
GALAHAD NLS

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package uses a regularization method to find a (local) unconstrained minimizer of a differentiable weighted

sum-of-squares objective function

f (x)
def
= 1

2

m

∑
i=1

wic
2
i (x)≡ 1

2‖c(x)‖2
W

of many variables x involving positive weights wi, i = 1, . . . ,m. The method offers the choice of direct and iterative

solution of the key regularization subproblems, and is most suitable for large problems. First derivatives of the residual

function c(x) are required, and if second derivatives of the ci(x) can be calculated, they may be exploited—if suitable

products of the first or second derivatives with a vector may be found but not the derivatives themselves, that can also

be used to advantage.

ATTRIBUTES — Versions: GALAHAD NLS single, GALAHAD NLS double. Uses: GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD NLPT, GALAHAD SPECFILE, GALAHAD PSLS, GALAHAD GLRT, GALAHAD RQS, GALAHAD BSC, GALAHAD -

SPACE, GALAHAD ROOTS, GALAHAD MOP, GALAHAD NORMS, GALAHAD STRING and GALAHAD BLAS interface. Date:

October 2016. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or

Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD NLS single

with the obvious substitution GALAHAD NLS double, GALAHAD NLS single 64 and GALAHAD NLS double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, GALAHAD userdata type,

NLS time type, NLS control type, NLS inform type, NLS data type and NLPT problem type, (Section 2.4) and

the subroutines NLS initialize, NLS solve, NLS terminate, (Section 2.5) and NLS read specfile (Section 2.9)

must be renamed on one of the USE statements.

2.1 Basic terminology

The algorithm used is iterative. From the current best estimate of the minimizer xk, a trial improved point xk + sk

is sought. The correction sk is chosen to improve a model mk(s) of the objective function f (xk + s) built around xk.

The model is the sum of two basic components, a suitable approximation tk(s) of f (xk + s), and a regularization term
σk
p ‖s‖p

Sk
involving a weight σk, power p and a norm ‖s‖Sk

def
=

√

sT Sks for a given positive definite scaling matrix Sk that

is included to prevent large corrections. The weight σk is adjusted as the algorithm progresses to ensure convergence.

The model tk(s) is a truncated Taylor-series approximation, and this relies on being able to compute or estimate

derivatives of c(x). Various models are provided, and each has different derivative requirements. We denote the m by

n residual Jacobian J(x) as the matrix whose i, j-th component

J(x)i, j
def
= ∂ci(x)/∂x j for i = 1, . . . ,m and j = 1, . . . ,n.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 1

NLS GALAHAD

For a given m-vector y, the weighted residual Hessian is the sum

H(x,y)
def
=

m

∑
ℓ=1

yℓHℓ(x), where Hℓ(x)i, j
def
= ∂2cℓ(x)/∂xi∂x j for i, j = 1, . . . ,n

is the Hessian of cℓ(x). Finally, for a given vector v, we define the residual-Hessians-vector product matrix

P(x,v)
def
= (H1(x)v, . . . ,Hm(x)v).

The models tk(s) provided are,

1. the first-order Taylor approximation f (xk)+ g(xk)
T s, where g(x) = JT (x)Wc(x),

2. a barely second-order approximation f (xk)+ g(xk)
T s+ 1

2 sT Ws,

3. the Gauss-Newton approximation 1
2‖c(xk)+ J(xk)s‖2

W,

4. the Newton (second-order Taylor) approximation f (xk)+g(xk)
T s+ 1

2 sT [JT (xk)WJ(xk)+H(xk,Wc(xk))]s, and

5. the tensor Gauss-Newton approximation 1
2‖c(xk)+ J(xk)s+ 1

2 sT ·P(xk,s)‖2
W, where the i-th component of sT ·

P(xk,s) is shorthand for the scalar sT Hi(xk)s,

where W is the diagonal matrix of weights wi, i = 1, . . .m.

Access to a particular model requires that the user is either able to provide the derivatives needed (“matrix available”)

or that the products of these derivatives (and their transposes) with specified vectors are possible (“matrix free”).

2.2 Matrix storage formats

The matrices J(x), H(x,y) and P(x,v) (as required and when available) may be stored in a variety of input formats.

2.2.1 Dense storage format

The matrix J is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array J%val

will hold the value Ji, j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part Hi j for 1 ≤ j ≤ i ≤ n) should be stored. In this case the lower triangle will be stored by rows, that is component

i ∗ (i− 1)/2+ j of the storage array H%val will hold the value Hi j (and, by symmetry, H ji) for 1 ≤ j ≤ i ≤ n. If

tensor-Newton models are used, the required matrix P may be stored as a compact dense matrix by columns, that is,

the values of the entries of each column in turn are stored in order within an appropriate real one-dimensional array.

2.2.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of J, its row index i, column index j and value Ji j

are stored in the l-th components of the integer arrays J%row, J%col and real array J%val. The order is unimportant,

but the total number of entries J%ne is required. The same scheme is applicable to H (thus requiring integer arrays

H%row, H%col, a real array H%val, and an integer value H%ne), except that only the entries in the lower triangle should

be stored.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

2.2.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of J, the i-th component of the integer array J%ptr holds the position of the first

entry in this row, while J%ptr (m+1) holds the total number of entries plus one. The column indices j and values Ji j

of the entries in the i-th row are stored in components l = J%ptr(i), . . . ,J%ptr (i+ 1)− 1 of the integer array J%col,

and real array J%val, respectively. The same scheme is applicable to H (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle should be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.2.4 Sparse column-wise storage format

For the matrix P, once again only the nonzero entries are stored, but this time they are ordered so that those in column

j appear directly before those in column j+1. For the j-th column of P, the j-th component of the integer array P%ptr

holds the position of the first entry in this column, while P%ptr (m+ 1) holds the total number of entries plus one.

The row indices i and values Pi j of the entries in the j-th column are stored in components l = P%ptr(j), . . . ,P%ptr

(j+ 1)− 1 of the integer array P%row, and real array P%val, respectively.

2.2.5 Diagonal storage format

If H is diagonal (i.e., Hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonal entries Hii for 1 ≤ i ≤ n need be stored, and the

first n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square

matrices J and P.

2.3 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.4 The derived data types

Seven derived data types are accessible from the package.

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the Hessian matrix H if this is available. The components of SMT TYPE

used here are:

m is a scalar component of type INTEGER(ip), that holds the row dimension of the matrix.

n is a scalar component of type INTEGER(ip), that holds the column dimension of the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.4.2).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 3

NLS GALAHAD

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of the symmetric matrix H is represented as a single entry (see §2.2.1–

2.2.5). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.2.2 and §2.2.4).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.2.2–2.2.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least n + 1, that may hold the pointers

to the first entry in each row (see §2.2.3–2.2.4).

2.4.2 The derived data type for holding the problem

The derived data type NLPT problem type is used to hold the problem. The relevant components of NLPT problem type

are:

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip), that holds the number of residual functions, m.

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

C is a rank-one allocatable array of dimension m and type REAL(rp), that holds the residual values c(x) at the

point x. The i-th component of C, i = 1, . . . ,m, contains ci(x).

G is a rank-one allocatable array of dimension m and type REAL(rp), that holds the gradient g(x) = ∇x f (x) of the

objective function at the point x. The j-th component of G, i = 1, . . . ,m, contains ∂ f (x)/∂x j.

J is scalar variable of type SMT TYPE that holds the Jacobian matrix J(x) (if it is available). The following com-

ponents are used here:

J%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.2.1) is used, the first five components of J%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.2.2), the first ten com-

ponents of J%type must contain the string COORDINATE, and for the sparse row-wise storage scheme (see

Section 2.2.3), the first fourteen components of J%type must contain the string SPARSE BY ROWS.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into J%type. For example, if nlp is of derived type NLS problem type and involves a Jacobian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%J%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

J%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in J in the sparse co-ordinate

storage scheme (see Section 2.2.2). It need not be set for any of the other three schemes.

J%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian

matrix J in any of the storage schemes discussed in Section 2.2.

J%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of J in the sparse

co-ordinate storage scheme (see Section 2.2.2). It need not be allocated for any of the other three schemes.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

J%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of J in either

the sparse co-ordinate (see Section 2.2.2), or the sparse row-wise (see Section 2.2.3) storage scheme. It

need not be allocated when the dense or diagonal storage schemes are used.

J%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of J, as well as the total number of entries plus one, in the sparse row-wise storage scheme

(see Section 2.2.3). It need not be allocated when the other schemes are used.

H is scalar variable of type SMT TYPE that may hold the weighted Hessian matrix H(x,y) (if it is available). The

following components are used here:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.2.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.2.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.2.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.2.5), the first eight components of H%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if nlp is of derived type NLS problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%H%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.2.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of the storage schemes discussed in Section 2.2.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.2.2). It need not be allocated for any of

the other three schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.2.2), or the sparse row-wise (see

Section 2.2.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.2.3). It need not be allocated when the other schemes are used.

