
GALAHAD NODEND

USER DOCUMENTATION GALAHAD Optimization Library version 5.2

1 SUMMARY

This package finds a symmetric row and column permutation PAPT of a symmetric, sparse matrix A with the

aim of limiting the fill-in during subsequent Cholesky-like factorization. The package is actually a wrapper to the

METIS NodeND procedure from versions 4.0, 5.1 and 5.2 of the METIS package from the Karypis Lab; Versions 5 are

freely available under an open-source licence, and included here, while Version 4 requires a more restrictive licence,

and a separate download, see https://github.com/KarypisLab; if Version 4 is not provided, a dummy will be

substituted.

ATTRIBUTES — Versions: GALAHAD NODEND single, GALAHAD NODEND double. Calls: GALAHAD KINDS, GAL-

AHAD SYMBOLS, GALAHAD SMT, GALAHAD SORT and GALAHAD SPECFILE, Date: March 2025. Origin: N. I. M. Gould,

Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

The package is available with either 32-bit or 64-bit integers, and the subsidiary SMT type package may use single,

double and (if available) quadruple precision reals. Access to the 32-bit integer, single precision version requires the

USE statement

USE GALAHAD NODEND single

with the obvious substitution GALAHAD NODEND double, GALAHAD NODEND quadruple, GALAHAD NODEND single 64,

GALAHAD NODEND double 64 and GALAHAD NODEND quadruple 64 for the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, NODEND control type

and NODEND inform type (§2.5), and the subroutines NODEND initialize, NODEND order and NODEND order adjacency,

(§2.6) must be renamed on one of the USE statements.

There are three principal subroutines for user calls.

NODEND initialize is used to set or re-initialize default control and information values.

NODEND order takes the (symmetric) pattern of A and finds a symmetric permutation P so that the fill-in during

Cholesky-like factorizations of PAPT is kept small.

NODEND order adjacency takes the adjacency graph of the (whole) pattern of A, and performs the same task as

NODEND order. This package is actually called by its predecessor, but is provided for use by experts, and for

those whose application is naturally in adjacency form.

2.2 Matrix storage formats

The sparsity pattern of the matrix A may be stored in a variety of input formats.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NODEND (March 24, 2025) 1

NODEND GALAHAD

2.2.1 Sparse co-ordinate storage format

Only the nonzero entries of the lower-triangular part of A are stored. For the l-th entry of the lower-triangular portion of

A, its row index i and column index j are stored in the l-th components of the integer arrays row and col, respectively.

The order is unimportant, but the total number of entries ne is also required.

2.2.2 Sparse row-wise storage format

Again only the nonzero entries of the lower-triangular part are stored, but this time they are ordered so that those in

row i appear directly before those in row i+1. For the i-th row of A, the i-th component of an integer array ptr holds

the position of the first entry in this row, while ptr (m+ 1) holds the total number of entries plus one. The column

indices j of the entries in the i-th row are stored in components l = ptr(i), . . . ,ptr (i+1)−1 of the integer array col.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.2.3 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are stored

in order within an appropriate real one-dimensional array. Since no indexing information is needed, no integer arrays

are required. Indeed, there no point in reordering a dense matrix, and this option is simply included for completeness.

2.3 Matrix-graph storage format

The sparsity pattern of A may also be stored as an adjacency graph. For each column of A, a list of indices of rows of

the whole of A (that is, both triangles) that correspond to nonzero entries are recorded; by convention for column j,

if row j occurs, it is omitted. Two integer arrays IND and PTR are used, and the row indices of column j are stored as

IND(l), l = PTR(j), . . . ,PTR (j+ 1)− 1. for j = 1, . . . ,n.

2.4 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions, DOUBLE PRECISION for the double precision cases

and quadruple-precision if 128-bit reals are available, and correspond to rp = real32, rp = real64 and rp =

real128 respectively as defined by the fortran iso fortran env module. The latter are default (32-bit) and long

(64-bit) integers, and correspond to ip = int32 and ip = int64, respectively, again from the iso fortran env

module.

2.5 The derived data types

Three derived data types are used by the package.

