
GALAHAD PSLS

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given a sparse symmetric matrix A = {ai j}n×n, this package builds a suitable symmetric, positive definite—or

diagonally dominant—preconditioner P of A or a symmetric sub-matrix thereof. The matrix A need not be definite.

Facilities are provided to apply the preconditioner to a given vector, and to remove rows and columns (symmetrically)

from the initial preconditioner without a full re-factorization.

ATTRIBUTES — Versions: GALAHAD PSLS single, GALAHAD PSLS double. Calls: GALAHAD CLOCK, GALAHAD-

SYMBOLS, GALAHAD SPACE, GALAHAD SORT, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD QPT, GALAHAD SLS, GALA-

HAD SCU, GALAHAD EXTEND, GALAHAD NORMS, LANCELOT BAND and optionally MC61, HSL MI28 and ICFS, Date: April

2008. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

Parallelism: GALAHAD SLS may use OpenMP, MPI and their runtime libraries.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD PSLS single

with the obvious substitution GALAHAD PSLS double, GALAHAD PSLS single 64 and GALAHAD PSLS double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, PSLS control type,

PSLS time type, PSLS data type, and PSLS inform type (§2.6), and the subroutines PSLS initialize, PSLS-

form and factorize, PSLS update factors, PSLS apply, PSLS terminate (§2.7), must be renamed on one of

the USE statements.

There are five principal subroutines for user calls (see §2.9 for further features):

PSLS initialize must be called to set default values for solver-specific components of the control structure. If non-

default values are wanted for any of the control components, the corresponding components should be altered

after the call to PSLS initialize.

PSLS form and factorize accepts the pattern of A, removes any unwanted rows and columns, sets up necessary

data structures and then forms and factorizes the required preconditioner, P.

PSLS update factors modifies the preconditioner and its factorization if further rows and columns are removed.

PSLS apply uses the factors generated by PSLS factorize to solve a system of equations Px = b.

PSLS terminate deallocates the arrays held inside the structure for the factors. It should be called when all the

systems involving its matrix have been solved or before another external solver is to be used.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PSLS (May 24, 2024) 1

PSLS GALAHAD

solver factorization indefinite A out-of-core parallelised

SILS/MA27 multifrontal yes no no

HSL MA57 multifrontal yes no no

HSL MA77 multifrontal yes yes OpenMP core

HSL MA86 left-looking yes no OpenMP fully

HSL MA87 left-looking no no OpenMP fully

HSL MA97 multifrontal yes no OpenMP core

SSIDS multifrontal yes no CUDA core

PARDISO left-right-looking yes no OpenMP fully

MKL PARDISO left-right-looking yes optionally OpenMP fully

WSMP left-right-looking yes no OpenMP fully

POTR dense no no with parallel LAPACK

SYTR dense yes no with parallel LAPACK

PBTR dense band no no with parallel LAPACK

Table 2.1: External solver characteristics.

2.2 Supported external solvers

In Table 2.1 we summarize key features of the external solvers supported by PSLS, and used by some preconditioning

options. Further details are provided in the references cited in §4 of the documentation to the GALAHAD package

SLS. Note that many of the solvers are not part of the package, and must be obtained separately.

2.3 Matrix storage formats

The matrix A may be stored in a variety of input formats.

2.3.1 Sparse co-ordinate storage format

Only the nonzero entries of the lower-triangular part of A are stored. For the l-th entry of the lower-triangular portion

of A, its row index i, column index j and value ai j are stored in the l-th components of the integer arrays row, col and

real array val, respectively. The order is unimportant, but the total number of entries ne is also required.

2.3.2 Sparse row-wise storage format

Again only the nonzero entries of the lower-triangular part are stored, but this time they are ordered so that those in

row i appear directly before those in row i+1. For the i-th row of A, the i-th component of an integer array ptr holds

the position of the first entry in this row, while ptr (m+ 1) holds the total number of entries plus one. The column

indices j and values ai j of the entries in the i-th row are stored in components l = ptr(i), . . . ,ptr (i+ 1)− 1 of the

integer array col, and real array val, respectively.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.3.3 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are stored

in order within an appropriate real one-dimensional array. Since A is symmetric, only the lower triangular part (that is

the part ai j for 1 ≤ j ≤ i ≤ n) need be held, and this part will be stored by rows, that is component i∗ (i− 1)/2+ j of

the storage array val will hold the value ai j (and, by symmetry, a ji) for 1 ≤ j ≤ i ≤ n.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 PSLS (May 24, 2024) GALAHAD

GALAHAD PSLS

2.4 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.5 Parallel usage

OpenMP may be used by the GALAHAD PSLS package to provide parallelism for some solvers in shared memory

environments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP

must be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number

of threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.6 The derived data types

Five derived data types are used by the package.

