
GALAHAD NLPT

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package defines a derived type capable of supporting the storage of a variety of smooth nonlinear programming

problems of the form

min f(x)

subject to the general constraints

cl
≤ c(x)≤ cu,

and

xl
≤ x ≤ xu,

where f is a smooth “objective function”, where c(x) is a smooth function from IRn into IRm and where inequalities are

understood componentwise. The vectors cl ≤ cu and xl ≤ xu are m- and n-dimensional, respectively, and may contain

components equal to minus or plus infinity. An important function associated with the problem is its Lagrangian

L(x,y,z) = f(x)− yT c(x)− zT x

where y belongs to IRm and z belongs to IRn. The solution of such problem may require the storage of the objective

function’s gradient

g(x) = ∇xf(x),

the n× n symmetric objective function’s Hessian

H f (x) = ∇xxf(x)

the m× n constraints’ Jacobian whose i-th row is the gradient of the i-th constraint:

eT
i J(x) = [∇xci(x)]

T ,

the gradient of the Lagrangian with respect to x,

gL(x,y,z) = ∇xL(x,y,z)

and of the Lagrangian’s Hessian with respect to x

HL(x,y,z) = ∇xxL(x,y,z).

Note that this last matrix is equal to the Hessian of the objective function when the problem is unconstrained (m = 0),

which autorizes us to use the same symbol H for both cases.

Full advantage can be taken of any zero coefficients in the matrices H or J.

The module also contains subroutines that are designed for printing parts of the problem data, and for matrix storage

scheme conversions.

ATTRIBUTES — Versions: GALAHAD NLPT single, GALAHAD NLPT double, Calls: GALAHAD TOOLS. Date: May

2003. Origin: N. I. M. Gould, Rutherford Appleton Laboratory, and Ph. L. Toint, University of Namur, Belgium.

Language: Fortran 95 + TR 15581 or Fortran 2003.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLPT (May 24, 2024) 1

NLPT GALAHAD

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD NLPT single

with the obvious substitution GALAHAD NLPT double, GALAHAD NLPT single 64 and GALAHAD NLPT double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived type NLPT problem type, (Sec-

tion 2.4) must be renamed on one of the USE statements.

2.1 Matrix storage formats

Both the Hessian matrix H and the Jacobian J may be stored in one of three input formats (the format for the two

matrices being possibly different).

2.1.1 Dense storage format

The matrix J is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array J val

will hold the value Ji j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

If this storage scheme is used, J type and/or H type must be set the value of the symbol GALAHAD DENSE.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of J, its row index i, column index j and value

Ji j are stored in the l-th components of the integer arrays J row, J col and real array J val. The order is unimportant,

but the total number of entries J ne is also required. The same scheme is applicable to H (thus requiring integer arrays

H row, H col, a real array H val and an integer value H ne), except that only the entries in the lower triangle need be

stored.

If this storage scheme is used, J type and/or H type must be set the value of the symbol GALAHAD COORDINATE.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+1. For the i-th row of J, the i-th component of a integer array J ptr holds the position of the first entry

in this row, while J ptr (m+1) holds the total number of entries plus one. The column indices j and values Ji j of the

entries in the i-th row are stored in components l = J ptr(i), . . . ,J ptr (i+1)−1 of the integer array J col, and real

array J val, respectively. The same scheme is applicable to H (thus requiring integer arrays H ptr, H col, and a real

array H val), except that only the entries in the lower triangle need be stored. The values of J ne and H ne are not

mandatory, since they can be recovered from

J ne= J ptr(n+ 1)− 1 and H ne= H ptr(n+ 1)− 1

For sparse matrices, this scheme almost always requires less storage than its predecessor.

If this storage scheme is used, J type and/or H type must be set the value of the symbol GALAHAD SPARSE BY ROWS.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 NLPT (May 24, 2024) GALAHAD

GALAHAD NLPT

2.2 Optimality conditions

The solution x necessarily satisfies the primal first-order optimality conditions

cl
≤ c(x)≤ cu, and xl

≤ x ≤ xu,

the dual first-order optimality conditions

g(x) = J(x)T y+ z

where

y = yl + yu, z = zl + zu yl
≥ 0, yu

≤ 0, zl
≥ 0 and zu

≤ 0,

and the complementary slackness conditions

(c(x)− cl)T yl = 0, (c(x)− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0,

where the vectors y and z are known as the Lagrange multipliers for the general constraints, and the dual variables

for the bounds, respectively, and where the vector inequalities hold componentwise. The dual first-order optimality

condition is equivalent to the condition that gL(x,y,z) = 0.