P is scalar variable of type SMT TYPE that may hold the matrix of residual-Hessians-vector products P(x,v) =
(H1(x)v, . . . ,Hm(x)v) for a supplied vector v (if it is needed). The matrix P is held as a sparse matrix by

columns (see Section 2.2.4) or as a dense matrix (see Section 2.2.1). The following components are used here:

P%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.2.1) is used, the first sixteen components of

P%type must contain the string DENSE BY COLUMNS, while and for the sparse column-wise storage scheme

(see Section 2.2.4), the first seventeen components of P%type must contain the string SPARSE BY COLUMNS.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the re-

quired keyword into P%type. For example, if nlp is of derived type NLS problem type and involves a

residual=Hessian-vector product matrix we wish to store using the dense scheme, we may simply

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 5

NLS GALAHAD

CALL SMT_put(nlp%P%type, ’DENSE_BY_COLUMNS’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

P%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the product

matrix P stored as consecutive columns.

P%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of P in the same order

as used for P%val.

P%ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip), that holds the starting position

of each column of P, as well as the total number of entries plus one.

pname is a scalar variable of type default CHARACTER and length 10, which contains the “name” of the problem for

printing. The default “empty” string is provided.

VNAMES is a rank-one allocatable array of dimension n and type default CHARACTER and length 10, whose j-th entry

contains the “name” of the j-th variable for printing. This is only used if “debug”printingcontrol%print level

> 4) is requested, and will be ignored if the array is not allocated.

CNAMES is a rank-one allocatable array of dimension m and type default CHARACTER and length 10, whose i-th entry

contains the “name” of the i-th residual for printing. This is only used if “debug”printingcontrol%print level

> 4) is requested, and will be ignored if the array is not allocated.

2.4.3 The derived data type for holding control parameters

The derived data type NLS control type is used to hold controlling data. Default values may be obtained by call-

ing NLS initialize (see Section 2.5.1), while components may also be changed by calling GALAHAD NLS read-

spec (see Section 2.9.1). The derived type NLS subproblem control type comprises all of the components of

NLS control type except for the last (i.e., subproblem control). The components of NLS control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in NLS solve and NLS terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in NLS solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

maxit is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which will be allowed

in NLS solve. The default is maxit = 1000.

start print is a scalar variable of type INTEGER(ip), that specifies the first iteration for which printing will occur

in NLS solve. If start print is negative, printing will occur from the outset. The default is start print =

-1.

stop print is a scalar variable of type INTEGER(ip), that specifies the last iteration for which printing will occur

in NLS solve. If stop print is negative, printing will occur once it has been started by start print. The

default is stop print = -1.

print gap is a scalar variable of type INTEGER(ip). Once printing has been started, output will occur once every

print gap iterations. If print gap is no larger than 1, printing will be permitted on every iteration. The default

is print gap = 1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

alive unit is a scalar variable of type INTEGER(ip). If alive unit > 0, a temporary file named alive file (see

below) will be created on stream number alive unit on initial entry to GALAHAD NLS solve, and execution of

GALAHAD NLS solve will continue so long as this file continues to exist. Thus, a user may terminate execution

simply by removing the temporary file from this unit. If alive unit ≤ 0, no temporary file will be created, and

execution cannot be terminated in this way. The default is alive unit = 40.

jacobian available is a scalar variable of type INTEGER(ip), that specifies the availability of the residual Jaco-

bian. Possible values are:

≥ 2 The Jacobian is available.

1 The Jacobian is not available explicitly but its effect may be accessed by matrix-vector products, i.e., it is

“matrix-free”.

≤ 0 The Jacobian is not available either explicitly or via matrix-vector products.

The default is jacobian available = 1.

hessian available is a scalar variable of type INTEGER(ip), that specifies the availability of the weighted-residual

Hessian. Possible values are:

≥ 2 The Hessian is available.

1 The Hessian is not available explicitly but its effect may be accessed by matrix-vector products, i.e., it is

“matrix-free”.

≤ 0 The Hessian is not available either explicitly or via matrix-vector products.

The default is hessian available = 0.

model is a scalar variable of type INTEGER(ip), that specifies which model to be used to approximate f (x) when

computing the step. Possible values are:

≤ 0 the model is chosen automatically on the basis of which option looks likely to be the most efficient at

any given stage of the solution process. Different models may be used at different stages. Not yet imple-

mented.

1 a first-order model, not involving the Hessian, will be used.

2 a barely-second-order model, in which the Hessian is approximated by the matrix W, will be used.

3 a Gauss-Newton model, in which the Hessian of f (x) is approximated by JT (x)WJ(x), will be used.

4 a second-order Newton model, in which the exact Hessian of f (x), JT (x)WJ(x)+H(x,Wc(x)), will be used.

5 an adaptive second-order model, in which there is a transition from Gauss-Newton to Newton models, will be

used.

6 a tensor Gauss-Newton model will be used, and an approximate minimizer of this model will be found by a

Gauss-Newton method.

7 a tensor Gauss-Newton model will be used, and an approximate minimizer of this model will be found by a

Newton method.

≥ 8 a tensor Gauss-Newton model will be used, and an approximate minimizer of this model will be found by

a method that adapts from Gauss-Newton to Newton.

See §2.1 for further details. The default is model = 3.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 7

NLS GALAHAD

norm is a scalar variable of type INTEGER(ip), that specifies which norm is to be used to define the regularization.

In particular the norm ‖ · ‖ will be defined by a symmetric, positive-definite matrix S(x) that may depend on x

so that for every vector v, ‖v‖2 = vT S(x)v. If %subproblem direct = .FALSE., the same S(s) also defines

the preconditioner to be used to accelerate the generalized-Lanczos inner model minimization. Possible values

are:

-3 the user’s own norm will be used.

-2 a norm based on a limited-memory BFGS formula will be used. Not yet implemented.

-1 the Euclidean (ℓ2-) norm is used.

0 the type is chosen automatically on the basis of which option looks likely to be the most efficient at any given

stage of the solution process. Different norms may be used at different stages. Not yet implemented.

1 S is the diagonal of the matrix JT (xk)WJ(xk), or equivalently the squares of the two-norms of the columns

of W
1
2 J(xk).

2 S is the diagonal of the Hessian matrix, JT (xk)WJ(xk)+H(xk,Wc(xk)), suitably modified to ensure that it is

significantly positive definite.

3 S is the Hessian matrix whose entries outside a band of given semi-bandwidth are replaced by zeros (see

control%PSLS control%semi bandwidth below).

4 S is the Hessian matrix whose entries outside a bandwidth-reduced reordered band of given semi-bandwidth

are replaced by zeros (see control%PSLS control%semi bandwidth below).

5 S is the (possibly perturbed) Hessian, using the Schnabel-Eskow modification method to ensure that the

resultant matrix is positive definite.

6 S is the (possibly perturbed) Hessian, using the Gill-Murray-Poncéleon-Saunders modification method to

ensure that the resultant matrix is positive definite.

7 S will be that from the incomplete factorization of the Hessian using the Lin-Moré method (see control%PSLS-

control%icfs vectors below).

8 S will be that from the incomplete factorization of the Hessian using the method implemented by HSL MI28.

Any value outside this range, and those not yet implemented, will be treated as the default, norm = 1.

non monotone is a scalar variable of type INTEGER(ip), that specifies the history-length for non-monotone descent

strategy. Any non-positive value results in standard monotone descent, for which merit function improvement

occurs at each iteration. There are often definite advantages in using a non-monotone strategy with a modest

history, since the occasional local increase in the merit function may enable the algorithm to move across (gentle)

“ripples” in the merit function surface. However, we do not usually recommend large values of non monotone.

The default is non monotone = 1.

weight update strategy is a scalar variable of type INTEGER(ip), that specifies the way in which the regulariza-

tion weight will be adjusted at the end of each iteration. Possible values are:

1 the traditional acceptance and rejection strategy as described below.

2 the traditional strategy, except that a zero weight will be tried first after a very successful step.

3 a more sophisticated strategy that mimics that proposed for trust-region methods by Gould, Porcelli and Toint.