2.6.1 The derived data type for holding the matrix

The derived data type SMT type is used to hold the matrix A. The components of SMT type used are:

n is a scalar variable of type INTEGER(ip), that holds the order n of the matrix A. Restriction: n ≥ 1.

type is an allocatable array of rank one and type default CHARACTER, that indicates the storage scheme used. If

the sparse co-ordinate scheme (see §2.3.1) is used the first ten components of type must contain the string

COORDINATE. For the sparse row-wise storage scheme (see §2.3.2), the first fourteen components of type must

contain the string SPARSE BY ROWS, and for dense storage scheme (see §2.3.3) the first five components of type

must contain the string DENSE.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into type. For example, if A is to be stored in the structure A of derived type SMT type and we wish to

use the co-ordinate scheme, we may simply

CALL SMT_put(A%type, ’COORDINATE’, istat)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part of A in

the sparse co-ordinate storage scheme (see §2.3.1). It need not be set for any of the other three schemes.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PSLS (May 24, 2024) 3

PSLS GALAHAD

val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower triangular

part of the matrix A for each of the storage schemes discussed in §2.3. Any duplicated entries that appear in the

sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular part of

A in the sparse co-ordinate storage scheme (see §2.3.1). It need not be allocated for any of the other schemes.

Any entry whose row index lies out of the range [1,n] will be ignored.

col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the lower trian-

gular part of A in either the sparse co-ordinate (see §2.3.1), or the sparse row-wise (see §2.3.2) storage scheme.

It need not be allocated when the dense storage scheme is used. Any entry whose column index lies out of the

range [1,n] will be ignored, while the row and column indices of any entry from the strict upper triangle will

implicitly be swapped.

ptr is a rank-one allocatable array of size n+1 and type INTEGER(ip), that holds the starting position of each row of

the lower triangular part of A, as well as the total number of entries plus one, in the sparse row-wise storage

scheme (see §2.3.2). It need not be allocated for the other schemes.

2.6.2 The derived data type for holding control parameters

The derived data type PSLS control type is used to hold controlling data. Default values specifically for the desired

solver may be obtained by calling PSLS initialize (see §2.7.1), while components may be changed at run time by

calling PSLS read specfile (see §2.9.1). The components of PSLS control type are:

error is a scalar variable of type INTEGER(ip), that holds the unit number for error messages. Printing of error

messages is suppressed if error< 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the unit number for informational messages. 6Printing of

informational messages is suppressed if out< 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

that is required. No informational output will occur if print level≤ 0. Every increasing values produce more

information. The default is print level = 0.

preconditioner is a scalar variable of type INTEGER(ip), that indicates the preconditioner required. Possible

values are

<0 no preconditioning occurs, P = I

0 the preconditioner is chosen automatically (forthcoming, and currently defaults to 1).

1 A is replaced by the diagonal, P = diag(max(A, min diagonal)) (see below).

2 A is replaced by the band P = band(A) with semi-bandwidth semi bandwidth (see below).

3 A is replaced by the reordered band P = band(order(A)) with semi-bandwidth semi bandwidth, where

order is chosen by the HSL package MC61 (see §4) to move entries closer to the diagonal.

4 P is a full factorization of A using Schnabel-Eskow modifications, in which small or negative diagonals are

made sensibly positive during the factorization.

5 P is a full factorization of A due to Gill, Murray, Ponceléon and Saunders, in which an indefinite factorization

is altered to give a positive definite one.

6 P is an incomplete Cholesky factorization of A using the package ICFS due to Lin and Moré (see §4).

7 P is an incomplete factorization of A implemented as HSL MI28 from HSL (see §4).

8 P is an incomplete factorization of A due to Munskgaard (forthcoming).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 PSLS (May 24, 2024) GALAHAD

GALAHAD PSLS

>8 treated as 0.