2.3 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.4 The derived data type

A single derived data type, NLPT problem type, is accessible from the package. It is intended that, for any particular

application, only those components which are needed will be set. The components are:

pname is a scalar variable of type default CHARACTER(LEN = 10), that holds the problem’s name.

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

vnames is a rank-one allocatable array of dimension n and type CHARACTER(LEN = 10) that holds the names of

the problem’s variables. The j-th component of vnames, j = 1, . . . ,n, contains the name of x j.

x is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of x, j = 1, . . . ,n, contains x j.

x l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xl on

the variables. The j-th component of x l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting the

corresponding components of x l to any value smaller than -infinity.

x u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xu on

the variables. The j-th component of x u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity.

z is a rank-one allocatable array of dimension n and type default REAL(rp), that holds the values z of estimates

of the dual variables corresponding to the simple bound constraints (see Section 2.2). The j-th component of z,

j = 1, . . . ,n, contains z j.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLPT (May 24, 2024) 3

NLPT GALAHAD

x status is a rank-one allocatable array of dimension n and type INTEGER(ip), that holds the status of the problem’s

variables corresponding to the presence of their bounds. The j-th component of x status, j = 1, . . . ,n, contains

the status of x j. Typical values are GALAHAD FREE, GALAHAD LOWER, GALAHAD UPPER, GALAHAD RANGE,

GALAHAD FIXED, GALAHAD STRUCTURAL, GALAHAD ELIMINATED, GALAHAD ACTIVE, GALAHAD INACTIVE or GALA-

HAD UNDEFINED.

f is a scalar variable of type REAL(rp), that holds the current value of the objective function.

g is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient g of of the objective

function. The j-th component of g, j = 1, . . . ,n, contains g j.

H type is a scalar variable of type INTEGER(ip), that specifies the type of storage used for the lower triangle of the

objective function’s or Lagrangian’s Hessian H Possible values are GALAHAD DENSE, GALAHAD COORDINATE

or GALAHAD SPARSE BY ROWS.

H ne is a scalar variable of type INTEGER(ip), that holds the number of non-zero entries in the lower triangle of the

objective function’s or Lagrangian’s Hessian H.

H val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower triangular

part of the Hessian matrix H in any of the storage schemes discussed in Section 2.1.

H row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other

two schemes.

H col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the lower tri-

angular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3)

storage scheme. It need not be allocated when the dense storage scheme is used.

H ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position of

each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

m is a scalar variable of type INTEGER(ip), that holds the number of general linear constraints, m.

c is a rank-one allocatable array of dimension m and type default REAL(rp), that holds the values c(x) of the

constraints. The i-th component of c, i = 1, . . . ,m, contains ci(x).

c l is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of lower bounds cl on

the general constraints. The i-th component of c l, i = 1, . . . ,m, contains cl
i . Infinite bounds are allowed by

setting the corresponding components of c l to any value smaller than -infinity.

c u is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of upper bounds cu on

the general constraints. The i-th component of c u, i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed by

setting the corresponding components of c u to any value larger than infinity.

equation is a rank-one allocatable array of dimension m and type default LOGICAL, that specifies if each constraint is

an equality or an inequality. The i-th component of equation is .TRUE. iff the i-th constraint is an equality, i.e.

iff cl
i = cu

i .

linear is a rank-one allocatable array of dimension m and type default LOGICAL, that specifies if each constraint is

linear. The i-th component of linear is .TRUE. iff the i-th constraint is linear.

y is a rank-one allocatable array of dimension m and type REAL(rp), that holds the values y of estimates of

the Lagrange multipliers corresponding to the general constraints (see Section 2.2). The i-th component of y,

i = 1, . . . ,m, contains yi.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 NLPT (May 24, 2024) GALAHAD

GALAHAD NLPT

c status is a rank-one allocatable array of dimension m and type INTEGER(ip), that holds the status of the problem’s

constraints corresponding to the presence of their bounds. The i-th component of c status, j = 1, . . . ,m, con-

tains the status of ci. Typical values are GALAHAD FREE, GALAHAD LOWER, GALAHAD UPPER, GALAHAD RANGE,

GALAHAD FIXED, GALAHAD STRUCTURAL, GALAHAD ELIMINATED, GALAHAD ACTIVE, GALAHAD INACTIVE or GALA-

HAD UNDEFINED.