Any other value will be considered as if weight update strategy = 1, and this is the default.

stop c absolute is a scalar variable of type REAL(rp), that is used to specify the maximum permitted two-norm of

the residual, ‖c(x)‖W, (see Section 4) at the estimate of the solution sought. Any negative value will be recorded

as zero. The default is stop c absolute = 10−6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

stop c relative is a scalar variable of type REAL(rp), that is used to specify the largest relative reduction in

the two-norm of the residual, ‖c(x)‖W, that will be permitted (see Section 4) at the estimate of the solu-

tion sought compared to that at the initial point. Any negative value will be recorded as zero. The default

is stop c relative = 0.0.

stop g absolute is a scalar variable of type REAL(rp), that is used to specify the maximum permitted two-norm of

the gradient, ‖JT (x)Wc(x)‖2/‖c(x)‖W, of the residual ‖c(x)‖W, (see Section 4) at the estimate of the solution

sought. Any negative value will be recorded as zero. The default is stop g absolute = 10−6.

stop g relative is a scalar variable of type REAL(rp), that is used to specify the largest relative reduction in

the norm of the gradient of the residual that will be permitted (see Section 4) at the estimate of the solu-

tion sought compared to that at the initial point. Any negative value will be recorded as zero. The default is

stop g relative = 0.0.

stop s is a scalar variable of type REAL(rp), that is used to specify the minimum acceptable correction step s

relative to the current estimate of the solution x The algorithm will be deemed to have converged if |si| ≤ stop s

∗max(1, |xi|) for all i = 1, . . . ,n. The default is stop s = u, where u is EPSILON(1.0) (EPSILON(1.0D0) in

GALAHAD NLS double).

regularization power is a scalar variable of type REAL(rp), that holds the required initial value of the regulariza-

tion weight. If regularization power≤ 2.0, the weight will be chosen automatically by GALAHAD NLS solve.

The default is regularization power = -1.0.

initial weight is a scalar variable of type REAL(rp), that holds the required initial value of the regularization

weight. If initial weight ≤ 0, the weight will be chosen automatically by GALAHAD NLS solve. The default

is initial weight = 100.0.

minimum weight is a scalar variable of type REAL(rp), that holds the largest permitted value of the regularization

weight as the algorithm proceeds. The default is minimum weight = 10−8.

initial inner weight is a scalar variable of type REAL(rp), that holds the required initial value of the regulariza-

tion weight if the model minimization itself requires an inner iteration (i.e., if %model≥ 6). If initial inner weight

≤ 0, the weight will be chosen automatically by GALAHAD NLS solve. The default is initial inner weight

= 0.0.

eta successful, eta very successful and eta too successful are scalar variables of type default REAL(rp),

that control the acceptance and rejection of the trial step and the updates to the regularization weight. At ev-

ery iteration, the ratio of the actual reduction in the merit function following the trial step to that predicted

by the model is computed. The step is accepted whenever this ratio exceeds eta successful; otherwise

the regularization weight will be reduced. If, in addition, the ratio exceeds eta very successful but not

eta too successful, the regularization weight may be increased. The defaults are eta successful = 10−8,

eta very successful = 0.9 and eta too successful = 2.0.

weight increase, weight decrease, weight increase max and weight decrease min are scalar variables of

type REAL(rp), that control the maximum amounts by which the regularization weight can contract or ex-

pand during an iteration. The weight will be decreased by powers of weight decrease, but not in total more

than weight decrease min, until it is smaller than the norm of the current step. It can be increased by at most a

factor weight increase, but not in total less than weight increase max. The defaults are weight increase

= 10.0, weight decrease = 0.1, weight increase max = 100.0 and weight decrease min = 0.1.

switch to newton is a scalar variable of type REAL(rp), that is used to specify the value of the two-norm of the

gradient, ‖JT (x)Wc(x)‖2/‖c(x)‖W, of the residual ‖c(x)‖W, required before a switch is made from the Gauss-

Newton model to the Newton one when %model = 5). The default is switch to newton = 0.1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 9

NLS GALAHAD

cpu time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted CPU time.

Any negative value indicates no limit will be imposed. The default is cpu time limit = - 1.0.

clock time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted elapsed

system clock time. Any negative value indicates no limit will be imposed. The default is clock time limit =

- 1.0.

subproblem direct is a scalar variable of type default LOGICAL, that should be set .TRUE. if a direct (factoriza-

tion) method is desired when solving for the step, and .FALSE. if an iterative method suffices. The default is

subproblem direct = .FALSE..

renormalize weight is a scalar variable of type default LOGICAL, that should be set .TRUE. if the regularization

weight is to be re-normaized to account for the shape of the regularization norm every iteration, and .FALSE. if

no re-normalization is required. The default is renormalize weight = .FALSE..

magic step is a scalar variable of type default LOGICAL, that should be set .TRUE. if additional “magic” steps are to

be used in order to improve the objective as the iteration proceeds, and .FALSE. if no “magic” steps are used.

The default is magic step = .FALSE..

print obj is a scalar variable of type default LOGICAL, that should be set .TRUE. if output values relate to f (x), and

.FALSE. if they relate to ‖c(x)‖W. The default is print obj = .FALSE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

alive file is a scalar variable of type default CHARACTER and length 30, that gives the name of the temporary file

whose removal from stream number alive unit terminates execution of GALAHAD NLS solve. The default is

alive unit = ALIVE.d.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

RQS control is a scalar variable of type RQS control type whose components are used to control the direct regu-

larization step calculation (if any), performed by the package GALAHAD RQS. See the specification sheet for the

package GALAHAD RQS for details, and appropriate default values (but note that values of RQS control%init-

ial multiplier and RQS control%new h may be changed by GALAHAD NLS solve).

GLRT control is a scalar variable of type GLRT control type whose components are used to control the iter-

ative regularization step calculation (if any), performed by the package GALAHAD GLRT. See the specifica-

tion sheet for the package GALAHAD GLRT for details, and appropriate default values (but note that value of

GLRT control%unitm may be changed by GALAHAD NLS solve).

PSLS control is a scalar variable of type PSLS control type whose components are used to control the precondi-

tioning aspects of the calculation, as performed by the package GALAHAD PSLS. See the specification sheet for the

package GALAHAD PSLS for details, and appropriate default values (but note that values for PSLS control%prec-

onditioner, PSLS control%semi bandwidth and PSLS control%icfs vectors may be overridden by GA-

LAHAD NLS solve).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

BSC control is a scalar variable of type BSC control type whose components are used to control the assembly of

the Schur complement, if required, as performed by the package GALAHAD BSC. See the specification sheet for

the package GALAHAD BSC for details, and appropriate default values.

ROOTS control is a scalar variable of type ROOTS control type whose components are used to control polynomial

root-finding methods needed, as performed by the package GALAHAD ROOTS. See the specification sheet for the

package GALAHAD ROOTS for details, and appropriate default values.

subproblem control is a scalar variable of type NLS subproblem control type whose components are used to

control the solution of the least-squares subproblem that defines the step. The only differences are that the

default values subproblem control%maxit = 50 and subproblem control%print obj = .TRUE..

2.4.4 The derived data type for holding timing information

The derived data type NLS time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of NLS time type are:

total is a scalar variable of type default REAL, that gives the CPU total time spent in the package.

preprocess is a scalar variable of type REAL(rp), that gives the CPU time spent reordering the problem to standard

form prior to solution.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing required matrices prior to

factorization.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent using the factors to solve relevant linear

equations.

clock total is a scalar variable of type default REAL, that gives the total elapsed system clock time spent in the

package.

clock preprocess is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent reordering

the problem to standard form prior to solution.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing

required matrices prior to factorization.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent using the factors

to solve relevant linear equations.

2.4.5 The derived data type for holding informational parameters

The derived data type NLS inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The derived type NLS subproblem inform type comprises all of the components of NLS inform type

except for the last (i.e., subproblem inform). The components of NLS inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Sections 2.7 and 2.8

for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 11

NLS GALAHAD

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

iter is a scalar variable of type INTEGER(ip), that holds the number of iterations performed.

cg iter is a scalar variable of type INTEGER(ip), that gives the total number of conjugate-gradient iterations re-

quired.

c eval is a scalar variable of type INTEGER(ip), that gives the total number of residual function evaluations per-

formed.

j eval is a scalar variable of type INTEGER(ip), that gives the total number of residual Jacobian evaluations per-

formed.

h eval is a scalar variable of type INTEGER(ip), that gives the total number of weighted Hessian evaluations per-

formed.

factorization max is a scalar variable of type INTEGER(ip), that gives the largest number of factorizations re-

quired during a subproblem solution.

factorization status is a scalar variable of type INTEGER(ip), that gives the return status from the matrix fac-

torization.

max entries factors is a scalar variable of type INTEGER(int64), that gives the maximum number of entries in

any of the matrix factorizations performed during the calculation.

factorization integer is a scalar variable of type default INTEGER(ip), that gives the amount of integer storage

used for the matrix factorization.

factorization real is a scalar variable of type INTEGER(ip), that gives the amount of real storage used for the

matrix factorization.

factorization average is a scalar variable of type REAL(rp), that gives the average number of factorizations per

subproblem solved.

obj is a scalar variable of type REAL(rp), that holds the value of the objective function f (x) at the best estimate of

the solution found.

norm c is a scalar variable of type REAL(rp), that holds the value of the two-norm of the residual function, ‖c(x)‖W.

at the best estimate of the solution found.

norm g is a scalar variable of type REAL(rp), that holds the value of the norm of the gradient of the two-norm of the

residual function, ‖JT (x)Wc(x)‖2/‖c(x)‖W, at the best estimate of the solution found.

weight is a scalar variable of type REAL(rp), that holds the final value of the regularization weight used.

time is a scalar variable of type NLS time type whose components are used to hold elapsed elapsed CPU and system

clock times for the various parts of the calculation (see Section 2.4.4).

