
GALAHAD PRESOLVE

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Presolving aims to improve the formulation of a given optimization problem by applying a sequence of simple

transformations, and thereby to produce a “reduced” problem in a “standard form” that should be simpler to solve.

This reduced problem may then be passed to an appropriate solver. Once the reduced problem has been solved, it is

then “restored” to recover the solution for the original formulation.

The package GALAHAD PRESOLVE applies presolving techniques to a linear

minimize ℓ(x) = f + gT x (1.1)

or quadratic program

minimize q(x) = f + gT x+ 1
2 xT Hx (1.2)

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m, (1.3)

and simple bounds

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n, (1.4)

where the scalar f , the n-dimensional vectors g, xl and xu, the m-dimensional vectors cl and cu, the n× n symmetric

matrix H and the m× n matrix A (whose rows are the vectors aT
i) are given. Furthermore, bounds on the Lagrange

multipliers y associated with the general linear constraints and on the dual variables z associated with the simple bound

constraints

yl
i ≤ yi ≤ yu

i , i = 1, . . . ,m,

and

zl
i ≤ zi ≤ zu

i , i = 1, . . . ,n,

are also provided, where the m-dimensional vectors yl and yu, as well as the n-dimensional vectors xl and xu are given.

Any component of cl , cu, xl , xu, yl , yu, zl or zu may be infinite.

ATTRIBUTES — Versions: GALAHAD PRESOLVE single, GALAHAD PRESOLVE double. Uses: GALAHAD SMT, GAL-

AHAD QPT, GALAHAD SPECFILE, GALAHAD SORT, GALAHAD SYMBOLS. Date: March 2002. Origin: N. I. M. Gould,

Rutherford Appleton Laboratory, and Ph. L. Toint, The University of Namur, Belgium. Language: Fortran 95 + TR

15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD PRESOLVE single

with the obvious substitution GALAHAD PRESOLVE double, GALAHAD PRESOLVE single 64 and GALAHAD PRESOLVE double 64

for the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT problem type, QPT problem type,

PRESOLVE control type, PRESOLVE inform type and PRESOLVE data type (Section 2.3) and the five subroutines

PRESOLVE initialize, PRESOLVE read specfile, PRESOLVE apply, PRESOLVE restore, PRESOLVE terminate,

(Section 2.4) must be renamed on one of the USE statements.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 1

PRESOLVE GALAHAD

2.1 Matrix storage formats

Both the Hessian matrix H and the constraint Jacobian A may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The

order is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to H (thus

requiring integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in

the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to H (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square A.

2.1.5 Zero storage format

If H is the zero matrix (i.e., hi j = 0 for all 1 ≤ i ≤ j ≤ n), no entries need be stored.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

2.3 The derived data types

Six derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices A and H. The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that either holds the number of matrix entries or is used to flag the

storage scheme used.

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of a symmetric matrix H is represented as a single entry (see §2.1.1–

2.1.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may the column indices

of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

2.3.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

new problem structure is a scalar variable of type default LOGICAL, that is .TRUE. if this is the first (or only)

problem in a sequence of problems with identical “structure” to be attempted, and .FALSE. if a previous problem

with the same “structure” (but different numerical data) has been solved. We say that two problems have the

same structure if they differ only in their components of type REAL, which means that they share the same

dimensions and matrix sparsity patterns. See Section 4 for a description of how the package may be applied to

more than one problem with the same structure.

When a .TRUE. value is specified for this component on entry in PRESOLVE apply (see below), this routine

performs extensive checks on the consistency of the problem structure and also allocates the necessary problem

dependent workspace. It is thus mandatory that the .TRUE. value is used on the first call to PRESOLVE apply, but

the .FALSE. value should be used for any subsequent call to this routine for problems with the same structure.

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip), that holds the number of general linear constraints, m.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H. The following components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, for the

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 3

PRESOLVE GALAHAD

diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the string

DIAGONAL, and for the zero storage scheme (see Section 2.1.4), the first four components of H%type must

contain the string ZERO.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if prob is of derived type PRESOLVE problem type and involves a

Hessian we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(prob%H%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

four schemes.

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of the storage schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any of

the other four schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

gradient kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the components of the

gradient g have special or general values. Possible values for gradient kind are:

0 In this case, g = 0.

1 In this case, gi = 1 for i = 1, . . . ,n.

6= 0,1 In this case, general values of g will be used, and will be provided by the user in the component G.

G is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient g of the linear term

of the quadratic objective function. The j-th component of G, j = 1, . . . ,n, contains g j. If gradient kind = 0,

1, G need not be allocated.

f is a scalar variable of type REAL(rp), that holds the constant term, f , in the objective function.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A. The following components are used:

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

Just as for H%type above, the procedure SMT put may be used to allocate sufficient space and insert

the required keyword into A%type. Once again, if prob is of derived type PRESOLVE problem type and

involves a Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

A%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two schemes.

A%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian

matrix A in any of the storage schemes discussed in Section 2.1.

A%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

A%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip), that holds the starting position

of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage scheme

(see Section 2.1.3). It need not be allocated when the other schemes are used.

C l is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of lower bounds cl

on the general constraints. The i-th component of C l, i = 1, . . . ,m, contains cl
i . Infinite bounds are allowed

by setting the corresponding components of C l to any value smaller than -infinity, where infinity is a

component of the control array control (see Section 2.3.3).

C u is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of upper bounds cu on

the general constraints. The i-th component of C u, i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed

by setting the corresponding components of C u to any value larger than infinity, where infinity is a

component of the control array control (see Section 2.3.3).

C status is a rank-one allocatable array of dimension m and type INTEGER(ip), that holds the status of the problem

constraints (active or inactive). A constraint is said to be inactive if it is not included in the formulation of the

considered quadratic program.

X l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xl on

the the variables. The j-th component of X l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting

the corresponding components of X l to any value smaller than -infinity, where infinity is a component of

the control array control (see Section 2.3.3).

X u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xu on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity, where infinity is a component of

the control array control (see Section 2.3.3).

X status is a rank-one allocatable array of dimension n and type INTEGER(ip), that holds the status of the prob-

lem variables (active or inactive). Variable j is said to be inactive if its value is fixed to the current value of

problem%X(j), in which case it can be seen as a parameter of the quadratic program.

Y l is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of lower bounds yl on

the the multipliers. The j-th component of Y l, j = 1, . . . ,m, contains yl
j. Infinite bounds are allowed by setting

the corresponding components of Y l to any value smaller than -infinity, where infinity is a component of

the control array control (see Section 2.3.3).

Y u is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of upper bounds yu on

the multipliers. The j-th component of Y u, j = 1, . . . ,m, contains yu
j . Infinite bounds are allowed by setting the

corresponding components of Y u to any value larger than that infinity, where infinity is a component of

the control array control (see Section 2.3.3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 5

PRESOLVE GALAHAD

Z l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds zl

on the the dual variables. The j-th component of Z l, j = 1, . . . ,n, contains zl
j. Infinite bounds are allowed

by setting the corresponding components of Z l to any value smaller than -infinity, where infinity is a

component of the control array control (see Section 2.3.3).