N.B. Options 3–8 may require additional external software that is not part of the package, and that must be

obtained separately. The default is preconditioner = 0.

semi bandwidth is a scalar variable of type INTEGER(ip), that holds the semi-bandwidth used if a band precon-

ditioner (%preconditioner = 2,3) is selected. Any negative value will be regarded as 0. The default is

semi bandwidth = 5.

max col is a scalar variable of type INTEGER(ip), that holds the maximum number of nonzeros in a column of

A that are allowed for a Schur-complement factorization, rather than a refactorization, to accommodate newly

deleted columns. The default is max col = 100.

icfs vectors is a scalar variable of type INTEGER(ip), that holds the number of extra vectors of length n required

by the Lin–Moré incomplete Cholesky preconditioner (%preconditioner = 6). Usually, the larger the number,

the better the preconditioner, but the more space and effort required to use it. Any negative value will be regarded

as 0. The default is icfs vectors = 10.

mi28 lsize is a scalar variable of type INTEGER(ip), that holds the maximum number of fill entries within each

column of the incomplete factor L computed by HSL MI28 (%preconditioner = 7). In general, increasing

mi28 lsize improves the quality of the preconditioner but increases the time to compute and then apply the

preconditioner. Values less than 0 are treated as 0. The default is mi28 lsize = 10.

mi28 rsize is a scalar variable of type INTEGER(ip), that holds the maximum number of entries within each

column of the strictly lower triangular matrix R used in the computation of the preconditioner by HSL MI28

(%preconditioner = 7). Rank-1 arrays of size mi28 rsize times n are allocated internally to hold R. Thus

the amount of memory used, as well as the amount of work involved in computing the preconditioner, depends on

mi28 rsize. Setting mi28 rsize > 0 generally leads to a higher quality preconditioner than using mi28 rsize

= 0, and choosing mi28 rsize ≥ mi28 lsize is generally recommended. The default is mi28 rsize = 10.

max col is a scalar variable of type INTEGER(ip), that specifies Any non-positive value will be regarded as 1. The

default is max col = 100.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, the default prefix = "" should be used.

min diagonal is a scalar variable of type REAL(rp), that specifies the smallest permitted diagonal in P for some of

the preconditioners provided. See preconditioner above. The default is min diagonal = 0.00001.

new structure is a scalar variable of type default LOGICAL, that must be set .TRUE. if the storage structure for the

input matrix has changed, and .FALSE. if only the values have changed. The default is new structure =

.TRUE..

get semi bandwidth is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes the

package to calculate the semi-bandwidth of the preconditioner, P and .FALSE. otherwise. The default is

get semi bandwidth = .TRUE..

get norm residual is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes the pack-

age to return the value of the norm of the residuals for the computed solution when applying the preconditioner

and .FALSE. otherwise. The default is get norm residual = .FALSE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PSLS (May 24, 2024) 5

PSLS GALAHAD

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

definite linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any symmetric positive-definite linear system that might arise when %precondit-

ioner = 4,5. Possible choices are ’sils’, ’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma87’, ’ma97’, ’ssids’,

’pardiso’ ’mkl pardiso’, ’wsmp’, ’potr’ and ’pbtr’, although only ’sils’, ’potr’, ’pbtr’ and, for

OMP 4.0-compliant compilers, ’ssids’ are installed by default. See Table 2.1 and the documentation for the

GALAHAD package SLS for further details. The default is definite linear solver = ’sils’.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

2.6.3 The derived data type for holding timing information

The derived data type PSLS time type is used to hold elapsed CPU and system clock times for the various parts of

the calculation. The components of PSLS time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time (in seconds) spent in the package.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing the matrix structure prior to

building and factorizing the preconditioner.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent building and factorizing the precon-

ditioner.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent applying the preconditioner.

update is a scalar variable of type REAL(rp), that gives the CPU time spent updating existing factorizations.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time (in seconds) spent

in the package.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing the

matrix structure prior to building and factorizing the preconditioner.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent building and

factorizing the preconditioner.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent applying the

preconditioner.

clock update is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent updating existing

factorizations.