RQS inform is a scalar variable of type RQS inform type whose components give information about the progress and

needs of the direct solution stages of the algorithm performed by the package GALAHAD RQS. See the specification

sheet for the package GALAHAD RQS for details.

GLRT inform is a scalar variable of type GLRT inform type whose components give information about the progress

and needs of the iterative solution stages of the algorithm performed by the package GALAHAD GLRT. See the

specification sheet for the package GALAHAD GLRT for details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

PSLS inform is a scalar variable of type PSLS inform type whose components give information about the progress

and needs of the preconditioning stages of the algorithm performed by the package GALAHAD PSLS. See the

specification sheet for the package GALAHAD PSLS for details.

BSC inform is a scalar variable of type BSC inform type whose components give information about the progress

and needs of the construction of required Schur complements as performed by the package GALAHAD BSC. See

the specification sheet for the package GALAHAD BSC for details.

ROOTS inform is a scalar variable of type ROOTS inform type whose components give information about the progress

and needs of the required polynomial root-find calculations as performed by the package GALAHAD ROOTS. See

the specification sheet for the package GALAHAD ROOTS for details.

subproblem inform is a scalar variable of type NLS subproblem inform type whose components are used to give

information about the solution of the least-squares subproblem that defines the step.

2.4.6 The derived data type for holding problem data

The derived data type NLS data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of NLS procedures. This data should be preserved, untouched (except as directed

on return from GALAHAD NLS solve with positive values of inform%status, see Section 2.7), from the initial call to

NLS initialize to the final call to NLS terminate.

2.4.7 The derived data type for holding user data

The derived data type GALAHAD userdata type is available from the package GALAHAD userdata to allow the user to

pass data to and from user-supplied subroutines for function and derivative calculations (see Section 2.6). Components

of variables of type GALAHAD userdata type may be allocated as necessary. The following components are available:

integer is a rank-one allocatable array of type INTEGER(ip).

real is a rank-one allocatable array of type default REAL(rp)

complex is a rank-one allocatable array of type default COMPLEX (double precision complex in GALAHAD NLS double).

character is a rank-one allocatable array of type default CHARACTER.

logical is a rank-one allocatable array of type default LOGICAL.

integer pointer is a rank-one pointer array of type INTEGER(ip).

real pointer is a rank-one pointer array of type default REAL(rp)

complex pointer is a rank-one pointer array of type default COMPLEX (double precision complex in GALAHAD NLS -

double).

character pointer is a rank-one pointer array of type default CHARACTER.

logical pointer is a rank-one pointer array of type default LOGICAL.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 13

NLS GALAHAD

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.9 for further features):

1. The subroutine NLS initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine NLS solve is called to solve the problem.

3. The subroutine NLS terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by NLS solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem with a different structure since NLS initialize cannot test for this

situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONAL arguments.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL NLS initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type NLS data type (see Section 2.4.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type NLS control type (see Section 2.4.3). On exit, control con-

tains default values for the components as described in Section 2.4.3, while control%subproblem control

contains default values that are required for the model minimization if control%model ≥ 6). These values

should only be changed after calling NLS initialize.

inform is a scalar INTENT(OUT) argument of type NLS inform type (see Section 2.4.5). A successful call to

NLS initialize is indicated when the component inform%status has the value 0. For other return values

of inform%status, see Section 2.8. The components of inform correspond to the main algorithm, while those

in inform%subproblem inform refer to the model minimization if control%model ≥ 6).

2.5.2 The minimization subroutine

The minimization algorithm is called as follows:

CALL NLS solve(nlp, control, inform, data, userdata[, W, eval C, eval J, eval H, &

eval JPROD, eval HPROD, eval HPRODS, eval SCALE])

nlp is a scalar INTENT(INOUT) argument of type NLPT problem type (see Section 2.4.2). It is used to hold data

about the problem being solved. For a new problem, the user must allocate all the array components, and set

values for nlp%n and the required non-real components of nlp%J, nlp%H and nlp%P depending on what level

of derivatives are required by the model requested. Specifically, depending on control parameters in control

below,

if control%jacobian available = 2 and control%model ≥ 3, all appropriate components of nlp%J

should be allocated and, with the exception of nlp%J%val, filled with data,

if control%hessian available = 2 and control%model ≥ 4, all appropriate components of nlp%H should

be allocated and, with the exception of nlp%H%val, filled with data, and

if control%model ≥ 6, all appropriate components of nlp%P should be allocated and, with the exception of

nlp%P%val, filled with data.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

Users are free to choose whichever of the matrix formats described in Section 2.2 is appropriate for J and H for

their application, but P must be input by columns.

The component nlp%X must be set to an initial estimate, x0, of the minimization variables. A good choice will

increase the speed of the package, but the underlying method is designed to converge (at least to a local solution)

from an arbitrary initial guess.

On exit, the component nlp%X will contain the best estimates of the minimization variables x.

Restrictions: nlp%n > 0, nlp%m > 0, nlp%J%type ∈ {’DENSE’,’COORDINATE’,’SPARSE BY ROWS’} and

nlp%H%type ∈ {’DENSE’,’COORDINATE’,’SPARSE BY ROWS’,’DIAGONAL’}.

control is a scalar INTENT(IN) argument of type NLS control type (see Section 2.4.3). Default values may be as-

signed by calling NLS initialize prior to the first call to NLS solve. The argument control%PSLS control-

%preconditioner will be overridden by control%norm.

The function and derivative requirements are governed by the value of control%model. The precise needs are

specified in Table 2.1.

matrix available (eval /status) matrix free (eval /status)

%model C/2 J/3 H/4 JPROD/5 HPROD/6 HPRODS/7 J/3 H/4 JPROD/5 HPROD/6 HPRODS/7

1 & 2
√ √ √

3
√ √ √

4 & 5
√ √ √ √ √

6 & 7
√ √ √ √ √ √ √

Table 2.1: Evaluation requirements for models supported. Key: A
√

in box in column A/n means that the ex-

ternal subroutine eval A will be used if provided, but otherwise that reverse communication will be invoked with

inform%status = n. No provision for a derivative need be made for empty boxes, and thus no eval A need be

present for these cases, nor will returns with inform%status = n occur.

inform is a scalar INTENT(INOUT) argument of type NLS inform type (see Section 2.4.5). On initial entry, the

component inform%status must be set to the value 1. Other entries need note be set. A successful call

to NLS solve is indicated when the component inform%status has the value 0. For other return values of

inform%status, see Sections 2.7 and 2.8.

data is a scalar INTENT(INOUT) argument of type NLS data type (see Section 2.4.6). It is used to hold data about

the problem being solved. With the possible exceptions of the components data%eval status and data%U (see

Section 2.7), it must not have been altered by the user since the last call to NLS initialize.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the OPTIONAL subroutines eval C, eval J, eval H, eval JPROD,

eval HPROD, eval HPRODS and eval SCALE (see Section 2.4.7).