2.5.1 The derived data type for holding the matrix

The derived data type SMT type is used to hold the matrix A. The components of SMT type used are:

n is a scalar variable of type INTEGER(ip), that holds the order n of the matrix A. Restriction: n ≥ 1.

type is an allocatable array of rank one and type default CHARACTER, that indicates the storage scheme used. If

the sparse co-ordinate scheme (see §2.2.1) is used the first ten components of type must contain the string

COORDINATE. For the sparse row-wise storage scheme (see §2.2.2), the first fourteen components of type must

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 NODEND (March 24, 2025) GALAHAD

GALAHAD NODEND

contain the string SPARSE BY ROWS, and for dense storage scheme (see §2.2.3) the first five components of type

must contain the string DENSE.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into type. For example, if A is to be stored in the structure A of derived type SMT type and we wish to

use the co-ordinate scheme, we may simply

CALL SMT_put(A%type, ’COORDINATE’, istat)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part of A in

the sparse co-ordinate storage scheme (see §2.2.1). It need not be set for any of the other schemes.

row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular part of

A in the sparse co-ordinate storage scheme (see §2.2.1). It need not be allocated for any of the other schemes.

Any entry whose row index lies out of the range [1,n] will be ignored.

col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the lower trian-

gular part of A in either the sparse co-ordinate (see §2.2.1), or the sparse row-wise (see §2.2.2) storage scheme.

It need not be allocated when the dense storage scheme is used. Any entry whose column index lies out of the

range [1,n] will be ignored, while the row and column indices of any entry from the strict upper triangle will

implicitly be swapped.

ptr is a rank-one allocatable array of size n+1 and type INTEGER(ip), that holds the starting position of each row of

the lower triangular part of A, as well as the total number of entries plus one, in the sparse row-wise storage

scheme (see §2.2.2). It need not be allocated for the other schemes.

The derived type also has a val component that may hold real values that are not used here, but can be by other

applications that share a SMT type variable.

2.5.2 The derived data type for holding control parameters

The derived data type NODEND control type is used to hold controlling data. Values specifically for the desired solver

may be changed at run time by calling NODEND read specfile (see §2.8.1). The components of NODEND control type

are:

version is a scalar variable of type default CHARACTER and length 30, that specifies the desired version of METIS.

Possible values are ’4.0’, ’5.1’ and ’5.2’. The default is version = ’5.2’.

error is a scalar variable of type INTEGER(ip), that holds the unit number for error messages. Printing of error

messages is suppressed if error< 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the unit number for informational messages. Printing of

informational messages is suppressed if out< 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

that is required. No informational output will occur if print level ≤ 0. If print level ≥ 1 details of the

ordering process will be produced. The default is print level = 0.

metis4 ptype is a scalar variable of type INTEGER(ip), that specifies the partitioning method employed. 0 =

multilevel recursive bisectioning: 1 = multilevel k-way partitioning The default is metis4 ptype = 0, and any

invalid value will be replaced by this default.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NODEND (March 24, 2025) 3

NODEND GALAHAD

metis4 ctype is a scalar variable of type INTEGER(ip), that specifies the matching scheme to be used during

coarsening: 1 = random matching, 2 = heavy-edge matching, 3 = sorted heavy-edge matching, and 4 = k-way

sorted heavy-edge matching. The default is metis4 ctype = 3, and any invalid value will be replaced by this

default.

metis4 itype is a scalar variable of type INTEGER(ip), that specifies the algorithm used during initial partitioning:

1 = edge-based region growing and 2 = node-based region growing. The default is metis4 itype = 1, and any

invalid value will be replaced by this default.

metis4 rtype is a scalar variable of type INTEGER(ip), that specifies the algorithm used for refinement: 1 =

two-sided node Fiduccia-Mattheyses (FM) refinement, and 2 = one-sided node FM refinement. The default

is metis4 rtype = 1, and any invalid value will be replaced by this default.