2.6.4 The derived data type for holding informational parameters

The derived data type PSLS inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of PSLS inform type are as follows—any component that is not relevant to

the solver being used will have the value -1 or -1.0 as appropriate:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See §2.8 for details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 PSLS (May 24, 2024) GALAHAD

GALAHAD PSLS

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if there have been no allocation

or deallocation errors.

preconditioner is a scalar variable of type INTEGER(ip), that indicates the preconditioner method used. The range

of values returned corresponds to those requested in control%preconditioner, excepting that the requested

value may have been altered to a more appropriate one during the factorization. In particular, if the automatic

choice control%preconditioner = 0 is requested, preconditioner reports the actual choice made.

semi bandwidth is a scalar variable of type INTEGER(ip), that indicates the actual semi-bandwith.

reordered semi bandwidth is a scalar variable of type INTEGER(ip), that indicates the semi-bandwith used after

reordering.

semi bandwidth used is a scalar variable of type INTEGER(ip), that indicates the actual semi-bandwith used.

out of range is a scalar variable of type INTEGER(ip), that is set to the number of entries of A supplied with one

or both indices out of range.

duplicates is a scalar variable of type INTEGER(ip), that is set to the number of duplicate off-diagonal entries of

A supplied.

upper is a scalar variable of type INTEGER(ip), that is set to the number of input entries from the strict upper triangle

of A.

missing diagonals is a scalar variable of type INTEGER(ip), that gives the number of diagonal entries entries

missing for an allegedly-definite matrix A.

neg1 is a scalar variable of type INTEGER(ip), that gives the number of 1 by 1 pivots present in the factorization of

A.

neg2 is a scalar variable of type INTEGER(ip), that gives the number of 2 by 2 pivots present in the factorization of

A.

perturbed is a scalar variable of type default LOGICAL, that is /true/ if the factorization has been perturbed when

building the preconditioner.

fill in ratio is a scalar variable of type REAL(rp), that gives the ratio of the fill-ins during factorization to the

original numbers of non-zeros of A.

norm residual is a scalar variable of type REAL(rp), that gives the norm of the residual ‖Px− b‖ when solving

Px = b.

mc61 info is an array of size 10 and type INTEGER(ip), that corresponds to the output array INFO from MC61. See

the HSL documentation for MC61 for further details.

mc61 rinfo is an array of size 15 and type REAL(rp), that corresponds to the output array RINFO from MC61. See

the HSL documentation for MC61 for further details.

time is a scalar variable of type PSLS time type whose components are used to hold elapsed CPU and system clock

times (in seconds) for the various parts of the calculation (see Section 2.6.3).

sls inform is a scalar variable of type sls inform type, that corresponds to the output value sls inform from the

GALAHAD package SLS. See the documentation for SLS for further details.

mi28 info is a scalar variable of type mi28 info, that corresponds to the output value mi28 info from HSL MI28.

See the documentation for HSL MI28 for further details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PSLS (May 24, 2024) 7

PSLS GALAHAD

2.6.5 The derived data type for holding problem data

The derived data type PSLS data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls to PSLS procedures. All components are private.

2.7 Argument lists and calling sequences

We use square brackets [] to indicate OPTIONAL arguments.

2.7.1 The initialization subroutine

The initialization subroutine must be called for each solver used to initialize data and solver-specific control parame-

ters.

CALL PSLS initialize(data, control, inform)

data is a scalar INTENT(OUT)argument of type PSLS data type (see §2.6.5). It is used to hold data about the problem

being solved.

control is a scalar INTENT(OUT)argument of type PSLS control type (see §2.6.2). On exit, control contains

solver-specific default values for the components as described in §2.6.2. These values should only be changed

after calling PSLS initialize.

inform is a scalar INTENT(OUT)argument of type PSLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

2.7.2 The subroutine for constructing the preconditioner

This subroutine assembles and factorizes the required preconditioner from the input matrix A as follows:

CALL PSLS form and factorize(matrix, data, control, inform[, SUB])

matrix is scalar INTENT(IN) argument of type SMT type that is used to specify A. The user must set all of the relevant

components of matrix according to the storage scheme desired (see §2.6.1). Incorrectly-set components will

result in errors flagged in inform%status, see §2.8.

data is a scalar INTENT(INOUT) argument of type PSLS data type (see §2.6.5). It is used to hold the factors of the

preconditioner and other data concerning the matrix used. It must have been initialized by a call to PSLS ini-

tialize.

control is scalar INTENT(IN) argument of type PSLS control type. Its components control the action of the

analysis phase, as explained in §2.6.2.

inform is a scalar INTENT(INOUT) argument of type PSLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

SUB is an OPTIONAL INTENT(IN) rank-one default assumed-size INTEGER(ip) argument that may be used to provide

a set of distinct indices that specify the rows (and, by symmetry, columns) of A that are to be considered. Each

component of SUB must lie between 1 and n, and they should be input in increasing order. If SUB is not supplied,

all indices 1 ≤ i ≤ n will be used.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 PSLS (May 24, 2024) GALAHAD

GALAHAD PSLS

2.7.3 The subroutine for updating the preconditioner

This subroutine updates the factorization of the preconditioner when a subset of the rows (and, by symmetry, columns)

are removed.