Z u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds zu on

the dual variables. The j-th component of Z u, j = 1, . . . ,n, contains zu
j . Infinite bounds are allowed by setting

the corresponding components of Z u to any value larger than that infinity, where infinity is a component

of the control array control (see Section 2.3.3).

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

Z is a rank-one allocatable array of dimension n and type default REAL(rp), that holds the values z of estimates

of the dual variables corresponding to the simple bound constraints (see Section 4). The j-th component of Z,

j = 1, . . . ,n, contains z j .

C is a rank-one allocatable array of dimension m and type default REAL(rp), that holds the values Ax of the

constraints. The i-th component of C, i = 1, . . . ,m, contains aT
i x ≡ (Ax)i.

Y is a rank-one allocatable array of dimension m and type REAL(rp), that holds the values y of estimates of the

Lagrange multipliers corresponding to the general linear constraints (see Section 4). The i-th component of Y,

i = 1, . . . ,m, contains yi.

2.3.3 The derived data type for holding control parameters

The derived data type PRESOLVE control type is used to hold controlling data. Default values may be obtained

by calling PRESOLVE initialize (see Section 2.4.1), while individual components may also be changed by calling

PRESOLVE read specfile (see Section 2.6.1). The components of PRESOLVE control type are:

termination is a scalar variable of type INTEGER(ip), that determines the strategy for terminating the presolve

analysis. Possible values are:

1. presolving continues so long as one of the sizes of the problem (n, m, sizes of A and H) is being reduced.

2. presolving continues so long as further problem transformations are possible.

Note that the maximum number of analysis passes (max nbr passes) and the maximum number of problem

transformations (max nbr transforms) set an upper limit on the presolving effort irrespective of the choice

of termination. The only effect of this latter parameter is to allow for early termination. The default is

termination = 1.

max nbr transforms is a scalar variable of type INTEGER(ip), that determines the maximum number of problem

transformations. The default is max nbr transforms = 1000000.

max nbr passes is a scalar variable of type INTEGER(ip), that determines the maximum number of analysis passes

for problem analysis during a single call to PRESOLVE apply. The default is max nbr passes = 25.

c accuracy is a scalar variable of type REAL(rp), that holds the relative accuracy at which the general linear con-

straints are satisfied at the exit of the solver. Note that this value is not used before the restoration of the problem.

The default is c accuracy = 10−4 in single precision, and c accuracy = 10−6 in double precision.

z accuracy is a scalar variable of type REAL(rp), that holds the relative accuracy at which the dual feasibility

constraints are satisfied at the exit of the solver. Note that this value is not used before the restoration of the

problem. The default is z accuracy = 10−4 in single precision, and z accuracy = 10−6 in double precision.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

infinity is a scalar variable of type REAL(rp), that holds the value beyond which a number is deemed equal to plus

infinity (minus infinity being defined as its opposite) The default is infinity = 1019.

out is a scalar variable of type INTEGER(ip), that holds the unit number associated with the device used for print-

out. The default is out = 6.

errout is a scalar variable of type INTEGER(ip), that holds the unit number associated with the device used for

error ouput. The default is errout = 6.

print level is a scalar variable of type INTEGER(ip), that holds the level of printout requested by the user. See

Section 2.7. The default is print level = 0.

dual transformations is a scalar variable of type default LOGICAL, that has the value .TRUE. if dual transforma-

tions of the problem are allowed. Note that this implies that the reduced problem is solved accurately (for

the dual feasibility condition to hold) as to be able to restore the problem to the original constraints and vari-

ables. The value .FALSE. prevents dual transformations to be applied, thus allowing for inexact solution of

the reduced problem. The setting of this control parameter overides the values of get z, get z bounds, get y,

get y bounds, dual constraints freq, singleton columns freq, doubleton columns freq, z accuracy

and check dual feasibility. The default is dual transformations = .TRUE..

redundant xc is a scalar variable of type default LOGICAL, that has the value .TRUE. if redundant variables and

constraints (that is variables that don’t occur in the objective function and are either unbounded above with

all their coefficients in A being positive for constraints that are unbounded above and negative for constraints

that are unbounded below, or unbounded below with all their coefficients in A being positive for constraints

that are unbounded below or negative for all constraints that are unbounded above) are to be removed from the

problem with their associated constraints before any other problem transformation is attempted. The default is

redundant xc = .TRUE..

primal constraints freq is a scalar variable of type INTEGER(ip), that holds the frequency of primal constraints

analysis in terms of presolving passes. A value of 2 indicates that primal constraints are analyzed every 2 pre-

solving passes. A zero value indicates that they are never analyzed. The default is primal constraints freq

= 1.

dual constraints freq is a scalar variable of type INTEGER(ip), that holds the frequency of dual constraints anal-

ysis in terms of presolving passes. A value of 2 indicates that dual constraints are analyzed every 2 presolving

passes. A zero value indicates that they are never analyzed. The default is dual constraints freq = 1.

singleton columns freq is a scalar variable of type INTEGER(ip), that holds the frequency of singleton column

analysis in terms of presolving passes. A value of 2 indicates that singleton columns are analyzed every 2

presolving passes. A zero value indicates that they are never analyzed. The default is singleton columns freq

= 1.

doubleton columns freq is a scalar variable of type INTEGER(ip), that holds the frequency of doubleton column

analysis in terms of presolving passes. A value of j indicates that doubleton columns are analyzed every 2

presolving passes. A zero value indicates that they are never analyzed. The default is doubleton columns freq

= 1.

unc variables freq is a scalar variable of type INTEGER(ip), that holds the frequency of the attempts to fix lin-

early unconstrained variables, expressed in terms of presolving passes. A value of 2 indicates that attempts

are made every 2 presolving passes. A zero value indicates that no attempt is ever made. The default is

unc variables freq = 1.

dependent variables freq is a scalar variable of type default INTEGER(ip), that holds the frequency of search for

dependent variables in terms of presolving passes. A value of 2 indicates that dependent variables are searched

for every 2 presolving passes. A zero value indicates that no attempt is ever made to detect such variables. The

default is dependent variables freq = 1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 7

PRESOLVE GALAHAD

sparsify rows freq is a scalar variable of type INTEGER(ip), that holds the frequency of the attempts to make A

sparser in terms of presolving passes. A value of 2 indicates that attempts are made every 2 presolving passes.

A zero value indicates that no attempt is ever made. The default is sparsify rows freq = 1.

max fill is a scalar variable of type INTEGER(ip), that holds the maximum percentage of fill in each row of A.

Note that this is a row-wise measure: globally fill never exceeds the storage initially used for A, no matter how

large max fill is chosen. If max fill is negative, no limit is put on row fill. The default is max fill = -1 (no

limit).

transf file nbr is a scalar variable of type INTEGER(ip), that holds the unit number to be associated with the

file(s) used for saving problem transformations on a disk file. The default is transf file nbr = 52.

transf buffer size is a scalar variable of type INTEGER(ip), that holds the number of transformations that can

be kept in memory at once (that is without being saved on a disk file). The default is transf buffer size =

50000.

transf file status is a scalar variable of type INTEGER(ip), that holds the exit status of the file where problem

transformations are saved:

0. the file is not deleted after program termination,

1. the file is not deleted after program termination.