metis4 dbglvl is a scalar variable of type INTEGER(ip), that specifies the amount of progress/debugging informa-

tion printed: 0 = nothing, 1 = timings, and > 1 increasingly more. The default is metis4 dbglvl = 0, and any

invalid value will be replaced by this default.

metis4 oflags is a scalar variable of type INTEGER(ip), that specifies select whether or not to compress the graph,

and to order connected components separately: 0 = do neither, 1 = try to compress the graph, 2 = order each

connected component separately, and 3 = do both. The default is metis4 oflags = 1, and any invalid value

will be replaced by this default.

metis4 pfactor is a scalar variable of type INTEGER(ip), that specifies the minimum degree of the vertices that

will be ordered last. More specifically, any vertices with a degree greater than 0.1 metis4 pfactor times the

average degree are removed from the graph, an ordering of the rest of the vertices is computed, and an overall

ordering is computed by ordering the removed vertices at the end of the overall ordering. Any value smaller

than 1 means that no vertices will be ordered last. The default is metis4 pfactor =-1 .

metis4 nseps is a scalar variable of type INTEGER(ip), that specifies the number of different separators that the

algorithm will compute at each level of nested dissection. The default is metis4 nseps = 1, and any smaller

value will be replaced by this default.

metis5 ptype is a scalar variable of type INTEGER(ip), that specifies the partitioning method. The value 0 gives

multilevel recursive bisectioning, while 1 corresponds to multilevel k-way partitioning. The default is metis5 ptype

= 0, and any invalid value will be replaced by this default.

metis5 objtype is a scalar variable of type INTEGER(ip), that specifies the type of the objective. Currently the

only and default value metis5 objtype = 2, specifies node-based nested dissection, and any invalid value will

be replaced by this default.

metis5 ctype is a scalar variable of type INTEGER(ip), that specifies the matching scheme to be used during

coarsening: 0 = random matching, and 1 = sorted heavy-edge matching. The default is metis5 ctype = 1, and

any invalid value will be replaced by this default.

metis5 iptype is a scalar variable of type INTEGER(ip), that specifies the algorithm used during initial partitioning:

2 = derive separators from edge cuts, and 3 = grow bisections using a greedy node-based strategy. The default

is metis5 iptype = 2, and any invalid value will be replaced by this default.

metis5 rtype is a scalar variable of type INTEGER(ip), that specifies the algorithm used for refinement: 2 = Two-

sided node FM refinement, and 3 = One-sided node FM refinement. The default is metis5 rtype = 2, and any

invalid value will be replaced by this default.

metis5 dbglvl is a scalar variable of type INTEGER(ip), that specifies the amount of progress/debugging informa-

tion printed: 0 = nothing, 1 = diagnostics, 2 = plus timings, and > 2 plus more. The default is metis5 dbglvl

= 0, and any invalid value will be replaced by this default.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 NODEND (March 24, 2025) GALAHAD

GALAHAD NODEND

metis5 niparts is a scalar variable of type INTEGER(ip), that specifies the number of initial partitions used by

MeTiS 5.2. The default is metis5 niparts = -1, and any invalid value will be replaced by this default.

metis5 niter is a scalar variable of type INTEGER(ip), that specifies the number of iterations used by the re-

finement algorithm. The default is metis5 niter = 10, and any non-positive value will be replaced by this

default.

metis5 ncuts is a scalar variable of type INTEGER(ip), that specifies the number of different partitionings that it

will compute: -1 = not used. The default is metis5 ncuts = -1, and any invalid value will be replaced by this

default.

metis5 seed is a scalar variable of type INTEGER(ip), that specifies the seed for the random number generator. The

default is metis5 seed = -1.

metis5 ondisk is a scalar variable of type INTEGER(ip), that specifies whether on-disk storage is used (0 = no, 1 =

yes) by MeTiS 5.2. The default is metis5 ondisk = 0, and any invalid value will be replaced by this default.

metis5 minconn is a scalar variable of type INTEGER(ip), that specifies specify that the partitioning routines should

try to minimize the maximum degree of the subdomain graph: 0 = no, 1 = yes, and -1 = not used. The default

is metis5 minconn =-1 , and any invalid value will be replaced by this default.

