_initialize( map, control ) ! Initialize control parameters

control%infinity = infinity ! Set infinity

! reorder problem

CALL QPP_reorder( map, control, info, d, p, .TRUE., .TRUE., .TRUE. )

IF ( info%status /= 0 ) & ! Error returns

WRITE( 6, "( ’ QPP_solve exit status = ’, I6 ) " ) info%status

WRITE( 6, "( ’ problem now involves ’, I1, ’ variables and ’, &

& I1, ’ constraints. f is now’, ES12.4 )" ) p%n, p%m, d%f

! re-ordered variables

WRITE( 6, "( /, 5X, ’i’, 6x, ’v’, 11X, ’l’, 11X, ’u’, 11X, ’z’, 11X, &

& ’g’, 6X, ’type’ )" )

DO i = 1, d%x_free ! free variables

WRITE( 6, 10 ) i, p%X( i ), p%X_l( i ), p%X_u( i ), p%Z( i ), p%G( i ), ’ ’

END DO

DO i = d%x_free + 1, d%x_l_start - 1 ! non-negativities

WRITE( 6, 10 ) i, p%X( i ), p%X_l( i ), p%X_u( i ), p%Z( i ), p%G( i ), ’0< ’

END DO

DO i = d%x_l_start, d%x_u_start - 1 ! lower-bounded variables

WRITE( 6, 10 ) i, p%X( i ), p%X_l( i ), p%X_u( i ), p%Z( i ), p%G( i ), ’l< ’

END DO
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DO i = d%x_u_start, d%x_l_end ! range-bounded variables

WRITE( 6, 10 ) i, p%X( i ), p%X_l( i ), p%X_u( i ), p%Z( i ), p%G( i ), ’l<u’

END DO

DO i = d%x_l_end + 1, d%x_u_end ! upper-bounded variables

WRITE( 6, 10 ) i, p%X( i ), p%X_l( i ), p%X_u( i ), p%Z( i ), p%G( i ), ’ <u’

END DO

DO i = d%x_u_end + 1, p%n ! non-positivities

WRITE( 6, 10 ) i, p%X( i ), p%X_l( i ), p%X_u( i ), p%Z( i ), p%G( i ), ’ <0’

END DO

! re-ordered constraints

WRITE( 6, "( /, 5X,’i’, 5x, ’A*v’, 10X, ’l’, 11X, ’u’, 11X, ’y’, &

& 6X, ’type’ )" )

DO i = 1, d%c_l_start - 1 ! equality constraints

WRITE( 6, 20 ) i, p%C( i ), p%C_l( i ), p%C_u( i ), p%Y( i ), ’l=u’

END DO

DO i = d%c_l_start, d%c_u_start - 1 ! lower-bounded constraints

WRITE( 6, 20 ) i, p%C( i ), p%C_l( i ), p%C_u( i ), p%Y( i ), ’l< ’

END DO

DO i = d%c_u_start, d%c_l_end ! range-bounded constraints

WRITE( 6, 20 ) i, p%C( i ), p%C_l( i ), p%C_u( i ), p%Y( i ), ’l<u’

END DO

DO i = d%c_l_end + 1, d%c_u_end ! upper-bounded constraints

WRITE( 6, 20 ) i, p%C( i ), p%C_l( i ), p%C_u( i ), p%Y( i ), ’ <u’

END DO

! re-ordered matrices

WRITE( 6, 30 ) ’Hessian ’, ( ( ’H’, i, p%H%col( j ), p%H%val( j ), &

j = p%H%ptr( i ), p%H%ptr( i + 1 ) - 1 ), i = 1, p%n ) ! Hessian

WRITE( 6, 30 ) ’Jacobian’, ( ( ’A’, i, p%A%col( j ), p%A%val( j ), &

j = p%A%ptr( i ), p%A%ptr( i + 1 ) - 1 ), i = 1, p%m ) ! Jacobian

CALL QPP_terminate( map, control, info ) ! delete internal workspace

10 FORMAT( I6, 5ES12.4, 2X, A3 )

20 FORMAT( I6, 4ES12.4, 2X, A3 )

30 FORMAT( /, 1X, A8, /, ( :, 3 ( 1X, A1, ’(’, 2I2, ’) =’, ES12.4, : ) ) )

END PROGRAM GALAHAD_QPP_EXAMPLE

This produces the following output:

problem now involves 3 variables and 2 constraints. f is now 6.5000E+00

i v l u z g type

1 0.0000E+00 -1.0000E+20 1.0000E+20 0.0000E+00 1.0000E+00

2 0.0000E+00 -1.0000E+00 1.0000E+00 0.0000E+00 1.0000E+00 l<u

3 1.0000E+00 -1.0000E+20 2.0000E+00 -1.0000E+00 4.0000E+00 <u

i A*v l u y type

1 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 l=u

2 0.0000E+00 1.0000E+00 2.0000E+00 1.0000E+00 l<u

Hessian

H( 1 1) = 2.0000E+00 H( 2 2) = 1.0000E+00 H( 3 2) = 4.0000E+00

Jacobian

A( 1 1) = 1.0000E+00 A( 1 3) = 1.0000E+00 A( 2 1) = 1.0000E+00

A( 2 2) = 2.0000E+00

and corresponds to the reordered problem of minimizing v2
1 +

1
2 v2

2 + 4v3v2 + v1 + v2 + 4v3 + 6.5 subject to the general
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linear constraints v1 + v3 = 1, 1 ≤ v1 + 2v2 ≤ 2, and simple bounds −1 ≤ v1 ≤ 1 and v3 ≤ 2. Notice how the fixed

variable has been removed, and f , g, cl and cu adjusted appropriately.