J type is a scalar variable of type INTEGER(ip), that specifies the type of storage used for the constraints’ Jacobian

J. Possible values are GALAHAD DENSE, GALAHAD COORDINATE or GALAHAD SPARSE BY ROWS.

J ne is a scalar variable of type INTEGER(ip), that holds the number of non-zero entries in the constraints’ Jacobian

J.

J val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian matrix J

in any of the storage schemes discussed in Section 2.1.

J row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of J in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

J col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of J in either the

sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme. It need not be

allocated when the dense storage scheme is used.

J ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip), that holds the starting position of

each row of J, as well as the total number of entries plus one, in the sparse row-wise storage scheme (see

Section 2.1.3). It need not be allocated when the other schemes are used.

gL is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient gL of of the problem’s

Lagrangian L with respect to x. The j-th component of gL, j = 1, . . . ,n, contains [gL] j.

Note that not every component of this data type is used by every package.

2.5 Argument lists and calling sequences

There are seven procedures for user calls:

1. The subroutine NLPT write stats is used to write general information on the problem such as the number of

variables and constraints of different types.

2. The subroutine NLPT write variables is used to write the current values of the problem’s variables, bounds

and of their associated duals.

3. The subroutine NLPT write constraints is used to write the current values of the problem’s constraints,

bounds and of their associated multipliers.

4. The subroutine NLPT write problem is used to write the problem’s number of variables and constraints per

type, as well as current values of the problem’s variables and constraints. This broadly corresponds to succes-

sively calling the three subroutines mentioned above. The subroutine additionally (optionally) writes the values

of the Lagrangian’s Hessian H and constraints Jacobian J.

5. The subroutine NLPT J from C to Srow builds the permutation that transforms the Jacobian from coordinate

storage to sparse-by-row storage, as well as the J ptr and J col vectors.

6. The subroutine NLPT J from C to Scol builds the permutation that transforms the Jacobian from coordinate

storage to sparse-by-column storage, as well as the J ptr and J row vectors.

7. The subroutine NLPT cleanup is used to deallocate the memory space used by a problem data structure.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLPT (May 24, 2024) 5

NLPT GALAHAD

2.5.1 Writing the problem’s statistics

The number of variables and constraints for each type of bounds (free, lower/upper bounded, range bounded, linear,

equalities/fixed) is output by using the call

CALL NLPT write stats(problem, out)

where

problem is a scalar INTENT(IN) argument of type NLPT problem type, that holds the problem for which statistics

must be written.

out is a scalar INTENT(IN) argument of type INTEGER(ip), that holds the device number on which problem statis-

tics should be written.

Note that problem%pname is assumed to be defined and that both problem%c l and problem%c u are assumed to be

associated whenever problem%m > 0.

2.5.2 Writing the problem’s variables, bounds and duals

The values of the variables and associated bounds and duals is output by using the call

CALL NLPT write variables(problem, out)

where

problem is a scalar INTENT(IN) argument of type NLPT problem type, that holds the problem for which variables

values, bounds and duals must be written.

out is a scalar INTENT(IN) argument of type INTEGER(ip), that holds the device number on which problem vari-

ables values, bounds and duals should be written.

This routine assumes that problem%pname and problem%x are associated. The bounds are printed whenever problem%x l

and problem%x u are associated. Moreover, it is also assumed in this case that problem%g is associated when

problem%m = 0, and that problem%z is associated when problem%m > 0. The variables’ names are used whenever

problem%vnames is associated, but this is not mandatory.