metis5 contig is a scalar variable of type INTEGER(ip), that specifies specify that the partitioning routines should

try to produce partitions that are contiguous: 0 = no, 1 = yes, and -1 = not used. The default is metis5 contig

= 1, and any invalid value will be replaced by this default.

metis5 compress is a scalar variable of type INTEGER(ip), that specifies specify that the graph should be com-

pressed by combining together vertices that have identical adjacency lists: 0 = no, and 1 = yes. The default is

metis5 compress = 1, and any invalid value will be replaced by this default.

metis5 ccorder is a scalar variable of type INTEGER(ip), that specifies specify if the connected components of the

graph should first be identified and ordered separately: 0 = no, and 1 = yes. The default is metis5 ccorder =

0, and any invalid value will be replaced by this default.

metis5 pfactor is a scalar variable of type INTEGER(ip), that specifies the minimum degree of the vertices that

will be ordered last. More specifically, any vertices with a degree greater than 0.1 metis4 pfactor times

the average degree are removed from the graph, an ordering of the rest of the vertices is computed, and an

overall ordering is computed by ordering the removed vertices at the end of the overall ordering. The default is

metis5 pfactor = 0, and any negative value will be replaced by this default.

metis5 nseps is a scalar variable of type INTEGER(ip), that specifies the number of different separators that the

algorithm will compute at each level of nested dissection. The default is metis5 nseps = 1, and any non-

positive value will be replaced by this default.

metis5 ufactor is a scalar variable of type INTEGER(ip), that specifies the maximum allowed load imbalance (1

+ metis5 ufactor)/1000 among the partitions. The default is metis5 ufactor = 200, and any negative

value will be replaced by this default.

metis5 dropedges is a scalar variable of type INTEGER(ip), that specifies whether edges will be dropped (0 = no,

1 = yes) by MeTiS 5.2. The default is metis5 dropedges = 0, and any invalid value will be replaced by this

default.

metis5 no2hop is a scalar variable of type INTEGER(ip), that specifies specify that the coarsening will not perform

any 2–hop matchings when the standard matching approach fails to sufficiently coarsen the graph: 0 = no, and

1 = yes The default is metis5 no2hop = 0, and any invalid value will be replaced by this default.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NODEND (March 24, 2025) 5

NODEND GALAHAD

metis5 twohop is a scalar variable of type INTEGER(ip), that is reserved for future use but ignored at present. The

default is metis5 twohop = -1.

metis5 fast is a scalar variable of type INTEGER(ip), that is reserved for future use but ignored at present. The

default is metis5 fast = -1. replaced by this default.

no metis 4 use 5 instead is a scalar variable of type LOGICAL, that specifies whether to use METIS version 5

(specifically, 5.2) if METIS is unavailable. The default is no metis 4 use 5 instead = .TRUE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, the default prefix = "" should be used.

2.5.3 The derived data type for holding informational parameters

The derived data type NODEND inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of NODEND inform type are as follows—any component that is not relevant

to the solver being used will have the value -1 or -1.0 as appropriate:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See §2.7 for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if there have been no allocation

or deallocation errors.

version is a scalar variable of type default CHARACTER and length 3, that contains the actual version of METIS used.

2.5.4 The derived data type for holding problem data

The derived data type NODEND data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls to NODEND procedures. All components are private.

2.6 Argument lists and calling sequences

2.6.1 The initialization subroutine

Default values are provided as follows:

CALL NODEND initialize(control, inform)

control is a scalar INTENT(OUT) argument of type NODEND control type (see Section 2.5.2). On exit, control

contains default values for the components as described in Section 2.5.2. These values should only be changed

after calling NODEND initialize.

inform is a scalar INTENT(OUT) argument of type NODEND inform type (see Section 2.5.3). A successful call to

NODEND initialize is indicated when the component status has the value 0. For other return values of

status, see Section 2.7.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 NODEND (March 24, 2025) GALAHAD

GALAHAD NODEND

2.6.2 The basic ordering subroutine

A nested-dissection-based ordering of the sparsity pattern of A may be obtained as follows:

CALL NODEND order(A, PERM, control, inform)

A is scalar INTENT(IN) argument of type SMT type that is used to specify A. The user must set all of the relevant

components of matrix according to the storage scheme desired (see §2.5.1. Incorrectly-set components will

result in errors flagged in inform%status, see §2.7.

perm is an

PERM is a rank-one INTEGER(ip) INTENT(OUT) array argument of INTENT(OUT) and length A%n. PERM will be set

to the permutation array, so that the PERM(i)-th rows and columns in the permuted matrix PAPT correspond to

those labelled i in A.

control is a scalar INTENT(OUT)argument of type NODEND control type. Its components control the action of the

analysis phase, as explained in §2.5.2.

inform is a scalar INTENT(OUT)argument of type NODEND inform type (see §2.5.3). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.7.

2.6.3 The graph ordering subroutine

A nested-dissection-based ordering of the adjacency graph (see §2.3) of A may be obtained as follows:

CALL NODEND order adjacency(n, PTR, IND, PERM, control, inform)

n is an INTENT(IN) scalar of type INTEGER that gives the number of rows (and columns) of A.

PTR is a rank-one INTEGER(ip) array argument of INTENT(IN) and length at least n+ 1. Its j entry, PTR(j), must

be set to the position in IND of the first entry in column j of the whole of A, while PTR(n+ 1) points to the first

unoccupied position in IND.

IND is a rank-one INTEGER(ip) array argument of INTENT(IN) and length at least PTR(n+ 1)− 1. Components

IND((l)), l = PTR(j), . . . ,PTR (j+ 1)− 1 must hold the row indices of non-diagonal entries in column j of A.

PERM is a rank-one INTEGER(ip) INTENT(OUT) array argument of INTENT(OUT) and length n. PERM will be set to

the permutation array, so that the PERM(i)-th rows and columns in the permuted matrix PAPT correspond to

those labelled i in A.

control is a scalar INTENT(OUT)argument of type NODEND control type. Its components control the action of the

analysis phase, as explained in §2.5.2.

inform is a scalar INTENT(OUT)argument of type NODEND inform type (see §2.5.3). A successful call is indicated

when the component status has the value 0. For other return values of status, see §2.7.

2.7 Warning and error messages

A negative value of inform%status on exit from the subroutines indicates that an error has occurred. No further calls

should be made until the error has been corrected. Possible values are:

-1 An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NODEND (March 24, 2025) 7

NODEND GALAHAD

-2 A deallocation error occurred. A message indicating the offending array is written on unit control%error and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3 One of the restrictions n > 0, A%n > 0 or A%ne < 0, for co-ordinate entry, or requirements that A%type contain its

relevant string ’COORDINATE’, ’SPARSE BY ROWS’ or ’DENSE’, and control%version in one of ’4.0’, ’5.1’

or ’5.2’ has been violated.

-26 The requested version of METIS is not available.

-57 METIS has insufficient memory to continue.

-71 An internal METIS error occurred.

2.8 Setting control parameters

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type NODEND control type (see §2.5.2), by reading an appropriate data specification file using the sub-

routine NODEND read specfile. This facility is useful as it allows a user to change NODEND control parameters without

editing and recompiling programs that call NODEND.

A specification file, or specfile, is a data file containing a number of “specification commands”. Each command

occurs on a separate line, and comprises a “keyword”, that is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specification file is limited to 80 characters, including the blanks separating

keyword and value.

The portion of the specification file used by NODEND read specfile must start with a “BEGIN NODEND” command

and end with an “END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by METIS_read_specfile ..)

BEGIN METIS

keyword value

.......

keyword value

END

(.. lines ignored by METIS_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN NODEND” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN METIS SPECIFICATION

and

END METIS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN NODEND” and “END” delimiters, specification commands may occur

in any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a

! or * character is also ignored (as is the ! or * character itself). This provides an easy way to “comment out” some

specification commands, or to comment specific values of certain control parameters.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 NODEND (March 24, 2025) GALAHAD

GALAHAD NODEND

The value of a control parameter may be of three different types, namely integer, character or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively).