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! arrays complete

by

! sparse row-wise storage format

CALL SMT_put( p%H%type, ’SPARSE_BY_ROWS’ ) ! Specify sparse-by-row

CALL SMT_put( p%A%type, ’SPARSE_BY_ROWS’ ) ! storage for H and A

ALLOCATE( p%H%val( h_ne ), p%H%col( h_ne ), p%H%ptr( n + 1 ) )

ALLOCATE( p%A%val( a_ne ), p%A%col( a_ne ), p%A%ptr( m + 1 ) )

p%H%val = (/ 1.0_wp, 2.0_wp, -1.0_wp, 5.0_wp, 4.0_wp /) ! Hessian H

p%H%col = (/ 1, 2, 2, 3, 1 /) ! NB lower triangular

p%H%ptr = (/ 1, 2, 3, 5, 6 /) ! Set row pointers

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%col = (/ 1, 2, 2, 3, 4 /)

p%A%ptr = (/ 1, 3, 6 /) ! Set row pointers

! arrays complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put( p%H%type, ’DENSE’ ) ! Specify dense

CALL SMT_put( p%A%type, ’DENSE’ ) ! storage for H and A

ALLOCATE( p%H%val( n * ( n + 1 ) / 2) )

ALLOCATE( p%A%val( n * m ) )

p%H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 0.0_wp, -1.0_wp, 5.0_wp, &

4.0_wp, 0.0_wp, 0.0_wp, 0.0_wp /) ! Hessian

p%A%val = (/ 2.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, &

1.0_wp, 1.0_wp /) ! Jacobian

! arrays complete

(If instead H had been the diagonal matrix

H =





1

0

3





but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL SMT_put( p%H%type, ’DIAGONAL’ ) ! Specify dense storage for H

ALLOCATE( p%H%val( n ) )

p%H%val = (/ 1.0_wp, 0.0_wp, 3.0_wp /) ! Hessian values

Notice here that zero diagonal entries are stored.)

The solution to the reordered problem is (1.6,0.2,−0.6)—this may be found, for example, by using the GALAHAD

package GALAHAD QPB. To recover the solution to the original problem, insert the following lines just before the above
call to QPP terminate:

p%X( : 3 ) = (/ 1.6_wp, 0.2_wp, -0.6_wp /)

CALL QPP_get_values( map, info, p, X_val = X_orig )

WRITE( 6, "( /, ’ solution = ’, ( 4ES12.4 ) )" ) X_orig( : n )

This yields

All use is subject to the conditions of a BSD-3-Clause License.
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solution = 2.0000E-01 1.6000E+00 1.0000E+00 -6.0000E-01

Finally, suppose we now wish to change the linear inequality constraint to 1 ≤ 2x1 + x2 ≤ 3, and to find out what
effect this has on the reordered problem. Then we might insert the following lines just before the above call to
QPP terminate:

! recover constraint bounds

CALL QPP_restore( map, info, d, p, get_c_bounds = .TRUE. )

! change upper bound

p%C_u( 1 ) = 3.0_wp

! reorder new problem

CALL QPP_apply( map, info, d, p, get_c_bounds = .TRUE. )

! re-ordered new constraints

WRITE( 6, "( /, 5X,’i’, 5x, ’A*v’, 10X, ’l’, 11X, ’u’, 11X, ’y’, &

& 6X, ’type’ )" )

DO i = 1, d%c_l_start - 1 ! equality constraints

WRITE( 6, 20 ) i, p%C( i ), p%C_l( i ), p%C_u( i ), p%Y( i ), ’l=u’

END DO

DO i = d%c_l_start, d%c_u_start - 1 ! lower-bounded constraints

WRITE( 6, 20 ) i, p%C( i ), p%C_l( i ), p%C_u( i ), p%Y( i ), ’l< ’

END DO

DO i = d%c_u_start, d%c_l_end ! range-bounded constraints

WRITE( 6, 20 ) i, p%C( i ), p%C_l( i ), p%C_u( i ), p%Y( i ), ’l<u’

END DO

DO i = d%c_l_end + 1, d%c_u_end ! upper-bounded constraints

WRITE( 6, 20 ) i, p%C( i ), p%C_l( i ), p%C_u( i ), p%Y( i ), ’ <u’

END DO

This gives

i A*v l u y type

1 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 l=u

2 0.0000E+00 1.0000E+00 3.0000E+00 1.0000E+00 l<u

which is to say that the inequality constraint for the reordered problem is now 1 ≤ v1 + 2v2 ≤ 3.
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