2.5.3 Writing the problem’s constraints, bounds and multipliers

The values of the constraints and associated bounds and multipliers is output by using the call

CALL NLPT write constraints(problem, out)

where

problem is a scalar INTENT(IN) argument of type NLPT problem type, that holds the problem for which constraints

values, bounds and multipliers must be written.

out is a scalar INTENT(IN) argument of type INTEGER(ip), that holds the device number on which problem con-

straints values, bounds and multipliers should be written.

This routine assumes that problem%pname, problem%c problem%c l, problem%c u and problem%y are associated.

The types of constraints are used whenever problem%equation and/or problem%linear are associated, but this is

not mandatory. The constraints’ names are used whenever problem%cnames is associated, but this is not mandatory.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 NLPT (May 24, 2024) GALAHAD

GALAHAD NLPT

2.5.4 Writing the entire problem

The most important data of a problem can be output by the call

CALL NLPT write problem(problem, out, print level)

where

problem is a scalar INTENT(IN) argument of type NLPT problem type, that holds the problem whose data must be

written.

out is a scalar INTENT(IN) argument of type INTEGER(ip), that holds the device number on which the problem

data should be written.

print level is a scalar INTENT(IN) argument of type INTEGER(ip), that holds the level of details required for

output. Possible values are:

GALAHAD SILENT: no output is produced;

GALAHAD TRACE: the problem’s statistics are output, plus the norms of the current vector of variables, the

objective function’s value and the norm of its gradient, and the maximal bound and constraint violations.

GALAHAD ACTION: the problem’s statistics are output, plus the values of the variables, bounds and associated

duals, the value of the objective function, the value of the objective function’s gradient, the values of the

constraints and associated bounds and multipliers.

GALAHAD DETAILS: as for GALAHAD ACTION, plus the values of the Lagrangian’s Hessian and of the constraints’

Jacobian.

This routine assumes that problem%pname and problem%x are associated. The bounds on the variables are

printed whenever problem%x l and problem%x u are associated. Moreover, it is also assumed in this case

that problem%g is associated when problem%m = 0, and that problem%z is associated when problem%m > 0.

The variables’ names are used whenever problem%vnames is associated, but this is not mandatory. In the case

where problem%m > 0, it is furthermore assumed that problem%c problem%c l, problem%c u and problem%y

are associated. The types of constraints are used whenever problem%equation and/or problem%linear are

associated, but this is not mandatory. The constraints’ names are used whenever problem%cnames is associated,

but this is not

2.5.5 Problem cleanup

The memory space allocated to allocatable in the problem data structure is deallocated by the call

CALL NLPT cleanup(problem)

where

problem is a scalar INTENT(IN) argument of type NLPT problem type, that holds the problem whose memory space

must be deallocated.

2.5.6 Transforming the Jacobian from co-ordinate storage to sparse-by-rows

The permutation that transforms the Jacobian from co-ordinate storage to sparse-by-rows, as well as the associated

ptr and col vectors can be obatined by the call

CALL NLPT J perm from C to Srow(problem, perm, col, ptr)

where

problem is a scalar INTENT(IN) argument of type NLPT problem type, that holds the Jacobian matrix to transform.

Note that we must have problem%J type = GALAHAD COORDINATE.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLPT (May 24, 2024) 7

NLPT GALAHAD

perm is an allocatable to a vector INTENT(OUT) of type INTEGER(ip) and dimension equal to problem%J nnz, that

returns the permutation of the elements of problem%J val that must be applied to transform the Jacobian from

co-ordinate storage to sparse-by-rows.

col is an allocatable to a vector INTENT(OUT) of type INTEGER(ip) and dimension problem%J ne whose k-th

component is the column index of the k-th element of problem%J val after permutation by perm.

ptr is an allocatable to a vector INTENT(OUT) of type INTEGER(ip) and dimension problem%m +1 whose i-the

component is the index in problem%J val (after permutation by perm) of the first entry of row i. Moreover,

ptr(problem%m+ 1) = problem%J ne+ 1.

2.5.7 Transforming the Jacobian from co-ordinate storage to sparse-by-columns

The permutation that transforms the Jacobian from co-ordinate storage to sparse-by-columns, as well as the associated

ptr and row vectors can be obtained by the call

CALL NLPT J perm from C to Scol(problem, perm, row, ptr)

where

problem is a scalar INTENT(IN) argument of type NLPT problem type, that holds the Jacobian matrix to transform.