The specification file must be open for input when NODEND read specfile is called, and the associated unit

number passed to the routine in device (see below). Note that the corresponding file is rewound, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by NODEND read specfile.

2.8.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL METIS_read_specfile(control, device)

control is a scalar INTENT(INOUT) argument of type NODEND control type (see §2.5.2). Default values should

have already been set, perhaps by calling NODEND initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see §2.5.2) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the unit number on which the

specification file has been opened. If device is not open, control will not be altered and execution will

continue, but an error message will be printed on unit control%error.

3 GENERAL INFORMATION

Workspace: Provided automatically by the module.

Other modules used directly: GALAHAD CLOCK, GALAHAD KINDS, GALAHAD SYMBOLS, GALAHAD SORT single/double,

GALAHAD SMT single/double and GALAHAD SPECFILE single/double,

Input/output: Output is under control of the arguments control%error, control%out

Restrictions: n≥ 1, A%n≥ 1, A%ne≥ 0 if A%type = ’COORDINATE’, A%type one of ’COORDINATE’, ’SPARSE BY ROWS’

or ’DENSE’. control%version one of ’4.0’, ’5.1’ or ’5.2’.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

Variants of node-based nested-dissection ordering are used.

The package relies crucially on the ordering package METIS from the Karypis Lab. To obtain METIS 4.0, see

https://github.com/KarypisLab.

or

https://github.com/CIBC-Internal/metis-4.0.3

Versions 5.1 and 5.2 are open-source software, and included.

References:

The methods used are described in the user-documentation

G. Karypis. METIS, A software package for partitioning unstructured graphs, partitioning meshes, and computing

fill-reducing orderings of sparse matrices, Version 5, Department of Computer Science & Engineering, University of

Minnesota Minneapolis, MN 55455, USA (2013), see

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NODEND (March 24, 2025) 9

NODEND GALAHAD

command component of control value type

version %version character

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

metis4-ptype %metis4 ptype integer

metis4-ctype %metis4 ctype integer

metis4-itype %metis4 itype integer

metis4-rtype %metis4 rtype integer

metis4-dbglvl %metis4 dbglvl integer

metis4-oflags %metis4 oflags integer

metis4-pfactor %metis4 pfactor integer

metis4-nseps %metis4 nseps integer

metis5-ptype %metis5 ptype integer

metis5-objtype %metis5 objtype integer

metis5-ctype %metis5 ctype integer

metis5-iptype %metis5 iptype integer

metis5-rtype %metis5 rtype integer

metis5-dbglvl %metis5 dbglvl integer

metis5-niparts %metis5 niparts integer

metis5-niter %metis5 niter integer

metis5-ncuts %metis5 ncuts integer

metis5-seed %metis5 seed integer

metis5-ondisk %metis5 ondisk integer

metis5-minconn %metis5 minconn integer

metis5-contig %metis5 contig integer

metis5-compress %metis5 compress integer

metis5-ccorder %metis5 ccorder integer

metis5-pfactor %metis5 pfactor integer

metis5-nseps %metis5 nseps integer

metis5-ufactor %metis5 ufactor integer

metis5-dropedges %metis5 dropedges integer

metis5-no2hop %metis5 no2hop integer

metis5-twohop %metis5 twohop integer

metis5-fast %metis5 fast integer

no-metis-4-use-5-instead %no metis 4 use 5 instead logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 NODEND (March 24, 2025) GALAHAD

GALAHAD NODEND

https://github.com/KarypisLab/METIS/blob/master/manual/manual.pdf

and paper

G. Karypis and V. Kumar (1999). A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM

Journal on Scientific Computing. 20(1) (1999) 359–392.

5 EXAMPLE OF USE

We illustrate the use of the package on the symmetric matrix with structure

∗ ∗ ∗

∗

∗ ∗

∗ ∗

∗ ∗ ∗

,

where ∗ denotes a nonzero. Then, we may use the following code to find a suitable nested-dissection permutation

prior to Cholesky-like factorization.