W is an OPTIONAL rank-one array of type REAL(rp) whose components specifies the diagonal weighting matrix W

that defines the objective function f (x). If W is present, it must be of length at least n, and W(i) should contain

wi > 0, i = 1, . . . ,n. If W is absent, the weights wi will all be taken to be 1.0.

eval C is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the residual function c(x)
at a given vector x. See Section 2.6.1 for details. If eval C is present, it must be declared EXTERNAL in the

calling program. If eval C is absent, GALAHAD NLS solve will use reverse communication to obtain objective

function values (see Section 2.7).

eval J is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the Jacobian of the residual

function J(x) at a given vector x. See Section 2.6.2 for details, but first check Table 2.1 to see if the subroutine

is not needed. If eval J is present, it must be declared EXTERNAL in the calling program. If eval J is absent,

GALAHAD NLS solve will use reverse communication to obtain gradient values (see Section 2.7).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 15

NLS GALAHAD

eval H is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the weighted residual

Hessian H(x,y) at a given vector pair (x,y). See Section 2.6.3 for details, but first check Table 2.1 to see if

the subroutine is not needed. If eval H is present, it must be declared EXTERNAL in the calling program. If

eval H is absent, GALAHAD NLS solve will use reverse communication to obtain Hessian function values (see

Section 2.7).

eval JPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of sum u+ J(x)v or

u+ JT (x)v involving the product between the Jacobian of the residual function J(x) or its transpose with a

given vector v. See Section 2.6.4 for details, but first check Table 2.1 to see if the subroutine is not needed. If

eval JPROD is present, it must be declared EXTERNAL in the calling program. If eval JPROD is absent, GALAH-

AD NLS solve will use reverse communication to obtain Jacobian-vector products (see Section 2.7).

eval HPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of sum u+H(x,y)v
involving the product of the weighted residual Hessian H(x,y) at a given vector pair (x,y) with a given vector

v. See Section 2.6.5 for details, but first check Table 2.1 to see if the subroutine is not needed. If eval HPROD

is present, it must be declared EXTERNAL in the calling program. If eval HPROD is absent, GALAHAD NLS solve

will use reverse communication to obtain Hessian-vector products (see Section 2.7).

eval HPRODS is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the values of the residual-

Hessians-vector product matrix, P(x,v) at a given vector pair (x,v). See Section 2.6.6 for details, but first

check Table 2.1 to see if the subroutine is not needed. If eval HPRODS is present, it must be declared EXTERNAL

in the calling program. If eval HPRODS is absent, GALAHAD NLS solve will use reverse communication to obtain

Hessian-vector products (see Section 2.7).

eval SCALE is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product S(x)v of

the user’s preconditioner with a given vector v. See Section 2.6.7 for details. If eval SCALE is present, it must

be declared EXTERNAL in the calling program. If eval SCALE is absent, GALAHAD NLS solve will use reverse

communication to obtain products with the preconditioner (see Section 2.7).

2.5.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL NLS terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type NLS data type exactly as for NLS solve, which must not have

been altered by the user since the last call to NLS initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type NLS control type exactly as for NLS solve.

inform is a scalar INTENT(OUT) argument of type NLS inform type exactly as for NLS solve. The component

inform%status will be set on exit, and a successful call to NLS terminate is indicated when this component

has the value 0. For other return values of inform%status, see Section 2.8.

2.6 Function and derivative values

2.6.1 The residual value via internal evaluation

If the argument eval C is present when calling GALAHAD NLS solve, the user is expected to provide a subroutine of

that name to evaluate the value of the residual functions c(x). The routine must be specified as

SUBROUTINE eval_C(status, X, userdata, c)

whose arguments are as follows:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the residual functions and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval C, eval J, eval H, eval JPROD, eval HPROD,

eval HPRODS and eval SCALE (see Section 2.4.7).

C is a rank-one INTENT(OUT) array argument of type REAL(rp) that should be set to the value of the residuals

c(x) evaluated at the vector x input in X.

2.6.2 Jacobian values via internal evaluation

If the argument eval J is present when calling GALAHAD NLS solve, the user is expected to provide a subroutine of

that name to evaluate the values of the residual Jacobian J(x). The routine must be specified as

SUBROUTINE eval_J(status, X, userdata, J_val)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the residual Jacobian, and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval C, eval J, eval H, eval JPROD, eval HPROD,

eval HPRODS and eval SCALE (see Section 2.4.7).

J val is a scalar INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

Jacobian J(x) evaluated at the vector x input in X. The values should be input in the same order as that in which

the array indices were given in nlp%J.

2.6.3 weighted residual Hessian values via internal evaluation

If the argument eval H is present when calling GALAHAD NLS solve, the user is expected to provide a subroutine of

that name to evaluate the values of the weighted Hessian H(x,y). The routine must be specified as

SUBROUTINE eval_H(status, X, Y, userdata, H_val)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the weighted Hessian and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

Y is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector y.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval C, eval J, eval H, eval JPROD, eval HPROD,

eval HPRODS and eval SCALE (see Section 2.4.7).

H val is a scalar INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

weighted Hessian H(x,y) evaluated at the vector x input in X and y input in Y The values should be input in the

same order as that in which the array indices were given in nlp%H.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 17

NLS GALAHAD

2.6.4 Jacobian-vector products via internal evaluation

If the argument eval JPROD is present when calling GALAHAD NLS solve, the user is expected to provide a subroutine

of that name to evaluate the sum u+ J(x)v or u+ JT (x)v involving the product of the residual Jacobian J(x) or its

transpose JT (x) and a given vector v. The routine must be specified as

SUBROUTINE eval_JPROD(status, X, userdata, transpose, U, V, got_j)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the sum u+ J(x)v or u+ JT (x)v and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval C, eval J, eval H, eval JPROD, eval HPROD,

eval HPRODS and eval SCALE (see Section 2.4.7).

transpose is a scalar INTENT(IN) array argument of type default that will be set .TRUE. if the product involves the

transpose of the Jacobian JT (x) and .FALSE. if the product involves the Jacobian J(x) itself.

U is a rank-one INTENT(INOUT) array argument of type REAL(rp) whose components on input contain the vector

u and on output the sum u+ J(x)v when %transpose is .FALSE. or u+ JT (x)v when %transpose is .TRUE..

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

got j is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If the Jacobian has already been evalu-

ated at the current x got j will be PRESENT and set .TRUE.; if this is the first time the Jacobian is to be accessed

at x, either got j will be absent or PRESENT and set .FALSE.. This gives the user the opportunity to reuse

“start-up” computations required for the first instance of x to speed up subsequent products.

2.6.5 Hessian-vector products via internal evaluation

If the argument eval HPROD is present when calling GALAHAD NLS solve, the user is expected to provide a subroutine

of that name to evaluate the sum u+H(x,y)v involving the product of the weighted residual Hessian H(x,y) with a

given vector v. The routine must be specified as

SUBROUTINE eval_HPROD(status, X, Y, userdata, U, V, got_h)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the sum u+H(x,y)v and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

Y is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector y.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval C, eval J, eval H, eval JPROD, eval HPROD,

eval HPRODS and eval SCALE (see Section 2.4.7).

U is a rank-one INTENT(INOUT) array argument of type REAL(rp) whose components on input contain the vector

u and on output the sum u+H(x,y)v.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

got h is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If the Hessian has already been evalu-

ated at the current pair (x,y) got h will be PRESENT and set .TRUE.; if this is the first time the Hessian is to be

accessed at (x,y), either got h will be absent or PRESENT and set .FALSE.. This gives the user the opportunity

to reuse “start-up” computations required for the first instance of (x,y) to speed up subsequent products.

2.6.6 Hessians-vector product matrix via internal evaluation

If the argument eval HPRODS is present when calling GALAHAD NLS solve, the user is expected to provide a subroutine
of that name to evaluate the values of the residual-Hessians-vector product matrix, P(x,v) at a given vector pair (x,v).
The routine must be specified as

SUBROUTINE eval_HPRODS(status, X, V, userdata, P_val, got_h)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the matrix P(x,v), and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval C, eval J, eval H, eval JPROD, eval HPROD,

eval HPRODS and eval SCALE (see Section 2.4.7).

P%val is a scalar INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

Hessian residual-Hessians-vector product matrix, P(x,v), stored by columns and evaluated at the vector x input

in X and v input in V. The values should be input in the same order as that in which the array indices were given

in nlp%P.

got h is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If the Hessians have already been

evaluated at the current x, got h will be PRESENT and set .TRUE.; if this is the first time the Hessian is to be

accessed at x, either got h will be absent or PRESENT and set .FALSE.. This gives the user the opportunity to

reuse “start-up” computations required for the first instance of x to speed up subsequent products.

2.6.7 Preconditioner-vector products via internal evaluation

If the argument eval SCALE is present when calling GALAHAD NLS solve, the user is expected to provide a subroutine

of that name to evaluate the product u = S(x)v involving the user’s preconditioner S(x) with a given vector v. The

symmetric matrix S(x) should ideally be chosen so that the eigenvalues of S(x)(∇xxtk(0))
−1 are clustered, where tk(s)

is the current model of f (x+ s). The routine must be specified as

SUBROUTINE eval_SCALE(status, X, userdata, U, V)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the product S(x)v and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 19

NLS GALAHAD

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval C, eval J, eval H and eval SCALE (see

Section 2.4.7).

U is a rank-one INTENT(OUT) array argument of type REAL(rp) whose components on output should contain the

product u = S(x)v.

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

2.7 Reverse Communication Information

A positive value of inform%status on exit from NLS solve indicates that GALAHAD NLS solve is seeking further

information—this will happen if the user has chosen not to evaluate function or derivative values internally (see Sec-

tion 2.6). The user should compute the required information and re-enter GALAHAD NLS solve with inform%status

and all other arguments (except those specifically mentioned below) unchanged.