Note that we must have problem%J type = GALAHAD COORDINATE.

perm is an allocatable to a vector INTENT(OUT) of type INTEGER(ip) and dimension equal to problem%J nnz, that

returns the permutation of the elements of problem%J val that must be applied to transform the Jacobian from

co-ordinate storage to sparse-by-columns.

col is an allocatable to a vector INTENT(OUT) of type INTEGER(ip) and dimension problem%J ne whose k-th

component is the row index of the k-th element of problem%J val after permutation by perm.

ptr is an allocatable to a vector INTENT(OUT) of type INTEGER(ip) and dimension problem%m +1 whose i-the

component is the index in problem%J val (after permutation by perm) of the first entry of column i. Moreover,

ptr(problem%m+ 1) = problem%J ne+ 1.

3 GENERAL INFORMATION

Other modules used directly: None.

Other routines called directly: NLPT solve calls the BLAS functions *NRM2, where * is S for the default real version

and D for the double precision version.

Other modules used directly: NLPT calls the TOOLS GALAHAD module.

Input/output: Output is under the control of the print level argument for the NLPT write problem subroutine.

Restrictions: problem%n > 0, problem%m ≥ 0. Additionally, the subroutines NLPT write * require that problem%n

< 1014 and problem%m < 1014.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 NLPT (May 24, 2024) GALAHAD

GALAHAD NLPT

4 EXAMPLE OF USE

Suppose we wish to present the data for the problem of minimizing the objective function (x1 − 2)x2 subject to the

constraints x2
1 + x2

2 ≤ 1, 0 ≤ −x1 + x2, and the simple bound 0 ≤ x1, where the values are computed at the point

xT = (0,1), which, together with the values z1 = 1 and yT = (−1,0) defines a first-order critical point for the problem.
Assume that we wish to store the Lagrangian’s Hessian and the Jacobian in co-ordinate format. Assume also that we
wish to write this data. We may accomplish these objectives by using the code:

PROGRAM GALAHAD_NLPT_EXAMPLE

USE GALAHAD_NLPT_double ! the problem type

USE GALAHAD_SYMBOLS

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, PARAMETER :: iout = 6 ! stdout and stderr

REAL(KIND = wp), PARAMETER :: INFINITY = (10.0_wp)**19

TYPE(NLPT_problem_type) :: problem

! Set the problem up.

problem%pname = ’NLPT-TEST’

problem%infinity = INFINITY

problem%n = 2

ALLOCATE(problem%vnames(problem%n), problem%x(problem%n) , &

problem%x_l(problem%n) , problem%x_u(problem%n), &

problem%g(problem%n) , problem%z(problem%n))

problem%m = 2

ALLOCATE(problem%equation(problem%m), problem%linear(problem%m), &

problem%c(problem%m) , problem%c_l(problem%m), &

problem%c_u(problem%m), problem%y(problem%m), &

problem%cnames(problem%m))

problem%J_ne = 4

ALLOCATE(problem%J_val(problem%J_ne), problem%J_row(problem%J_ne), &

problem%J_col(problem%J_ne))

problem%H_ne = 3

ALLOCATE(problem%H_val(problem%H_ne), problem%H_row(problem%H_ne), &

problem%H_col(problem%H_ne))

problem%H_type = GALAHAD_COORDINATE

problem%J_type = GALAHAD_COORDINATE

problem%vnames = (/ ’X1’ , ’X2’ /)

problem%x = (/ 0.0D0 , 1.0D0 /)

problem%x_l = (/ 0.0D0 , -INFINITY /)

problem%x_u = (/ INFINITY, INFINITY /)

problem%cnames = (/ ’C1’ , ’C2’ /)

problem%c = (/ 0.0D0 , 1.0D0 /)

problem%c_l = (/ -INFINITY, 0.0D0 /)

problem%c_u = (/ 1.0D0 , INFINITY /)

problem%y = (/ -1.0D0 , 0.0D0 /)

problem%equation = (/ .FALSE. , .FALSE. /)

problem%linear = (/ .FALSE. , .TRUE. /)

problem%z = (/ 1.0D0 , 0.0D0 /)

problem%f = -2.0_wp

problem%g = (/ 1.0D0 , -1.0D0 /)

problem%J_row = (/ 1 , 1 , 2 , 2 /)

problem%J_col = (/ 1 , 2 , 1 , 2 /)

problem%J_val = (/ 0.0D0 , 2.0D0 , -1.0D0 , 1.0D0 /)

problem%H_row = (/ 1 , 2 , 2 /)

problem%H_col = (/ 1 , 1 , 2 /)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLPT (May 24, 2024) 9