The default is transf file status = 0.

transf file name is a scalar variable of type INTEGER(ip), that holds the name of the file (to be) used for storing

problem transformation on disk. Note that this parameter must be identical for all calls to PRESOLVE that follows

PRESOLVE read specfile. It can then only be changed after calling PRESOLVE terminate. The default is

transf file name = transf.sav.

y sign is a scalar variable of type INTEGER(ip), that determines the convention of sign used for the multipliers

associated with the general linear constraints. Possible values are:

1. all multipliers corresponding to active inequality constraints are non-negative for lower bound constraints

and non-positive for upper bounds constraints;

-1. all multipliers corresponding to active inequality constraints are non-positive for lower bound constraints

and non-negative for upper bounds constraints.

The default is y sign = 1.

inactive y is a scalar variable of type INTEGER(ip), that determines whether or not the multipliers corresponding

to general linear constraints that are inactive at the unreduced point corresponding to the reduced point on input

of PRESOLVE restore must be set to zero. Possible values are:

0. all multipliers corresponding to inactive general linear constraints are forced to zero, possibly at the expense

of deteriorating the dual feasibility condition. Note that this option is inactive unless get y = get c

get c bounds = .TRUE..

1. multipliers corresponding to inactive general linear constraints are left unaltered.

The default is inactive y = 1.

z sign is a scalar variable of type INTEGER(ip), that determines the convention of sign used for the dual variables

associated with the bound constraints. Possible values are:

1. all dual variables corresponding to active lower bounds are non-negative, and non-positive for active upper

bounds;

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

-1. all dual variables corresponding to active lower bounds are non-positive, and non-negative for active upper

bounds.

The default is z sign = 1.

inactive z is a scalar variable of type INTEGER(ip), that determines whether or not the dual variables correspond-

ing to bound constraints that are inactive at the unreduced point corresponding to the reduced point on input of

PRESOLVE restore must be set to zero. Possible values are:

0. all dual variables corresponding to inactive bounds are forced to zero, possibly at the expense of deteriorating

the dual feasibility condition. Note that this option is inactive unless get z = get x get x bounds =

.TRUE..

1. dual variables corresponding to inactive bounds are left unaltered.

The default is inactive z = 1.

final x bounds is a scalar variable of type INTEGER(ip), that holds the type of final bounds on the variables

returned by the package. This parameter can take the values:

0. the final bounds are the tightest bounds known on the variables (at the risk of being redundant with other

constraints, which may cause degeneracy);

1. the best known bounds that are known to be non-degenerate. This option implies that an additional real

workspace of size 2 * problem%n must be allocated;

2. the loosest bounds that are known to keep the problem equivalent to the original problem. This option also

implies that an additional real workspace of size 2 * problem%n must be allocated;

Note that his parameter must be identical for all calls to PRESOLVE following PRESOLVE read specfile. The

default is final x bounds = 0.

final z bounds is a scalar variable of type INTEGER(ip), that holds the type of final bounds on the dual variables

returned by the package. This parameter can take the values:

0. the final bounds are the tightest bounds known on the dual variables (at the risk of being redundant with

other constraints, which may cause degeneracy);

1. the best known bounds that are known to be non-degenerate. This option implies that an additional real

workspace of size 2 * problem%n must be allocated;

2. the loosest bounds that are known to keep the problem equivalent to the original problem. This option also

implies that an additional real workspace of size 2 * problem%n must be allocated;

Note that his parameter must be identical for all calls to PRESOLVE following PRESOLVE read specfile. The

default is final z bounds = 0.

final c bounds is a scalar variable of type INTEGER(ip), that holds the type of final bounds on the constraints

returned by the package. This parameter can take the values:

0. the final bounds are the tightest bounds known on the constraints (at the risk of being redundant with other

constraints, which may cause degeneracy);

1. the best known bounds that are known to be non-degenerate. This option implies that an additional real

workspace of size 2 * problem%n must be allocated;

2. the loosest bounds that are known to keep the problem equivalent to the original problem. This option also

implies that an additional real workspace of size 2 * problem%n must be allocated;

Note that his parameter must be identical for all calls to PRESOLVE following PRESOLVE read specfile. If

different from 0, its value must be equal to that of final x bounds. The default is final c bounds = 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 9

PRESOLVE GALAHAD

final y bounds is a scalar variable of type INTEGER(ip), that holds the type of final bounds on the multipliers

returned by the package. This parameter can take the values:

0. the final bounds are the tightest bounds known on the multipliers (at the risk of being redundant with other

constraints, which may cause degeneracy);

1. the best known bounds that are known to be non-degenerate. This option implies that an additional real

workspace of size 2 * problem%n must be allocated;

2. the loosest bounds that are known to keep the problem equivalent to the original problem. This option also

implies that an additional real workspace of size 2 * problem%n must be allocated;

Note that his parameter must be identical for all calls to PRESOLVE following PRESOLVE read specfile. The

default is final y bounds = 0.

check primal feasibility is a scalar variable of type default INTEGER(ip), that holds the level of feasibility

check (on the values of x) at the start of the restoration phase. This parameter can take the values:

0. no check at all;

1. the primal constraints are recomputed at x and a message issued if the computed value does not match the

input value, or if it is out of bounds (if print level ≥ 2);

2. the same as for 1, but PRESOLVE is terminated if an incompatibilty is detected.

The default is check primal feasibility = 0.

check dual feasibility is a scalar variable of type default INTEGER(ip), that holds the level of dual feasibility

check (on the values of x, y and z) at the start of the restoration phase. This parameter can take the values:

0. no check at all;

1. the primal constraints are recomputed at (x,y,z) and a message issued if the computed value does not match

the input value, or if it is out of bounds (if print level ≥ 2);

2. the same as for 1, but PRESOLVE is terminated if an incompatibilty is detected.

The default is check dual feasibility = 0.

get q is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the value of the objective function must

be reconstructed by PRESOLVE restore from the (solved) reduced problem. The default is get q = .TRUE..

get f is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the value of the objective function’s

independent term is to be be reconstructed byPRESOLVE restore from the (solved) reduced problem. The

default is get f = .TRUE..

get g is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the values of the objective function’s

gradient is to be be reconstructed by PRESOLVE restore from the (solved) reduced problem. The default is

get g = .TRUE..

get H is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the values of the objective function’s

Hessian is to be be reconstructed by PRESOLVE restore from the (solved) reduced problem. The default is

get H = .TRUE..

get A is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the values of the constraints’ Jacobian

is to be be reconstructed by PRESOLVE restore from the (solved) reduced problem. The default is get A =

.TRUE..

get x is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the value of the variables must be

reconstructed by PRESOLVE restore from the (solved) reduced problem. The default is get x = .TRUE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

get x bounds is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the values of the bounds on

the problem variables must be reconstructed by PRESOLVE restore from the (solved) reduced problem. The

default is get x bounds = .TRUE..

get z is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the value of the dual variables must

be reconstructed by PRESOLVE restore from the (solved) reduced problem. The default is get z = .TRUE..

get z bounds is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the values of the bounds on

the problem dual variables must be reconstructed by PRESOLVE restore from the (solved) reduced problem. If

set, this may require to store specific additional information on the problem transformations, therefore increasing

the storage needed for these transformations. Note that this parameter must be identical for all calls to PRESOLVE

following PRESOLVE read specfile. The default is get z bounds = .TRUE..