Possible values of inform%status and the information required are

2. The user should compute the vector of residual functions c(x) at the point x indicated in nlp%X. The required

value should be set in nlp%C, and data%eval status should be set to 0. If the user is unable to evaluate c(x)—
for instance, if one or more of the residual functions is undefined at x—the user need not set nlp%C, but should

then set data%eval status to a non-zero value.

3. The user should compute the Jacobian matrix J(x) of the residuals c(x) at the point x indicated in nlp%X. The l-

th component of the Jacobian stored according to the scheme input in the remainder of nlp%J (see Section 2.4.2)

should be set in nlp%J%val(l), for l = 1, . . . , nlp%J%ne and data%eval status should be set to 0. If the user

is unable to evaluate a component of J(x)—for instance, if a component of the Jacobian is undefined at x—the

user need not set nlp%J%val, but should then set data%eval status to a non-zero value.

4. The user should compute the weighted Hessian H(x,y) at the point x given in nlp%X and vector y given in

data%Y. The l-th component of the Hessian stored according to the scheme input in the remainder of nlp%H (see

Section 2.4.2) should be set in nlp%H%val(l), for l = 1, . . . , nlp%H%ne and data%eval status should be set

to 0. If the user is unable to evaluate a component of H(x,y)—for instance, if a component of the Hessian is

undefined at x—the user need not set nlp%H%val, but should then set data%eval status to a non-zero value.

5. The user should compute ones of the sums u+J(x)v or u+JT (x)v involving the product of the residual Jacobian

J(x) or its transpose at the point x, given in nlp%X, with a given vector v. The vectors u and v are given

in data%U and data%V respectively. If data%transpose is .FALSE., the resulting vector u+ J(x)v should

overwrite data%U and data%eval status should be set to 0. Conversely if data%transpose is .TRUE., the

resulting vector u+ JT (x)v should overwrite data%U and data%eval status set to 0. If the user is unable to

evaluate the sum—for instance, if a component of the Jacobian is undefined at x—the user need not set data%U,

but should then set data%eval status to a non-zero value.

6. The user should compute the sum u+H(x,y)v, involving the product of the weighted residual Hessian H(x,y)
at the point x given in nlp%X and vector y given in data%Y with a given vector v. The vectors u and v are

given in data%U and data%V respectively, the resulting vector u + H(x,y)v should overwrite data%U and

data%eval status should be set to 0. If the user is unable to evaluate the sum—for instance, if a compo-

nent of the Hessian is undefined at x—the user need not set nlp%H%val, but should then set data%eval status

to a non-zero value.

7. The user should compute the residual-Hessians-vector-product matrix P(x,v), whose i-th column is the prod-

uct Hi(x)v between the Hessian Hi(x) of the i-th residual function ci(x) at the point x given in nlp%X and

a given vector v specified in data%V. The nonzeros for column i must be stored in nlp%P%val(l), for l =

nlp%P%ptr(i), ..., nlp%P%ptr(i+1) for each column i = 1,...,m, in the same order as the row indices

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

were assigned on input to nlp%P%row(l), and data%eval status should be set to 0. If the user is unable to

evaluate the matrix—for instance if a component of one of the Hessians is undefined at x—the user need not set

nlp%P%val, but should then set data%eval status to a non-zero value.

8. The user should compute the product u = S(x)v of their preconditioner S(x) at the point x indicated in nlp%X

with the vector v. The vectors v is given in data%V, the resulting vector u = S(x)v should be set in data%U and

data%eval status should be set to 0. If the user is unable to evaluate the product—for instance, if a component

of the preconditioner is undefined at x—the user need not set data%U, but should then set data%eval status

to a non-zero value.

2.8 Warning and error messages

A negative value of inform%status on exit from NLS solve or NLS terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. The restriction nlp%n > 0 and nlp%m > 0, or requirements that nlp%J%type contains its relevant string ’DENSE’,

’COORDINATE’ or, ’SPARSE BY ROWS’ and that nlp%H type contains its ’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’

has been violated.

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factor status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

tor status.

-11. The solution of a set of linear equations using factors from the factorization package failed; the return status

from the factorization package is given in the component inform%factor status.

-15. The preconditioner S(x) appears not to be positive definite.

-16. The problem is so ill-conditioned that further progress is impossible.

-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be

symptomatic of a badly scaled problem.

-19. The elapsed CPU or system clock time limit has been reached. This may happen if either control%cpu time limit

or control%clock time limit is too small, but may also be symptomatic of a badly scaled problem.

-82. The user has forced termination of GALAHAD NLS solve by removing the file named control%alive file

from unit unit control%alive unit.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 21

NLS GALAHAD

2.9 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type NLS control type (see Section 2.4.3), by reading an appropriate data specification file using the

subroutine NLS read specfile. This facility is useful as it allows a user to change NLS control parameters without

editing and recompiling programs that call NLS.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by NLS read specfile must start with a ”BEGIN NLS” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by NLS_read_specfile ..)

BEGIN NLS

keyword value

.......

keyword value

END

(.. lines ignored by NLS_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN NLS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN NLS SPECIFICATION

and

END NLS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN NLS” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when NLS read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

NLS read specfile.

2.9.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL NLS_read_specfile(control, device)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

22 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

control is a scalar INTENT(INOUT) argument of type NLS control type (see Section 2.4.3). Default values should

have already been set, perhaps by calling NLS initialize. On exit, individual components of control and

control%subproblem control may have been changed according to the commands found in the specfile.

Specfile commands and the component (see Section 2.4.3) of control and control%subproblem control

that each affects are given in Table 2.2.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

start-print %start print integer

stop-print %stop print integer

iterations-between-printing %print gap integer

maximum-number-of-iterations %maxit integer

alive-device %alive unit integer

jacobian-available %jacobian available integer

hessian-available %hessian available integer

history-length-for-non-monotone-descent %non monotone integer

model-used %model integer

norm-used %norm integer

weight-update-strategy weight update strategy integer

absolute-residual-accuracy-required %stop c absolute real

relative-residual-reduction-required %stop c relative real

absolute-gradient-accuracy-required %stop g absolute real

relative-gradient-reduction-required %stop g relative real

minimum-relative-step-allowed %stop s real

initial-regularization-weight %initial weight real

minimum-regularization-weight %minimum weight real

successful-iteration-tolerance %eta successful real

very-successful-iteration-tolerance %eta very successful real

too-successful-iteration-tolerance %eta too successful real

regularization-weight-minimum-decrease-factor %weight decrease min real

regularization-weight-decrease-factor %weight decrease real

regularization-weight-increase-factor %weight increase real

regularization-weight-maximum-increase-factor %weight increase max real

minimum-objective-before-unbounded %obj unbounded real

maximum-cpu-time-limit %cpu time limit real

maximum-clock-time-limit %clock time limit real

hessian-available %hessian available logical

sub-problem-direct %subproblem direct logical

retrospective-trust-region %retrospective trust region logical

renormalize-weight %renormalize weight logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

alive-filename %alive file character

Table 2.2: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 23

NLS GALAHAD

an error message will be printed on unit control%error.

2.10 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. This

will include the values of the objective function and the norm of its gradient, the ratio of actual to predicted decrease

following the step, the value of the regularization weight and the time taken so far. In addition, if a direct solution of the

subproblem has been attempted, the Lagrange multiplier from the secular equation and the number of factorizations

used will be recorded, while if an iterative solution has been used, the numbers of phase 1 and 2 iterations will be

given.

If control%print level ≥ 2 this output will be increased to provide significant detail of each iteration. This

extra output includes residuals of the linear systems solved, and, for larger values of control%print level, values

of the variables and gradients. Further details concerning the attempted solution of the models may be obtained

by increasing control%RQS control%print level and control%GLRT control%print level, while details about

factorizations are available by increasing control%PSLS control%print level. See the specification sheets for the

packages GALAHAD GLRT, GALAHAD PSLS and GALAHAD RQS for details.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: NLS solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SY-

MBOLS, GALAHAD NLPT, GALAHAD SPECFILE, GALAHAD PSLS, GALAHAD GLRT, GALAHAD RQS,

GALAHAD BSC, GALAHAD SPACE, GALAHAD ROOTS, GALAHAD MOP, GALAHAD NORMS, GALAHAD STRING and

GALAHAD BLAS interface.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: nlp%n > 0, nlp%m > 0, nlp%J%type ∈ {’DENSE’,’COORDINATE’,’SPARSE BY ROWS’} and

nlp%H%type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

An adaptive regularization method is used. In this, an improvement to a current estimate of the required minimizer,

xk is sought by computing a step sk. The step is chosen to approximately minimize a model tk(s) of fρ,r(xk + s) that

includes a weighted regularization term σk
p ‖s‖p

Sk
for some specified positive weight σk. The quality of the resulting step

sk is assessed by computing the ”ratio” (f (xk)− f (xk + sk))/(tk(0)− tk(sk)). The step is deemed to have succeeded if

the ratio exceeds a given ηs > 0, and in this case xk+1 = xk + sk. Otherwise xk+1 = xk, and the weight is increased by

powers of a given increase factor up to a given limit. If the ratio is larger than ηv ≥ ηd , the weight will be decreased by

powers of a given decrease factor again up to a given limit. The method will terminate as soon as f (xk) or ‖∇x f (xk)‖
is smaller than a specified value.