CALL PSLS update factors(DEL, data, control, inform)

DEL is an INTENT(IN) rank-one default assumed-size INTEGER(ip) argument whose indices are those of rows (and

columns) of A that are to be deleted. Each component of DEL must lie between 1 and n.

data is a scalar INTENT(INOUT) argument of type PSLS data type (see §2.6.5). It is used to hold the factors of the

updated preconditioner and other data concerning the matrix used. It must have been previously set by a call to

PSLS form and factorize.

control is scalar INTENT(IN) argument of type PSLS control type. Its components control the action of the

analysis phase, as explained in §2.6.2.

inform is a scalar INTENT(INOUT) argument of type PSLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

2.7.4 The subroutine for applying the preconditioner

Given the preconditioner P, a set of equations Px = b may be solved as follows:

CALL PSLS apply(X, data, control, inform)

X is an INTENT(INOUT) assumed-shape array argument of rank 1 and of type REAL(rp). On entry, X must

be set to the vector b, and on successful return it holds the solution x. The i-th component of b and the

resulting i-th component of the solution x occupy the i-th component of X. Any component corresponding to

rows/columns not in the initial subset recorded by PSLS form and factorize, or in those subsequently deleted

by PSLS update factors, will not be altered.

data is a scalar INTENT(INOUT) argument of type PSLS data type (see §2.6.5). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to PSLS initialize and not

altered by the user in the interim.

control is scalar INTENT(IN) argument of type PSLS control type. Its components control the action of the solve

phase, as explained in §2.6.2.

inform is a scalar INTENT(INOUT) argument of type PSLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

2.7.5 The termination subroutine

All previously allocated internal arrays are deallocated and OpenMP locks destroyed as follows:

CALL PSLS terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type PSLS data type (see §2.6.5). It is used to hold the factors and

other data about the problem being solved. It must have been initialized by a call to PSLS initialize and not

altered by the user in the interim. On exit, its allocatable array components will have been deallocated.

control is scalar INTENT(IN) argument of type PSLS control type. Its components control the action of the

termination phase, as explained in §2.6.2.

inform is a scalar INTENT(INOUT) argument of type PSLS inform type (see §2.6.4). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.8.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PSLS (May 24, 2024) 9

PSLS GALAHAD

2.8 Warning and error messages

A negative value of inform%status on exit from the subroutines indicates that an error has occurred. No further calls

should be made until the error has been corrected. Possible values are:

-1 An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2 A deallocation error occurred. A message indicating the offending array is written on unit control%error and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3 One of the restrictions matrix%n > 0 or matrix%ne < 0, for co-ordinate entry, or requirements that matrix%type

contain its relevant string ’COORDINATE’, ’SPARSE BY ROWS’ or ’DENSE’ has been violated.

-9 The solver required by SLS reported an error during its analysis phase. See inform%SLS inform%status for more

details.

-10 The solver required by SLS reported an error during its factorization phase. See inform%SLS inform%status

for more details.

-20 The matrix is not positive definite while the solver used expected it to be.

-26 The requested factorization solver is not available.

-29 A specified option is not available with this solver.

-45 The requested preconditioner is not available.

-80 An error occurred when calling HSL MI28. See inform%mi28 info%stat for more details.

2.9 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type PSLS control type (see §2.6.2), by reading an appropriate data specification file using the subrou-

tine PSLS read specfile. This facility is useful as it allows a user to change PSLS control parameters without editing

and recompiling programs that call PSLS.

A specification file, or specfile, is a data file containing a number of “specification commands”. Each command

occurs on a separate line, and comprises a “keyword”, that is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specification file is limited to 80 characters, including the blanks separating

keyword and value.

The portion of the specification file used by PSLS read specfile must start with a “BEGIN PSLS” command and

end with an “END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by PSLS_read_specfile ..)