get c is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the values of the constraints must be

reconstructed by PRESOLVE restore from the (solved) reduced problem. The default is get c = .TRUE..

get c bounds is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the values of the bounds on

the problem constraints must be reconstructed by PRESOLVE restore from the (solved) reduced problem. The

default is get c bounds = .TRUE..

get y is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the values of the multipliers must be

reconstructed by PRESOLVE restore from the (solved) reduced problem. The default is get y = .TRUE..

get y bounds is a scalar variable of type default LOGICAL, that must be set to .TRUE. if the values of the bounds on

the problem multipliers must be reconstructed by PRESOLVE restore from the (solved) reduced problem. If set,

this may require to store specific additional information on the problem transformations, therefore increasing

the storage needed for these transformations. Note that this parameter must be identical for all calls to PRESOLVE

following PRESOLVE read specfile. The default is get y bounds = .TRUE..

pivot tol is a scalar variable of type REAL(rp), that holds the relative pivot tolerance above which pivoting is

considered as numerically stable in transforming the coefficient matrix A. A zero value corresponds to a totally

unsafeguarded pivoting strategy (potentially unstable). The default is pivot tol = 10−6 in single precision, and

pivot tol = 10−10 in double precision.

min rel improve is a scalar variable of type default REAL(rp), that holds the minimum relative improvement in the

bounds on x, y and z for a tighter bound on these quantities to be accepted in the course of the analysis. More

formally, if lower is the current value of the lower bound on one of the x, y or z, and if newlower is a tentative

tighter lower bound on the same quantity, it is only accepted if

newlower≥ lower+min rel improve∗max(1, |lower|).

Similarly, a tentative tighter upper bound newupper only replaces the current upper bound upper if

newupper≤ upper−min rel improve∗max(1, |upper|).

Note that this parameter must exceed the machine precision significantly. The default is min rel improve =

10−6 in single precision, and min rel improve = 10−10 in double precision.

max growth factor is a scalar variable of type default REAL(rp), that holds the maximum ratio that is allowed

for the absolute value of any data item of the reduced problem compared to the maximum absolute value of

any data item of the original problem. In the course of the presolving process, any transformation that would

result in violating this bound is skipped. The default is min growth factor = 104 in single precision, and

min growth factor = 108 in double precision.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 11

PRESOLVE GALAHAD

2.3.4 The derived data type for holding informational parameters

The derived data type PRESOLVE inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of PRESOLVE inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Sections 2.5 and 2.7

for details.

message is a character array of 3 lines of 80 characters each, containing a description of the exit condition on exit,

typically including more information than indicated in the description of status above. It is printed out on

device errout at the end of execution unless print level is 0.

nbr transforms is a scalar variable of type INTEGER(ip), that gives the the final number of problem transforma-

tions, as reported to the user at exit.

2.3.5 The derived data type for holding problem data

The derived data type PRESOLVE data type is used to hold all the data for a particular problem, or sequences of

problems with the same structure, between calls of PRESOLVE procedures. This data should be preserved, untouched,

from the initial call to PRESOLVE initialize to the final call to PRESOLVE terminate.

2.4 Argument lists and calling sequences

There are five procedures for user calls (see Section 2.6 for further features):

1. The subroutine PRESOLVE initialize is used to set default values, and initialize private data, before presolving

one or more problems with the same sparsity and bound structure.

2. The subroutine packagename read specfile is used to read the packagename specfile in order to possibly

modify the algoritmic default parameters (see Section 2.6.1).

3. The subroutine PRESOLVE apply is called to presolve the problem, that is to reduce it by applying suitable

problem transformations and permute it to standard form.

4. The subroutine PRESOLVE restore restores the (solved) reduced problem to the original definition of variables

and constraints;

5. The subroutine PRESOLVE terminate is provided to allow the user to automatically deallocate array compo-

nents of the private data, allocated by PRESOLVE, at the end of the solution process. It is important to do this if

the data object is re-used for another problem with a different structure since PRESOLVE initialize cannot

test for this situation, and any existing associated targets will subsequently become unreachable.

2.4.1 The initialization subroutine

Default values for the control parameters are provided as follows:

CALL PRESOLVE initialize(control, inform, data)

control is a scalar INTENT(OUT) argument of type PRESOLVE control type (see Section 2.3.3). On exit, control

contains default values for the components as described in Section 2.3.3. These values should only be changed

after calling PRESOLVE initialize.

inform is a scalar INTENT(OUT) argument of type PRESOLVE inform type (see Section 2.3.4). A successful call to

the routine PRESOLVE initialize is indicated when the component status has the value 0. For other return

values of status, see Section 2.5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

data is a scalar INTENT(INOUT) argument of type PRESOLVE data type (see Section 2.3.5). It is used to hold data

about the problem being solved. It should never be altered by the user.

2.4.2 The subroutine that applies presolving transformations to the problem

The presolving algorithm is called as follows:

CALL PRESOLVE apply(problem, control, inform, data)

Such a call must always be preceded by a call to PRESOLVE initialize.

problem is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.3.2) that contains the prob-

lem statement. It is used to hold data about the problem being solved. Users are free to choose whichever of

the three matrix formats described in Section 2.1 is appropriate for A and H for their application. Some compo-

nents of the problem structure need not be allocated or set on input, in which case they will be assigned suitable

default values. The components in question, their size and the associated default values are given in Table 2.1.

component size default component size default

X l n −∞ C l m −∞

X u n +∞ C u m +∞

X n (problem dependent) C m (problem dependent)

X status n 1 C status m 1

Z l n −∞ Y l m −∞

Z u n +∞ Y u m +∞

Z n (problem dependent) Y m (problem dependent)

Table 2.1: Defaults for unallocated array components of problem.

If the array problem%X status is allocated on entry, then possible value of its j-th component are as follows:

-2. the j-th variable is inactive in the sense that the quadratic program under consideration ignores it (this is

equivalent of fixing x j to problem%X(j); which obviously requires problem%X to be allocated);

1. the j-th variable is active (i.e. not inactive).

The meaning of the i-th component of problem%C status is identical, except that it relates to the i-th constraint:

-2. the i-th constraint is inactive in the sense that the quadratic program under consideration ignores it;

1. the j-th variable is active (i.e. not inactive).

On exit, the problem structure will contain the reduced problem, with its Hessian and Jacobian matrices

stored in sparse row-wise format; exceptionally, if problem%H%ne = 0, no values or indices of the Hessian

will be returned. Values for x, z, c, y and f will be provided, that are feasible for the reduced problem. Note that

frequently not all the space allocated for the original problem is used by the reduced one. However, crucial infor-

mation that is necessary to restore the problem to its original variables/constraints remains stored in the problem

structure, beyond that specified by the dimensions of the reduced problem. Thus modification (for instance by a

QP algorithm) of the reduced problem data is possible (except for problem%X status and problem%C status,

which should always remain unchanged), but no other data within the problem structure should be altered before

calling PRESOLVE restore.

control is a scalar INTENT(INOUT) argument of type PRESOLVE control type (see Section 2.3.3). Default values

may be assigned by calling PRESOLVE initialize prior to the first call to PRESOLVE apply.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 13

PRESOLVE GALAHAD

inform is a scalar INTENT(INOUT) argument of type PRESOLVE inform type (see Section 2.3.4). A successful call

to the routine PRESOLVE apply is indicated when the component status has the value 0. For other return values

of status, see Section 2.5.

data is a scalar INTENT(INOUT) argument of type PRESOLVE data type (see Section 2.3.5). It is used to hold data

about the problem being solved. It must never be altered by the user since the last call to any of the PRESOLVE

routines.