NLPT GALAHAD

problem%H_val = (/ 2.0D0 , 1.0D0 , 2.0D0 /)

NULLIFY(problem%x_status, problem%H_ptr, problem%J_ptr, problem%gL)

CALL NLPT_write_problem(problem, iout, GALAHAD_DETAILS)

! Cleanup the problem.

CALL NLPT_cleanup(problem)

STOP

END PROGRAM GALAHAD_NLPT_EXAMPLE

which gives the following output:

+--+

| Problem : NLPT-TEST |

+--+

Free Lower Upper Range Fixed/ Linear Total

bounded bounded bounded equalities

Variables 1 1 0 0 0 2

Constraints 1 1 0 0 1 2

+--+

| Problem : NLPT-TEST |

+--+

j Name Lower Value Upper Dual value

1 X1 0.0000E+00 0.0000E+00 1.0000E+00

2 X2 1.0000E+00

OBJECTIVE FUNCTION value = -2.0000000E+00

GRADIENT of the objective function:

1 1.000000E+00 -1.000000E+00

Lower triangle of the HESSIAN of the Lagrangian:

i j value i j value i j value

1 1 2.0000E+00 2 1 1.0000E+00 2 2 2.0000E+00

+--+

| Problem : NLPT-TEST |

+--+

i Name Lower Value Upper Dual value

1 C1 0.0000E+00 1.0000E+00 -1.0000E+00

2 C2 0.0000E+00 1.0000E+00 0.0000E+00 linear

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 NLPT (May 24, 2024) GALAHAD

GALAHAD NLPT

JACOBIAN matrix:

i j value i j value i j value

1 1 0.0000E+00 1 2 2.0000E+00 2 1 -1.0000E+00

2 2 1.0000E+00

-------------------- END OF PROBLEM ----------------------

We could choose to hold the lower triangle of H is sparse-by-rows format by replacing the lines

ALLOCATE(problem%H_val(problem%H_ne), problem%H_row(problem%H_ne), &

problem%H_col(problem%H_ne))

problem%H_type = GALAHAD_COORDINATE

and

problem%H_row = (/ 1 , 2 , 2 /)

problem%H_col = (/ 1 , 1 , 2 /)

problem%H_val = (/ 2.0D0 , 1.0D0 , 2.0D0 /)

NULLIFY(problem%x_status, problem%H_ptr, problem%J_ptr, problem%gL)

by

ALLOCATE(problem%H_val(problem%H_ne), problem%H_col(problem%H_ne), &

problem%H_ptr(problem%n + 1))

problem%H_type = GALAHAD_SPARSE_BY_ROWS

and

problem%H_ptr = (/ 1 , 2 , 4 /)

problem%H_col = (/ 1 , 1 , 2 /)

problem%H_val = (/ 2.0D0 , 1.0D0 , 2.0D0 /)

NULLIFY(problem%x_status, problem%H_row, problem%J_ptr, problem%gL)

or using a dense storage format with the replacement lines

ALLOCATE(problem%H_val(((problem%n + 1) * problem%n) / 2))

problem%H_type = GALAHAD_DENSE

and

problem%H_val = (/ 2.0D0 , 1.0D0 , 2.0D0 /)

NULLIFY(problem%x_status, problem%H_row, problem%H_col, problem%H_ptr, &

problem%J_ptr, problem%gL)

respectively.

For examples of how the derived data type NLPT problem type may be used in conjunction with the GALAHAD

nonlinear feasibility code, see the specification sheets for the GALAHAD FILTRANE package.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD NLPT (May 24, 2024) 11