BEGIN PSLS

keyword value

.......

keyword value

END

(.. lines ignored by PSLS_read_specfile ..)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 PSLS (May 24, 2024) GALAHAD

GALAHAD PSLS

where keyword and value are two strings separated by (at least) one blank. The “BEGIN PSLS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN PSLS SPECIFICATION

and

END PSLS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN PSLS” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a

! or * character is also ignored (as is the ! or * character itself). This provides an easy way to “comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameter may be of three different types, namely integer, character or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively).

The specification file must be open for input when PSLS read specfile is called, and the associated unit number

passed to the routine in device (see below). Note that the corresponding file is rewound, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

PSLS read specfile.

2.9.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL PSLS_read_specfile(control, device)

control is a scalar INTENT(INOUT) argument of type PSLS control type (see §2.6.2). Default values should have

already been set, perhaps by calling PSLS initialize. On exit, individual components of control may have

been changed according to the commands found in the specfile. Specfile commands and the component (see

§2.6.2) of control that each affects are given in Table 2.2.

device is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the unit number on which the

specification file has been opened. If device is not open, control will not be altered and execution will

continue, but an error message will be printed on unit control%error.

3 GENERAL INFORMATION

Workspace: Provided automatically by the module.

Other modules used directly: GALAHAD CLOCK, GALAHAD SYMBOLS, GALAHAD SPACE single/double, GALAHAD SORT-

single/double, GALAHAD SPECFILE single/double, GALAHAD SMT single/double, GALAHAD QPT single-

/double, GALAHAD SLS single/double, GALAHAD SCU single/double, GALAHAD EXTEND single/double,

GALAHAD NORMS single/double, LANCELOT BAND single/double.

Other routines called directly: Optionally MC61, HSL MI28 and ICFS, plus those called by GALAHAD SLS.

Input/output: Output is under control of the arguments control%error, and control%out.

Restrictions: matrix%n≥ 1, matrix%ne≥ 0 if matrix%type = ’COORDINATE’, and matrix%type is one of ’COORDINATE’,

’SPARSE BY ROWS’ or ’DENSE’.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003 and optionally OpenMP. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PSLS (May 24, 2024) 11

PSLS GALAHAD

4 METHOD

The basic preconditioners are described in detail in Section 3.3.10 of

A. R. Conn, N. I. M. Gould and Ph. L. Toint (1992). LANCELOT. A fortran package for large-scale nonlinear

optimization (release A). Springer Verlag Series in Computational Mathematics 17, Berlin,

along with the more modern versions implements in ICFS due to

C.-J. Lin and J. J. Moré (1999). Incomplete Cholesky factorizations with limited memory. SIAM Journal on Scientific

Computing 21 21-45,

and in HSL MI28 described by

J. A. Scott and M. Tu̇ma (2013). HSL MI28: an efficient and robust limited-memory incomplete Cholesky factoriza-

tion code. ACM Transactions on Mathematical Software 40(4) (2014), Article 24.

The factorization methods used by the GALAHAD package SLS in conjunction with some preconditioners are

described in the documentation to that package. Orderings to reduce the bandwidth, as implemented in HSL’s MC61,

are due to

J. K. Reid and J. A. Scott (1999) Ordering symmetric sparse matrices for small profile and wavefront International

Journal for Numerical Methods in Engineering 45 1737-1755.

If a subset of the rows and columns are specified, the remaining rows/columns are removed before processing.

Any subsequent removal of rows and columns is achieved using the GALAHAD Schur-complement updating package

SCU unless a complete re-factorization is likely more efficient.

5 EXAMPLE OF USE

We illustrate the use of the package on the (indefinite) sparse matrix

2 3

3 4 6

4 1 5

5

6 1

(Note that this example does not illustrate all the facilities). Then, choosing the solver SILS, we may use the following

code to find a tridiagonal (banded, with a semi-bandwidth of 1) preconditioner and apply it to a given vector:

PROGRAM PSLS_EXAMPLE ! GALAHAD 4.0 - 2022-01-24 AT 09:15 GMT.