2.4.3 The restoration subroutine

The (solved) reduced problem is restored in the original variables/constraints and matrix format by calling

CALL PRESOLVE restore(problem, control, inform, data)

The choice of which components of the problem to restore is governed by the different %get * components of the

control structure (see Section 2.3.3).

problem is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.3.2). On entry, it is used to

hold data about the solved reduced problem. The values of problem%X status and problem%C status should

not have been altered since the exit from PRESOLVE apply.

On exit, the problem structure will contain selected components of the solved problem restored to the original

variables/constraints and/or matrix format. The selection of these elements is specified by setting the get *

components of the control dummy argument (see Section 2.3.3).

control is a scalar INTENT(INOUT) argument of type PRESOLVE control type (see Section 2.3.3). In particular,

its get * components specify which elements of the (solved) reduced problem must be restored to the original

formulation.

inform is a scalar INTENT(INOUT) argument of type PRESOLVE inform type (see Section 2.3.4). A successful call

to the routine PRESOLVE restoire is indicated when the component status has the value 0. For other return

values of status, see Section 2.5.

data is a scalar INTENT(INOUT) argument of type PRESOLVE data type (see Section 2.3.5). It is used to hold data

about the problem being solved. It must not have been altered by the user since the last call to any of the

PRESOLVE routines.

2.4.4 The termination subroutine

All previously allocated workspace arrays are deallocated as follows:

CALL PRESOLVE terminate(control, inform, data)

control is a scalar INTENT(IN) argument of type PRESOLVE control type exactly as for PRESOLVE initialize.

inform is a scalar INTENT(OUT) argument of type PRESOLVE inform type exactly as for PRESOLVE initialize.

A successful call to PRESOLVE terminate is indicated when the component status has the value 0. For other

return values of status, see Section 2.5.

data is a scalar INTENT(INOUT) argument of type PRESOLVE data type exactly as for PRESOLVE solve, which must

not have been altered by the user since the last call to PRESOLVE initialize. On exit, array components will

have been deallocated.

Note that a call to this routine is mandatory before PRESOLVE apply is called for a new quadratic program whose

structure differs from the current one.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

2.5 Warning and error messages

A negative value of info%status on exit from PRESOLVE initialize, PRESOLVE read specfile, PRESOLVE apply,

PRESOLVE restore, or PRESOLVE terminate indicates that an error has occurred. No further calls should be made

to the four three of these routines until the error has been corrected. Possible values are:

1. The maximum number of problem transformation has been reached. Note that this exit is not really an error,

since the problem can nevertheless be permuted and solved. It merely signals that further problem reduction

could possibly be obtained with a larger value of the parameter max nbr transforms.

-1. A workspace allocation failed.

-2. A file intended for saving problem transformations could not be opened.

-3. An input-output error occurred while saving transformations on the relevant disk file.

-4. The machine/compiler only supports less than 8 bits in a single integer (this error is thus very unlikely).

-21. The problem appears to be primal infeasible.

-22. The problem appears to be dual infeasible.

-23. The dimension of the gradient problem%G is not equal to the number of variables in the problem problem%n.

-24. The dimension of the vector problem%H val containing the entries of the Hessian is erroneously specified.

-25. The dimension of the vector problem%H ptr containing the addresses of the first entry of each Hessian row is

erroneously specified.

-26. The dimension of the vector problem%H col containing the column indices of the nonzero Hessian entries is

erroneously specified.

-27. The dimension of the vector problem%H row containing the row indices of the nonzero Hessian entries is erro-

neously specified.

-28. The dimension of the vector problem%A val containing the entries of the Jacobian is erroneously specified.

-29. The dimension of the vector problem%A ptr containing the addresses of the first entry of each Jacobian row is

erroneously specified.

-30. The dimension of the vector problem%A col containing the column indices of the nonzero Jacobian entries is

erroneously specified.

-31. The dimension of the vector problem%A row containing the row indices of the nonzero Jacobian entries is

erroneously specified;

-32. The dimension of the vector problem%X of variables is incompatible with the problem dimension problem%n.

-33. The dimension of the vector problem%X l of lower bounds on the variables is incompatible with the problem

dimension problem%n.

-34. The dimension of the vector problem%X u of upper bounds on the variables is incompatible with the problem

dimension problem%n.

-35. The dimension of the vector problem%Z of dual variables is incompatible with the problem dimension problem%n.

-36. The dimension of the vector problem%Z l of lower bounds on the dual variables is incompatible with the

problem dimension problem%n.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 15

PRESOLVE GALAHAD

-37. The dimension of the vector problem%Z u of upper bounds on the dual variables is incompatible with the

problem dimension problem%n.

-38. The dimension of the vector problem%C of constraints values is incompatible with the problem dimension

problem%m.

-39. The dimension of the vector problem%C l of lower bounds on the constraints is incompatible with the problem

dimension problem%m.

-40. The dimension of the vector problem%C u of upper bounds on the constraints is incompatible with the problem

dimension problem%m.

-41. The dimension of the vector problem%Y of multipliers values is incompatible with the problem dimension

problem%m.

-42. The dimension of the vector problem%Y l of lower bounds on the multipliers is incompatible with the problem

dimension problem%m.

-43. The dimension of the vector problem%Y u of upper bounds on the multipliers is incompatible with the problem

dimension problem%m.

-44. The problem structure has not been set or has been cleaned up before an attempt to apply PRESOLVE apply.

-45. The problem has not been analyzed before an attempt to permute it.

-46. The problem has not been permuted or fully reduced before an attempt to restore it.

-47. The column indices of a row of the sparse Hessian are not in increasing order, in that they specify an entry above

the diagonal.

-48. One of the files containing saved problem transformations has been corrupted between writing and reading.

-49. The dimension of the vector problem%X status of variables’ status is incompatible with the problem dimension

problem%n.

-50. The dimension of the vector problem%C status of constraints’ status is incompatible with the problem dimen-

sion problem%m.

-52. The problem does not contain any (active) variable (problem%n ≤ 0).

-53. The problem contains a negative number of constraints (problem%m < 0).

-54. The vectors are too long for the quicksort sorting routine (see the GALAHAD SORT module).

-55. The value of a variable that is obtained in PRESOLVE restore by substitution from a constraint is incoherent

with the variable’s bounds. This may be due to a relatively loose accuracy on the linear constraints. Try to

increase control%c accuracy.

-56. The value of a constraint that is obtained by recomputing its value on input of PRESOLVE restore from the

current x is incompatible with its declared value or its bounds. This may caused the restored problem to be

infeasible.

-57. The value of a dual variable that is obtained by recomputing its value on input of PRESOLVE restore (assuming

dual feasibility) from the current values of (x,y,z) is incompatible with its declared value. This may caused the

restored problem to be infeasible or suboptimal.