A choice of linear, quadratic or quartic models tk(s) is available (see §2.1), and normally a two-norm regularization

will be used, but this may change if preconditioning is employed.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

24 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

If linear or quadratic models are employed, an appropriate, approximate model minimizer is found using either a

direct approach involving factorization of a shift of the model Hessian Bk or an iterative (conjugate-gradient/Lanczos)

approach based on approximations to the required solution from a so-called Krlov subspace. The direct approach is

based on the knowledge that the required solution satisfies the linear system of equations (Bk +λkI)sk = −∇x f (xk)
involving a scalar Lagrange multiplier λk. This multiplier is found by uni-variate root finding, using a safeguarded

Newton-like process, by GALAHAD RQS. The iterative approach uses GALAHAD GLRT, and is best accelerated by precon-

ditioning with good approximations to the Hessian of the model using GALAHAD PSLS. The iterative approach has the

advantage that only Hessian matrix-vector products are required, and thus the Hessian Bk is not required explicitly.

However when factorizations of the Hessian are possible, the direct approach is often more efficient.

When a quartic model is used, the model is itself of least-squares form, and the package calls itself recursively

to approximately minimize its model. The quartic model often gives a better approximation, but at the cost of more

involved derivative requirements.

References:

The generic cubic regularization method is described in detail in

C. Cartis, N. I. M. Gould and Ph. L. Toint, “Adaptive cubic regularisation methods for unconstrained optimization.

Part I: motivation, convergence and numerical results” Mathematical Programming 127(2) (2011) 245–295,

and uses “tricks” as suggested in

N. I. M. Gould, M. Porcelli and Ph. L. Toint, “Updating the regularization parameter in the adaptive cubic regulariza-

tion algorithm”. Computational Optimization and Applications 53(1) (2012) 1–22.

The specific methods employed here are discussed in

N. I. M. Gould, J. A. Scott and T. Rees, “Convergence and evaluation-complexity analysis of a regularized tensor-

Newton method for solving nonlinear least-squares problems”. Computational Optimization and Applications 73(1)

(2019) 1–35.

5 EXAMPLES OF USE

Suppose we wish to minimize the parametric objective function 1
2 (x

2
1x3+ p)2+ 1

2 (x
2
2+x3)

2 when the parameter p takes

the value 4. Starting from the initial guess x = (1,1,1), and noting that

c(x) =

(

x2
1x3 + p

x2
2 + x3

)

, J(x) =

(

2x1x3 0 x2
1

0 2x2 1

)

, H(x,y) =





2x3y1 0 2x1y1

0 2y2 0

2x1y1 0 0



& P(x,v) =





2x3v1 + 2x1v3 0

0 2v2

2x1v1 0



 ,

we may use the following code:

PROGRAM GALAHAD_NLS_EXAMPLE ! GALAHAD 3.3 - 05/05/2021 AT 14:15 GMT

USE GALAHAD_NLS_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (NLS_control_type) :: control

TYPE (NLS_inform_type) :: inform

TYPE (NLS_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

EXTERNAL :: EVALC, EVALJ, EVALH, EVALP

INTEGER :: s

INTEGER, PARAMETER :: m = 2, n = 3, j_ne = 4, h_ne = 3, p_ne = 3

REAL (KIND = wp), PARAMETER :: p = 4.0_wp ! parameter p

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 25

NLS GALAHAD

! start problem data

nlp%n = n ; nlp%m = m ; nlp%J%ne = j_ne ; nlp%H%ne = h_ne ! dimensions

ALLOCATE(nlp%X(n), nlp%C(m))

nlp%X = (/ 1.0_wp, 1.0_wp, 1.0_wp /) ! start from (-1,1,1)

! sparse co-ordinate storage format

CALL SMT_put(nlp%J%type, ’COORDINATE’, s) ! Specify co-ordinate storage

ALLOCATE(nlp%J%val(j_ne), nlp%J%row(j_ne), nlp%J%col(j_ne))

nlp%J%row = (/ 1, 2, 1, 2 /) ! Jacobian J(x)

nlp%J%col = (/ 1, 2, 3, 3 /)

CALL SMT_put(nlp%H%type, ’COORDINATE’, s) ! Specify co-ordinate storage

ALLOCATE(nlp%H%val(h_ne), nlp%H%row(h_ne), nlp%H%col(h_ne))

nlp%H%row = (/ 1, 3, 2 /) ! Hessian H(x,y)

nlp%H%col = (/ 1, 1, 2 /) ! NB lower triangle

ALLOCATE(nlp%P%ptr(m + 1), nlp%P%row(p_ne), nlp%P%val(p_ne))

nlp%P%ptr = (/ 1, 3, 4 /) ! start of each column of P

nlp%P%row = (/ 1, 3, 2 /) ! row indices of columns

ALLOCATE(userdata%real(1)) ! Allocate space for parameter

userdata%real(1) = p ! Record parameter, p

! problem data complete ; solve using a Gauss-Newton model

CALL NLS_initialize(data, control, inform) ! Initialize control params

control%subproblem_direct = .TRUE. ! directly solve model problem

control%model = 3 ! Gauss-Newton model

control%jacobian_available = 2 ! Jacobian is available

inform%status = 1 ! set for initial entry

CALL NLS_solve(nlp, control, inform, data, userdata, eval_C = EVALC, &

eval_J = EVALJ, eval_H = EVALH) ! Solve problem

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ NLS: ’, I0, ’ iterations -’, &

& ’ optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

ELSE ! Error returns

WRITE(6, "(’ NLS_solve exit status = ’, I6) ") inform%status

END IF

! now solve using a Newton model

control%subproblem_direct = .TRUE. ! directly solve model problem

control%model = 4 ! Change to Newton model

control%hessian_available = 2 ! Hessian is available

nlp%X = (/ 1.0_wp, 1.0_wp, 1.0_wp /) ! start from (-1,1,1)

inform%status = 1 ! set for initial entry

CALL NLS_solve(nlp, control, inform, data, userdata, eval_C = EVALC, &

eval_J = EVALJ, eval_H = EVALH) ! Solve problem

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ NLS: ’, I0, ’ iterations -’, &

& ’ optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

ELSE ! Error returns

WRITE(6, "(’ NLS_solve exit status = ’, I6) ") inform%status

END IF

! finally solve using a tensor Gauss Newton model

control%subproblem_direct = .TRUE. ! directly solve model problem

control%model = 6 ! Change to tensor-GN model

nlp%X = (/ 1.0_wp, 1.0_wp, 1.0_wp /) ! start from (-1,1,1)

inform%status = 1 ! set for initial entry

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

26 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

CALL NLS_solve(nlp, control, inform, data, userdata, eval_C = EVALC, &

eval_J = EVALJ, eval_H = EVALH, &

eval_HPRODS = EVALP) ! Solve problem

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ NLS: ’, I0, ’ iterations -’, &

& ’ optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

ELSE ! Error returns

WRITE(6, "(’ NLS_solve exit status = ’, I6) ") inform%status

END IF

CALL NLS_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(nlp%X, nlp%G, nlp%J%val, nlp%J%row, nlp%J%col, userdata%real)

DEALLOCATE(nlp%H%val, nlp%H%row, nlp%H%col)

DEALLOCATE(nlp%P%val, nlp%P%row, nlp%P%ptr)

END PROGRAM GALAHAD_NLS_EXAMPLE

SUBROUTINE EVALC(status, X, userdata, C) ! residual

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:),INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:),INTENT(OUT) :: C

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp) :: p

p = userdata%real(1)

C(1) = X(3) * X(1) ** 2 + P

C(2) = X(2) ** 2 + X(3)

status = 0

RETURN

END SUBROUTINE EVALC

SUBROUTINE EVALJ(status, X, userdata, J_val) ! Jacobian

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: J_val

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp) :: p

p = userdata%real(1)

J_val(1) = 2.0_wp * X(1) * X(3)

J_val(2) = 2.0_wp * X(2)

J_val(3) = X(1) ** 2

J_val(4) = 1.0_wp

status = 0

RETURN

END SUBROUTINE EVALJ

SUBROUTINE EVALH(status, X, Y, userdata, H_val) ! scaled Hessian

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X, Y

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: H_val

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 27

NLS GALAHAD

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp) :: p

p = userdata%real(1)