USE GALAHAD_PSLS_double

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

TYPE (SMT_type) :: matrix

TYPE (PSLS_data_type) :: data

TYPE (PSLS_control_type) control

TYPE (PSLS_inform_type) :: inform

INTEGER, PARAMETER :: n = 5

INTEGER, PARAMETER :: ne = 7

REAL (KIND = wp) :: X(n)

INTEGER :: s

! allocate and set lower triangle of matrix in co-ordinate form

CALL SMT_put(matrix%type, ’COORDINATE’, s)

matrix%n = n ; matrix%ne = ne

ALLOCATE(matrix%val(ne), matrix%row(ne), matrix%col(ne))

matrix%row = (/ 1, 2, 3, 3, 4, 5, 5 /)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 PSLS (May 24, 2024) GALAHAD

GALAHAD PSLS

matrix%col = (/ 1, 1, 2, 3, 3, 2, 5 /)

matrix%val = (/ 2.0_wp, 3.0_wp, 4.0_wp, 1.0_wp, 5.0_wp, 6.0_wp, 1.0_wp /)

! problem setup complete

! specify the solver used by SLS (in this case sils)

CALL PSLS_initialize(data, control, inform)

control%preconditioner = 2 ! band preconditioner

control%semi_bandwidth = 1 ! semi-bandwidth of one

control%definite_linear_solver = ’sils’

! form and factorize the preconditioner, P

CALL PSLS_form_and_factorize(matrix, data, control, inform)

IF (inform%status < 0) THEN

WRITE(6, ’(A, I0)’) &

’ Failure of PSLS_form_and_factorize with status = ’, inform%status

STOP

END IF

! use the factors to solve P x = b, with b input in x

X(: n) = (/ 8.0_wp, 45.0_wp, 31.0_wp, 15.0_wp, 17.0_wp /)

CALL PSLS_apply(X, data, control, inform)

IF (inform%status == 0) THEN

WRITE(6, "(’ PSLS - Preconditioned solution is ’, 5F6.2)") X

ELSE

WRITE(6, "(’ PSLS - exit status = ’, I0)") inform%status

END IF

! clean up

CALL PSLS_terminate(data, control, inform)

DEALLOCATE(matrix%type, matrix%val, matrix%row, matrix%col)

STOP

END PROGRAM PSLS_EXAMPLE

This produces the following output:

PSLS - Preconditioned solution is -6.03 8.03 -4.66 4.20 17.00

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! allocate and set lower triangle of matrix in co-ordinate form

...

! problem setup complete

by

! allocate and set lower triangle of matrix in spares row form

CALL SMT_put(matrix%type, ’SPARSE_BY_ROWS’, s)

matrix%n = n

ALLOCATE(matrix%val(ne), matrix%col(ne), matrix%ptr(n + 1))

matrix%ptr = (/ 1, 2, 3, 5, 6, 8 /)

matrix%col = (/ 1, 1, 2, 3, 3, 2, 5 /)

matrix%val = (/ 2.0_wp, 3.0_wp, 4.0_wp, 1.0_wp, 5.0_wp, 6.0_wp, 1.0_wp /)

! problem setup complete

or using a dense storage format with the replacement lines

! allocate and set lower triangle of matrix in dense form

CALL SMT_put(matrix%type, ’DENSE’, s)

matrix%n = n

ALLOCATE(matrix%val(n * (n + 1) / 2))

matrix%val = (/ 2.0_wp, 3.0_wp, 0.0_wp, 0.0_wp, 4.0_wp, 1.0_wp, &

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PSLS (May 24, 2024) 13

PSLS GALAHAD

0.0_wp, 0.0_wp, 5.0_wp, 0.0_wp, 0.0_wp, 6.0_wp, &

0.0_wp, 0.0_wp, 1.0_wp /)

! problem setup complete

respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 PSLS (May 24, 2024) GALAHAD

GALAHAD PSLS

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

preconditioner-used %preconditioner integer

semi-bandwidth-for-band-preconditioner %semi bandwidth integer

maximum-column-nonzeros-in-schur-complement %max col integer

number-of-lin-more-vectors %icfs vectors integer

mi28-l-fill-size %mi28 lsize integer

mi28-r-entry-size %mi28 rsize integer

minimum-diagonal %min diagonal real

new-structure %new structure logical

get-semi-bandwidth %get semi bandwidth logical

get-norm-residual %get norm residual logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

definite-linear-equation-solver %definite linear solver character

output-line-prefix %prefix character

Table 2.2: Specfile commands and associated components of control.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PSLS (May 24, 2024) 15