-58. A dual variable whose value is nonzero because the corresponding primal is at an artificial bound cannot be

zeroed while maintaining dual feasibility (in PRESOLVE restore). This can happen when (x,y,z) on input of

this routine are not (sufficiently) optimal.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

-60. A keyword was not recognized in the analysis of the specification file.

-61. A value was not recognized in the analysis of the specification file.

-63. The vector problem%G has not been allocated although it has general values.

-65. The vector problem%A val has not been allocated although problem%m > 0.

-66. The vector problem%A ptr has not been allocated although problem%m > 0 and A is stored in row-wise sparse

format.

-67. The vector problem%A col has not been allocated although problem%m > 0 and A is stored in row-wise sparse

format or sparse coordinate format.

-68. The vector problem%A row has not been allocated although problem%m > 0 and A is stored in sparse coordinate

format.

-69. The vector problem%H val has not been allocated although problem%H ne = −2 or problem%H ne = −1 or

problem%H ne > 0.

-70. The vector problem%H ptr has not been allocated although H is stored in row-wise sparse format.

-71. The vector problem%H col has not been allocated although H is stored in row-wise sparse format or problem%H ne

> 0 and H is stored sparse coordinate format.

-72. The vector problem%H row has not been allocated although problem%H ne > 0 and H is stored in sparse coor-

dinate format.

-73. The value of problem%A ne is erroneously specified.

-74. The value of problem%H ne is erroneously specified.

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type PRESOLVE control type (see Section 2.3.3), by reading an appropriate data specification file using

the subroutine PRESOLVE read specfile. This facility is useful as it allows a user to change PRESOLVE control

parameters without editing and recompiling programs that call PRESOLVE.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by PRESOLVE read specfile must start with a ”BEGIN PRESOLVE”

command and end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by PRESOLVE_read_specfile ..)

BEGIN PRESOLVE

keyword value

.......

keyword value

END

(.. lines ignored by PRESOLVE_read_specfile ..)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 17

PRESOLVE GALAHAD

where keyword and tt value are two strings separated by (at least) one blank. The “BEGIN PRESOLVE” and “END”

delimiter command lines may contain additional (trailing) strings so long as such strings are separated by one or more

blanks, so that lines such as

BEGIN PRESOLVE SPECIFICATION

and

END PRESOLVE SPECIFICATION

are acceptable. Furthermore, between the “BEGIN PRESOLVE” and “END” delimiters, specification commands may

occur in any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line

after a ! or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment

out” some specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of five different types, namely integer, logical, real, string or symbol.

Integer and real values may be expressed in any relevant Fortran integer and floating-point formats (respectively).

Permitted values for logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”,

”.FALSE.” and ”F”. Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

String are specified as a sequence of characters.

The specification file must be open for input when PRESOLVE read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by PRESOLVE read specfile.

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL PRESOLVE_read_specfile(device, control, inform)

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

control is a scalar INTENT(INOUT)argument of type PRESOLVE control type (see Section 2.3.3). Default values

should have already been set, perhaps by calling PRESOLVE initialize. On exit, individual components of

control may have been changed according to the commands found in the specfile. Specfile commands and the

component (see Section 2.3.3) of control that each affects are given in Tables 2.2 and 2.3.

inform is a scalar INTENT(OUT) argument of type PRESOLVE inform type (see Section 2.3.4).

2.7 Information printed

The level of output produced by values of control%print level is as follows:

0. no printout is produced,

1. only the major steps in the analysis is reported, that is headers of the main preprocessing phases and, for each pass,

the number of transformations of each type applied,

2. in addition, reports the nature of each problem transformation,

3. in addition, reports more details on each of the main presolve loops constituents,

4. reports considerable detail, including information on unsuccessful attempts to apply presolving transformations,

5. reports a completely silly amount of information.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

presolve-termination-strategy %termination integer

maximum-number-of-transformations %max nbr transforms integer

maximum-number-of-passes %max nbr passes integer

constraints-accuracy %c accuracy real

dual-variables-accuracy %z accuracy real

allow-dual-transformations %dual transformations logical

remove-redundant-variables-constraints %redundant xc logical

primal-constraints-analysis-frequency %primal constraints freq integer

dual-constraints-analysis-frequency %dual constraints freq integer

singleton-columns-analysis-frequency %singleton columns freq integer

doubleton-columns-analysis-frequency %doubleton columns freq integer

unconstrained-variables-analysis-frequency %unc variables freq integer

dependent-variables-analysis-frequency %dependent variables freq integer

row-sparsification-frequency %sparsify rows freq integer

maximum-percentage-row-fill %max fill integer

transformations-buffer-size %transf buffer size integer

transformations-file-device %transf file nbr integer

transformations-file-status %transf file status integer

transformations-file-name %transf file name string

primal-feasibility-check %check primal feasibility integer

dual-feasibility-check %check dual feasibility integer

active-multipliers-sign %y sign integer

inactive-multipliers-value %inactive y integer

active-dual-variables-sign %z sign integer

inactive-dual-variables-value %inactive z integer

primal-variables-bound-status %final x bounds integer

Table 2.2: Specfile commands and associated components of control .

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: PRESOLVE calls the GALAHAD modules GALAHAD SMT, GALAHAD QPT, GALAHAD SPECFILE,

GALAHAD SORT, and GALAHAD SYMBOLS.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n> 0, prob%m≥ 0, prob%A type and prob%H type ∈{’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’}.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 19

PRESOLVE GALAHAD

command component of control value type

dual-variables-bound-status %final z bounds integer

constraints-bound-status %final c bounds integer

multipliers-bound-status %final y bounds integer

infinity-value %infinity real

pivoting-threshold %pivot tol real

minimum-relative-bound-improvement %min rel improve real

maximum-growth-factor %max growth factor real

compute-quadratic-value %get q logical

compute-objective-constant %get f logical

compute-gradient %get g logical

compute-Hessian %get H logical

compute-constraints-matrix %get A logical

compute-primal-variables-values %get x logical

compute-primal-variables-bounds %get x bounds logical

compute-dual-variables-values %get z logical

compute-dual-variables-bounds %get z bounds logical

compute-contraints-values %get c logical

compute-constraints-bounds %get c bounds logical

compute-multipliers-values %get y logical

compute-multipliers-bounds %get y bounds logical

Table 2.3: Specfile commands and associated components of control (continued).

4 METHOD

The required solution x of the problem necessarily satisfies the primal optimality conditions

Ax = c

and

cl ≤ c ≤ cu, xl ≤ x ≤ xu,

the dual optimality conditions

Hx+ g= AT y+ z, y = yl + yu and z = zl + zu,

and

yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0,

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the vectors y and z are known as the Lagrange multipliers for the general linear constraints, and the dual vari-

ables for the bounds, respectively, and where the vector inequalities hold componentwise. The purpose of presolving

is to exploit these equations in order to reduce the problem to the standard form defined as follows:

• The variables are ordered so that their bounds appear in the order

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

free x

non-negativity 0 ≤ x

lower xl ≤ x

range xl ≤ x ≤ xu

upper x ≤ xu

non-positivity x ≤ 0

Fixed variables are removed. Within each category, the variables are further ordered so that those with non-zero

diagonal Hessian entries occur before the remainder.