H_val(1) = 2.0_wp * X(3) * Y(1)

H_val(2) = 2.0_wp * X(1) * Y(1)

H_val(3) = 2.0_wp * Y(2)

status = 0

RETURN

END SUBROUTINE EVALH

SUBROUTINE EVALP(status, X, V, userdata, P_val, got_h)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(INOUT) :: P_val

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: V

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

LOGICAL, OPTIONAL, INTENT(IN) :: got_h

P_val(1) = 2.0_wp * (X(3) * V(1) + X(1) * V(3))

P_val(2) = 2.0_wp * X(1) * V(1)

P_val(3) = 2.0_wp * V(2)

status = 0

RETURN

END SUBROUTINE EVALP

Notice how the parameter p is passed to the function evaluation routines via the real component of the derived type
userdata. The code produces the following output:

NLS: 14 iterations - optimal objective value = 6.8988E-17

Optimal solution = -1.8704E+00 1.0693E+00 -1.1434E+00

NLS: 12 iterations - optimal objective value = 7.7100E-18

Optimal solution = 1.9304E+00 1.0361E+00 -1.0735E+00

NLS: 6 iterations - optimal objective value = 4.6651E-13

Optimal solution = 1.5102E+00 1.3243E+00 -1.7537E+00

If the Hessian is unavailable, but products of the form u+Hv are, the same problem may be solved as follows:

PROGRAM GALAHAD_NLS_EXAMPLE2 ! GALAHAD 3.3 - 05/05/2021 AT 14:15 GMT

USE GALAHAD_NLS_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (NLS_control_type) :: control

TYPE (NLS_inform_type) :: inform

TYPE (NLS_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

EXTERNAL :: EVALC, EVALJ, EVALHPROD

INTEGER :: s

INTEGER, PARAMETER :: m = 2, n = 3, j_ne = 4, h_ne = 3, p_ne = 3

REAL (KIND = wp), PARAMETER :: p = 4.0_wp ! parameter p

! start problem data

nlp%n = n ; nlp%m = m ; nlp%J%ne = j_ne ; nlp%H%ne = h_ne ! dimensions

ALLOCATE(nlp%X(n), nlp%C(m))

nlp%X = (/ 1.0_wp, 1.0_wp, 1.0_wp /) ! start from (-1,1,1)

! sparse co-ordinate storage format

CALL SMT_put(nlp%J%type, ’COORDINATE’, s) ! Specify co-ordinate storage

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

28 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

ALLOCATE(nlp%J%val(j_ne), nlp%J%row(j_ne), nlp%J%col(j_ne))

nlp%J%row = (/ 1, 2, 1, 2 /) ! Jacobian J(x)

nlp%J%col = (/ 1, 2, 3, 3 /)

ALLOCATE(userdata%real(1)) ! Allocate space for parameter

userdata%real(1) = p ! Record parameter, p

! problem data complete ; solve using a Newton model

CALL NLS_initialize(data, control, inform) ! Initialize control params

control%jacobian_available = 2 ! Jacobian is available

control%hessian_available = 1 ! only Hessian-vector products

control%model = 4 ! use the Newton model

inform%status = 1 ! set for initial entry

CALL NLS_solve(nlp, control, inform, data, userdata, eval_C = EVALC, &

eval_J = EVALJ, eval_HPROD = EVALHPROD) ! Solve problem

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ NLS: ’, I0, ’ iterations -’, &

& ’ optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

ELSE ! Error returns

WRITE(6, "(’ NLS_solve exit status = ’, I6) ") inform%status

END IF

CALL NLS_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(nlp%X, nlp%G, nlp%J%val, nlp%J%row, nlp%J%col, userdata%real)

END PROGRAM GALAHAD_NLS_EXAMPLE2

SUBROUTINE EVALC(status, X, userdata, C) ! residual

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:),INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:),INTENT(OUT) :: C

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp) :: p

p = userdata%real(1)

C(1) = X(3) * X(1) ** 2 + P

C(2) = X(2) ** 2 + X(3)

status = 0

RETURN

END SUBROUTINE EVALC

SUBROUTINE EVALJ(status, X, userdata, J_val) ! Jacobian

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: J_val

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp) :: p

p = userdata%real(1)

J_val(1) = 2.0_wp * X(1) * X(3)

J_val(2) = 2.0_wp * X(2)

J_val(3) = X(1) ** 2

J_val(4) = 1.0_wp

status = 0

RETURN

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 29

NLS GALAHAD

END SUBROUTINE EVALJ

SUBROUTINE EVALHPROD(status, X, Y, userdata, U, V, got_h) ! Hessian product

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X, Y

REAL (KIND = wp), DIMENSION(:), INTENT(INOUT) :: U

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: V

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

LOGICAL, OPTIONAL, INTENT(IN) :: got_h

U(1) = U(1) + 2.0_wp * Y(1) * (X(3) * V(1) + X(1) * V(3))

U(2) = U(2) + 2.0_wp * Y(2) * V(2)

U(3) = U(3) + 2.0_wp * Y(1) * X(1) * V(1)

status = 0

RETURN

END SUBROUTINE EVALHPROD

Notice that storage for the Hessian is now not needed. This produces the following output:

NLS: 12 iterations - optimal objective value = 3.4666E-18

Optimal solution = 1.9304E+00 1.0361E+00 -1.0734E+00

If the user prefers to provide function and gradient information and Hessian-vector products without calls to

specified routines, the following code is appropriate:

PROGRAM GALAHAD_NLS_EXAMPLE3 ! GALAHAD 3.3 - 05/05/2021 AT 14:15 GMT

USE GALAHAD_NLS_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (NLS_control_type) :: control

TYPE (NLS_inform_type) :: inform

TYPE (NLS_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

INTEGER :: s

INTEGER, PARAMETER :: m = 2, n = 3, j_ne = 4, h_ne = 3, p_ne = 3

REAL (KIND = wp), PARAMETER :: p = 4.0_wp ! parameter p

! start problem data

nlp%n = n ; nlp%m = m ; nlp%J%ne = j_ne ; nlp%H%ne = h_ne ! dimensions

ALLOCATE(nlp%X(n), nlp%C(m))

nlp%X = (/ 1.0_wp, 1.0_wp, 1.0_wp /) ! start from (-1,1,1)

! problem data complete ; solve using a Newton model

CALL NLS_initialize(data, control, inform) ! Initialize control params

control%jacobian_available = 1 ! only Jacobian-vector products

control%hessian_available = 1 ! only Hessian-vector products

control%model = 4 ! use the Newton model

inform%status = 1 ! set for initial entry

10 CONTINUE

CALL NLS_solve(nlp, control, inform, data, userdata)

SELECT CASE (inform%status) ! is more information required?

CASE (0) ! successful call

WRITE(6, "(’ NLS: ’, I0, ’ iterations -’, &

& ’ optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

CASE (: - 1) ! unsuccessful call

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

30 NLS (May 24, 2024) GALAHAD

GALAHAD NLS

WRITE(6, "(’ NLS_solve exit status = ’, I6) ") inform%status

CASE (2)

nlp%C(1) = nlp%X(3) * nlp%X(1) ** 2 + P

nlp%C(2) = nlp%X(2) ** 2 + nlp%X(3)

data%eval_status = 0

GO TO 10 ! return to NLS_solve

CASE (5)

IF (data%transpose) THEN

data%U(1) = data%U(1) + 2.0_wp * nlp%X(1) * nlp%X(3) * &

data%V(1)

data%U(2) = data%U(2) + 2.0_wp * nlp%X(2) * data%V(2)

data%U(3) = data%U(3) + data%V(1) * nlp%X(1) ** 2 + data%V(2)

ELSE

data%U(1) = data%U(1) + 2.0_wp * nlp%X(1) * nlp%X(3) * &

data%V(1) + data%V(3) * nlp%X(1) ** 2

data%U(2) = data%U(2) + 2.0_wp * nlp%X(2) * data%V(2) &

+ data%V(3)

END IF

data%eval_status = 0

GO TO 10 ! return to NLS_solve

CASE (6)

data%U(1) = data%U(1) + 2.0_wp * data%Y(1) * &

(nlp%X(3) * data%V(1) + nlp%X(1) * data%V(3))

data%U(2) = data%U(2) + 2.0_wp * data%Y(2) * data%V(2)

data%U(3) = data%U(3) + 2.0_wp * data%Y(1) * &

nlp%X(1) * data%V(1)

data%eval_status = 0

GO TO 10 ! return to NLS_solve

END SELECT

CALL NLS_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(nlp%X, nlp%G)

END PROGRAM GALAHAD_NLS_EXAMPLE3

This produces the same output as in the previous case.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLS (May 24, 2024) 31