! THIS VERSION: GALAHAD 5.2 - 2025-03-23 AT 09:55 GMT.

PROGRAM NODEND_example

USE GALAHAD_KINDS_double, ONLY: ip_

! USE GALAHAD_SMT_double

USE GALAHAD_NODEND_double

INTEGER, PARAMETER :: out = 6

INTEGER (KIND = ip_), PARAMETER :: n = 5, ne = 8

INTEGER (KIND = ip_), DIMENSION(n) :: PERM

TYPE (SMT_type) :: A

TYPE (NODEND_control_type) :: control

TYPE (NODEND_inform_type) :: inform

INTEGER :: smt_stat

CALL SMT_put(A%type, ’COORDINATE’, smt_stat)

A%n = n ; A%ne = ne

ALLOCATE(A%row(ne), A%col(ne))

A%row = (/ 1, 2, 3, 3, 4, 5, 5, 5 /)

A%col = (/ 1, 2, 1, 3, 4, 1, 4, 5 /)

CALL NODEND_initialize(control, inform)

control%version = ’5.1’

CALL NODEND_order(A, PERM, control, inform)

IF (PERM(1) <= 0) THEN

WRITE(out, "(’ No METIS ’, A, ’ available, stopping’)") &

control%version

ELSE IF (inform%status < 0) THEN

WRITE(out, "(’ Nodend ’, A, ’ failure, status = ’, I0)") &

control%version, inform%status

ELSE

IF (inform%status == 0) THEN

WRITE(out, "(’ Nodend ’, A, ’ order call successful’)") &

TRIM(control%version)

WRITE(out, "(’ permutation =’, 5I2)") PERM

ELSE

WRITE(out, "(’ Nodend ’, A, ’ order call unsuccessful,’, &

& ’ no permutation found’)") TRIM(control%version)

END IF

END IF

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NODEND (March 24, 2025) 11

NODEND GALAHAD

DEALLOCATE(A%row, A%col, A%type)

END PROGRAM NODEND_example

This produces the following output:

Nodend 5.1 order call successful

permutation = 2 4 1 3 5

Alternatively, we may use the adjacency graph format to produce the same ordering.

! THIS VERSION: GALAHAD 5.2 - 2025-03-23 AT 09:55 GMT.

PROGRAM NODEND_example_adjacency

USE GALAHAD_KINDS_double, ONLY: ip_

USE GALAHAD_NODEND_double

INTEGER, PARAMETER :: out = 6

INTEGER (KIND = ip_), PARAMETER :: n = 5, nz = 6

INTEGER (KIND = ip_), DIMENSION(n + 1) :: PTR = (/ 1, 3, 3, 4, 5, 7 /)

INTEGER (KIND = ip_), DIMENSION(nz) :: IND = (/ 3, 5, 1, 5, 1, 4 /)

INTEGER (KIND = ip_), DIMENSION(n) :: PERM

TYPE (NODEND_control_type) :: control

TYPE (NODEND_inform_type) :: inform

CALL NODEND_initialize(control, inform)

control%version = ’5.1’

CALL NODEND_order_adjacency(n, PTR, IND, PERM, control, inform)

IF (PERM(1) <= 0) THEN

WRITE(out, "(’ No METIS ’, A, ’ available, stopping’)") &

control%version

ELSE IF (inform%status < 0) THEN

WRITE(out, "(’ Nodend ’, A, ’ failure, status = ’, I0)") &

control%version, inform%status

ELSE

IF (inform%status == 0) THEN

WRITE(out, "(’ Nodend ’, A, ’ order_adjacency call successful’)") &

TRIM(control%version)

WRITE(out, "(’ permutation =’, 5I2)") PERM

ELSE

WRITE(out, "(’ Nodend ’, A, ’ order call unsuccessful,’, &

& ’ no permutation found’)") TRIM(control%version)

END IF

END IF

END PROGRAM NODEND_example_adjacency

This produces the following output:

Nodend 5.1 order_adjacency call successful

permutation = 2 4 1 3 5

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 NODEND (March 24, 2025) GALAHAD