• The constraints are ordered so that their bounds appear in the order

non-negativity 0 ≤ Ax

equality cl = Ax

lower cl ≤ Ax

range cl ≤ Ax ≤ cu

upper Ax ≤ cu

non-positivity Ax ≤ 0

Free constraints are removed.

• In addition, constraints may be removed or bounds tightened, to reduce the size of the feasible region or simplify

the problem if this is possible, and bounds may be tightened on the dual variables and the multipliers associated

with the problem.

The presolving algorithm proceeds by applying a (potentially long) series of simple transformations to the problem,

each transformation introducing a further simplification of the problem. These involve the removal of empty and

singleton rows, the removal of redundant and forcing primal constraints, the tightening of primal and dual bounds, the

exploitation of linear singleton, linear doubleton and linearly unconstrained columns, the merging dependent variables,

row sparsification and split equalities. Transformations are applied in successive passes, each pass involving the

following actions:

1. remove empty and singletons rows,

2. try to eliminate variables that are linearly unconstrained,

3. attempt to exploit the presence of linear singleton columns,

4. attempt to exploit the presence of linear doubleton columns,

5. complete the analysis of the dual constraints,

6. remove empty and singletons rows,

7. possibly remove dependent variables,

8. analyze the primal constraints,

9. try to make A sparser by combining its rows,

10. check the current status of the variables, dual variables and multipliers.

All these transformations are applied to the structure of the original problem, which is only permuted to standard form

after all transformations are completed. Note that the Hessian and Jacobian of the resulting reduced problem are

always stored in sparse row-wise format. The reduced problem is then solved by a quadratic or linear programming

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 21

PRESOLVE GALAHAD

solver, thus ensuring sufficiently small primal-dual feasibility and complementarity. Finally, the solution of the simpli-

fied problem is re-translated in the variables/constraints/format of the original problem formulation by a “restoration”

phase.

If the number of problem transformations exceeds control%transf buffer size, the transformation buffer

size (see Section 2.3.3), then they are saved in a “history” file, whose name may be chosen by specifying the

control%transf file name control parameter (see Section 2.3.3). When this is the case, this file is subsequently

reread by PRESOLVE restore. It must not be altered by the user.

At the overall level, the presolving process follows one of the two sequences:

initialize →

[

apply transformations → (solve problem) → restore

]

→ terminate

or

initialize →

[

read specfile → apply transformations → (solve problem) → restore

]

→ terminate

where the procedure’s control parameter may be modified by reading the specfile (see Section 2.6), and where (solve

problem) indicates that the reduced problem is solved. Each of the “boxed” steps in these sequences corresponds to

calling a specific routine of the package (see Section 2.4). In the above diagrams, brackated subsequence of steps

means that they can be repeated with problem having the same structure. The value of the new problem structure

component of problem must be .TRUE. on entry of PRESOLVE apply on the first time it is used in this repeated

subsequence. Such a subsequence must be terminated by a call to PRESOLVE terminate before presolving is applied

to a problem with a different structure.

Note that the values of the multipliers and dual variables (and thus of their respective bounds) depend on the

functional form assumed for the Lagrangian function associated with the problem. This form is given by

L(x,y,z) = q(x)−y sign∗ yT (Ax− c)−z sign∗ z,

(considering only active constraints Ax = c), where the parameters y sign and z sign are +1 or -1 and can be chosen

by the user. Thus, if y sign = +1, the multipliers associated to active constraints originally posed as inequalities

are non-negative if the inequality is a lower bound and non-positive if it is an upper bound. Obvioulsy they are not

constrained in sign for constraints originally posed as equalities. These sign conventions are reversed if y sign =

-1. Similarly, if z sign = +1, the dual variables associated to active bounds are non-negative if the original bound

is an lower bound, non-positive if it is an upper bound, or unconstrained in sign if the variables is fixed; and this

convention is reversed in z sign = -1. The values of z sign and y sign may be chosen by setting the corresponding

components of the control structure to 1 or -1 (see Section 2.3.3).

References:

The algorithm is described in more detail in

N. I. M. Gould and Ph. L. Toint (2004). Presolving for quadratic programming. Mathematical Programming 100(1),

pp 95–132.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

22 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

5 EXAMPLE OF USE

Suppose that we wish to solve the quadratic program (1.2)–(1.4) with the data n = 6, m = 5, f = 1, g = (1 1 1 1 1 1)T ,

H =

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

, A =

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 1 0

0 0 1 0 0 1

0 0 0 1 1 1

,

xl = (0 0 0 0 0 0)T , xu = (1 1 1 1 1 1)T , cl = (0 0 2 1 3)T and cu = (1 1 3 3 3)T , using the quadratic program-
ming solver QPSOLVER after applying the PRESOLVE package and then restoring the final solution to the original
variable formulation. We may use the following code—note that we require some output from PRESOLVE by set-
ting control%print level to 1, and that calling QPSOLVER is actually unnecessary since the problem of our example
is completely reduced to a single feasible point (which must then be the solution) after presolving.

PROGRAM GALAHAD_PRESOLVE_EXAMPLE

USE GALAHAD_QPT_double ! Double precision

USE GALAHAD_PRESOLVE_double ! Double precision

USE GALAHAD_SYMBOLS ! The GALAHAD symbols

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D0) ! Set precision

REAL (KIND = wp), PARAMETER :: infinity = 10._wp ** 20

REAL (KIND = wp), PARAMETER :: r0 = 0.0_wp, r1 = 1.0_wp

REAL (KIND = wp), PARAMETER :: r2 = 2.0_wp, r3 = 3.0_wp

TYPE (QPT_problem_type) :: problem

TYPE (PRESOLVE_control_type) :: control

TYPE (PRESOLVE_inform_type) :: inform

TYPE (PRESOLVE_data_type) :: data

INTEGER :: j, n, m, a_ne, h_ne

! start problem data

n = 6; m = 5; h_ne = 1; a_ne = 8

problem%new_problem_structure = .TRUE.

problem%n = n; problem%m = m; problem%f = r1

ALLOCATE(problem%G(n) , problem%X_l(n), problem%X_u(n))

ALLOCATE(problem%C_l(m), problem%C_u(m))

problem%gradient_kind = 1

problem%C_l = (/ r0, r0, r2, r1, r3 /)

problem%C_u = (/ r1, r1, r3, r3, r3 /)

problem%X_l = (/ -r3, r0, r0, r0, r0, r0 /)

problem%X_u = (/ r3, r1, r1, r1, r1, r1 /)

! sparse coordinate format

CALL SMT_put(problem%H%type, ’COORDINATE’)

CALL SMT_put(problem%A%type, ’COORDINATE’)

ALLOCATE(problem%H%val(h_ne))

ALLOCATE(problem%H%col(h_ne), problem%H%row(h_ne))

ALLOCATE(problem%A%val(a_ne))

ALLOCATE(problem%A%col(a_ne), problem%A%row(a_ne))

problem%H%val = (/ r1 /)

problem%H%row = (/ 1 /)

problem%H%col = (/ 1 /)

problem%A%val = (/ r1, r1, r1, r1, r1, r1, r1, r1 /)

problem%A%row = (/ 3, 3, 3, 4, 4, 5, 5, 5 /)

problem%A%col = (/ 3, 4, 5, 3, 6, 4, 5, 6 /)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 23

PRESOLVE GALAHAD

problem%a_ne = a_ne; problem%h_ne = h_ne

! problem data complete

! write the original formulation

CALL QPT_write_problem(6, problem)

! set the default PRESOLVE control parameters

CALL PRESOLVE_initialize(control, inform, data)

IF (inform%status /= 0) STOP

control%print_level = 1 ! Ask for some output

! apply presolving to reduce the problem

CALL PRESOLVE_apply(problem, control, inform, data)

IF (inform%status /= 0) STOP

! write the reduced problem

CALL QPT_write_problem(6, problem)

! solve the reduced problem

! CALL QPSOLVER (unnecessary here, because the reduced problem has a

! single feasible point in this example)

! restore the solved reduced problem to the original formulation

CALL PRESOLVE_restore(problem, control, inform, data)

IF (inform%status /= 0) STOP

! write the final solution in the original variables

WRITE(6, "(/, ’ The problem solution X is’, /,)")

DO j = 1, n

WRITE(6, ’(3x,’’x(’’,I1,’’) = ’’, ES12.4)’) j, problem%X(j)

END DO

! deallocate internal workspace

CALL PRESOLVE_terminate(control, inform, data)

END PROGRAM GALAHAD_PRESOLVE_EXAMPLE

This produces the following output:

=============== PROBLEM =====================

n = 6

variables

lower upper

x(1) = -3.0000E+00 3.0000E+00

x(2) = 0.0000E+00 1.0000E+00

x(3) = 0.0000E+00 1.0000E+00

x(4) = 0.0000E+00 1.0000E+00

x(5) = 0.0000E+00 1.0000E+00

x(6) = 0.0000E+00 1.0000E+00

m = 5

constraints

lower upper

c(1) = 0.0000E+00 1.0000E+00

c(2) = 0.0000E+00 1.0000E+00

c(3) = 2.0000E+00 3.0000E+00

c(4) = 1.0000E+00 3.0000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

24 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

c(5) = 3.0000E+00 3.0000E+00

Jacobian

A(3, 3) = 1.0000E+00

A(3, 4) = 1.0000E+00

A(3, 5) = 1.0000E+00

A(4, 3) = 1.0000E+00

A(4, 6) = 1.0000E+00

A(5, 4) = 1.0000E+00

A(5, 5) = 1.0000E+00

A(5, 6) = 1.0000E+00

objective function constant term = 1.0000E+00

gradient

g(1) = 1.0000E+00

g(2) = 1.0000E+00

g(3) = 1.0000E+00

g(4) = 1.0000E+00

g(5) = 1.0000E+00

g(6) = 1.0000E+00

Hessian

H(1, 1) = 1.0000E+00

============ END OF PROBLEM =================

**

* *

* GALAHAD presolve for QPs *

* *

* problem analysis *

* *

**

============ starting problem analysis ============

checking bounds on x, y, z, and c: 0 transformations

redundant variables and constraints: 0 transformations

============= main processing loop 1 =============

(n = 6 , m = 5 , a_ne = 8 , h_ne = 1)

removing empty and singleton rows: 2 transformations

analyzing special linear columns: 3 transformations

analyzing dual constraints: 0 transformations

removing empty and singleton rows: 0 transformations

checking dependent variables: 2 transformations

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 25

PRESOLVE GALAHAD

analyzing primal constraints: 5 transformations

checking bounds on x, y, z, and c: 0 transformations

============= main processing loop 2 =============

(n = 1 , m = 2 , a_ne = 2 , h_ne = 0)

removing empty and singleton rows: 2 transformations

analyzing special linear columns: 2 transformations

======== end of the main processing loop (loop = 2) ========

all variables and constraints have been eliminated!

No permutation necessary.

******************** Bye *******************

=============== PROBLEM =====================

n = 0

m = 0

current objective function value = 3.5000E+00

objective function constant term = 3.5000E+00

============ END OF PROBLEM =================

**

* *

* GALAHAD PRESOLVE for QPs *

* *

* problem restoration *

* *

**

verifying user-defined presolve control parameters

=== starting historical loop

=== end of the historical loop

Problem successfully restored.

******************** Bye *******************

The problem solution X is

x(1) = -1.0000E+00

x(2) = 0.0000E+00

x(3) = 0.0000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

26 PRESOLVE (May 24, 2024) GALAHAD

GALAHAD PRESOLVE

x(4) = 1.0000E+00

x(5) = 1.0000E+00

x(6) = 1.0000E+00

**

* *

* GALAHAD PRESOLVE for QPs *

* *

* workspace cleanup *

* *

**

******************** Bye *******************

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse coordinate format

......

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(problem%H%type, ’SPARSE_BY_ROWS’)

CALL SMT_put(problem%A%type, ’SPARSE_BY_ROWS’)

ALLOCATE(problem%H%val(h_ne))

ALLOCATE(problem%H%ptr(n+1), problem%H%col(h_ne))

ALLOCATE(problem%A%val(a_ne))

ALLOCATE(problem%A%ptr(m+1), problem%A%col(a_ne))

problem%H%val = (/ r1 /)

problem%H%ptr = (/ 1, 2, 2, 2, 2, 2, 2 /)

problem%H%col = (/ 1 /)

problem%A%val = (/ r1, r1, r1, r1, r1, r1, r1, r1 /)

problem%A%ptr = (/ 1, 1, 1, 4, 6, 9 /)

problem%A%col = (/ 3, 4, 5, 3, 6, 4, 5, 6 /)

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(problem%H%type, ’DENSE’)

CALL SMT_put(problem%A%type, ’DENSE’)

ALLOCATE(problem%H%val(n*(n+1)/2))

ALLOCATE(problem%A%val(n*m))

problem%H%val = (/ r1, &

r0, r0, &

r0, r0, r0, &

r0, r0, r0, r0, &

r0, r0, r0, r0, r0, &

r0, r0, r0, r0, r0, r0 /)

problem%A%val = (/ r0, r0, r0, r0, r0, r0, &

r0, r0, r0, r0, r0, r0, &

r0, r0, r1, r1, r1, r0, &

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD PRESOLVE (May 24, 2024) 27

PRESOLVE GALAHAD

r0, r0, r1, r0, r0, r1, &

r0, r0, r0, r1, r1, r1 /)

! problem data complete

respectively. (If instead H had been the diagonal matrix

H =

1

0

3

but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’) ! Specify dense storage for H

ALLOCATE(p%H%val(n))

p%H%val = (/ r1, r0, r0, r0, r0, r0, r0 /) ! Hessian values

Notice here that zero diagonal entries are stored.) We could also make use of the PRESOLVE read specfile routine
to set the printing level, in which case the statement

control%print_level = GALAHAD_TRACE ! Ask for some output

is replaced by

! open specfile

OPEN(57, FILE = ’PRESOLVE.SPC’, STATUS = ’OLD’)

! read its content (asking for some output)

CALL PRESOLVE_read_specfile(57, control, inform)

! close it

CLOSE(57)

where we assume that the file PRESOLVE.SPC exists in the current directory and contains the lines

BEGIN PRESOLVE SPECIFICATION

print-level 1

END PRESOLVE SPECIFICATION

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

28 PRESOLVE (May 24, 2024) GALAHAD

