
GALAHAD MOP

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

GALAHAD MOP is a suite of Fortran 90 procedures for performing operations on/with a matrix A of derived data type

SMT type (Section 2.3), which allows for multiple storage types (Section 2.1). In particular, this package contains the

following subroutines for a given m by n matrix A:

• subroutine mop Ax computes matrix-vector products of the form

r← αAx+βr and r← αAT x+βr

for given scalars α and β, and vectors x ∈ IRn and r ∈ IRm;

• subroutine mop getval obtains the (i, j)-element of the matrix A for given integers i and j;

• subroutine mop scaleA scales the rows of A by a given vector u ∈ IRm and the columns by a vector v ∈ IRn.

ATTRIBUTES — Versions: GALAHAD MOP single, GALAHAD MOP double, Uses: GALAHAD SMT double. Date:

November 2009. Origin: N. I. M. Gould, Rutherford Appleton Laboratory, and D. P. Robinson, University of Oxford,

UK. Language: Fortran 90.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD MOP single

with the obvious substitution GALAHAD MOP double, GALAHAD MOP single 64 and GALAHAD MOP double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type (Section 2.3) and

the subroutines MOP Ax, MOP getval, and MOP scaleA (Sections 2.4, 2.5, 2.6) must be renamed on one of the USE

statements.

2.1 Matrix storage formats

The matrix A may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. If A is symmetric, only the lower triangular part (that is the

part ai j for 1 ≤ j ≤ i ≤ n) should be stored. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array A%val will hold the value ai j (and, by symmetry, a ji) for 1≤ j ≤ i≤ n.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MOP (May 24, 2024) 1

MOP GALAHAD

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and value ai j

are stored in the l-th components of the integer arrays A%row, A%col and real array A%val. The order is unimportant,

but the total number of entries A%ne is also required. If A is symmetric, the same scheme is applicable, except that

only the entries in the lower triangle should be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. If A is symmetric, the same scheme is applicable, except that only the entries in

the lower triangle should be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Sparse column-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in column j appear directly

before those in column j + 1. For the j-th column of A, the j-th component of the integer array A%ptr holds the

position of the first entry in this column, while A%ptr (n+ 1) holds the total number of entries plus one. The row

indices i and values ai j of the entries in the j-th column are stored in components l = A%ptr(j), . . . ,A%ptr (j+1)−1

of the integer array A%row, and real array A%val, respectively. If A is symmetric, the same scheme is applicable,

except that only the entries in the lower triangle should be stored.

2.1.5 Diagonal storage format

If A is diagonal (i.e., ai j = 0 for all 1≤ i 6= j ≤ n) only the diagonals entries aii for 1≤ i≤ n should be stored, and the

first n components of the array A%val should be used for this purpose.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data type for holding the matrix A

The matrix A is stored using the derived data type SMT type whose components are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 MOP (May 24, 2024) GALAHAD

GALAHAD MOP

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type must contain

the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten components of H%type must

contain the string COORDINATE, for the sparse row-wise storage scheme (see Section 2.1.3), the first fourteen

components of H%type must contain the string SPARSE BY ROWS, for the sparse column-wise storage scheme

(see Section 2.1.4), the first seventeen components of H%type must contain the string SPARSE BY COLUMNS, and

for the diagonal storage scheme (see Section 2.1.5), the first eight components of H%type must contain the string

DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if we wish to store A using the co-ordinate scheme, we may simply

CALL SMT_put(A%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries ai j = a ji of a symmetric matrix A is represented as a single entry (see §2.1.1–

2.1.5).

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries (see § 2.1.2 and 2.1.4).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip). If sparse row-wise storage is used, then ptr should be

of dimension at least m + 1 and should contain pointers to the first entry in each row (see §2.1.3). If sparse

column-wise storage is used, then ptr should be of dimension at least n + 1 and should contain pointers to the

first entry in each column (see §2.1.4).

2.4 The subroutine to form matrix-vector products

The subroutine MOP Ax may be called to compute matrix vector products with A of the form

r← αAx+βr (2.1)

or

r← αAT x+βr (2.2)

by using

CALL MOP Ax(alpha, A, X, beta, R, [out, error, print level, symmetric, transpose])

where square brackets indicate OPTIONAL arguments.

alpha is a scalar INTENT(IN) argument of type REAL(rp) that must hold the value of α.

A is a scalar INTENT(IN) argument of type SMT type (see Section 2.3) that must hold the matrix A.

X is a rank-one INTENT(IN) array of type REAL(rp) that must contain the components of the vector x.

beta is a scalar INTENT(IN) argument of type REAL(rp) that must hold the value of β.

R is a rank-one INTENT(INOUT) array of type REAL(rp) that must contain the components of the vector r. R need

not be set on entry if beta is zero.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MOP (May 24, 2024) 3

MOP GALAHAD

out is an OPTIONAL scalar INTENT(IN) argument of type INTEGER(ip), that holds the stream number for informa-

tional messages. If this argument is not provided, then the default value out = 6 is used.

error is an OPTIONAL scalar INTENT(IN) argument of type INTEGER(ip), that holds the stream number for error

messages. If this argument is not provided, then the default value error = 6 is used.

print level is an OPTIONAL scalar INTENT(IN) argument of type INTEGER(ip), that is used to control the amount

of informational output which is required. No informational output will occur if print level≤ 0. If print level

= 1, minimal output will be produced and if print level ≥ 2 then output will be increased to provide full de-

tails. The default is print level = 0.

symmetric is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL that should be set .TRUE. if the

matrix A is symmetric, and set .FALSE. otherwise. If this argument is not provided, then the dafault value of

.FALSE. is used.

transpose is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL that should be set .FALSE. if the

user wishes to compute (2.1), an set .TRUE. if the user wishes to compute (2.2). If transpose is not provided,

then the dafault value of .FALSE. is used.

2.4.1 Warning and error messages

All warning and error messages will be printed on unit error as discussed in the previous section.

2.4.2 Information printed

If print level is positive, information about the calculation will be printed on unit out as discussed previously. In

particular, if print level = 1, then the values symmetric, transpose, A%m, A%n, A%type, A%id, alpha, and beta

are printed. If print level = 2, then additionally A%ptr, A%val, A%row, and A%col are printed. If print level ≥ 3,

then additionally the input X and R as well as the result R will be printed.

2.5 The subroutine to get matrix values

The subroutine MOP getval may be used to get the (i, j)-th element of the matrix A by using

CALL MOP getval(A, row, col, val, [symmetric, out, error, print level])

where square brackets indicate OPTIONAL arguments.

A is a scalar INTENT(IN) argument of type SMT type (see Section 2.3) that must contain the matrix A.

row is a scalar INTENT(IN) argument of type INTEGER(ip) that specifies the row index i of the requested element

of the matrix A.

col is a scalar INTENT(IN) argument of type INTEGER(ip) that specifies the column index j of the requested

element of the matrix A.

val is a scalar INTENT(OUT) argument of type REAL(rp) that holds the value of the (i, j)-th element of the matrix A

on return.

symmetric is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL that should be set .TRUE. if the

matrix A is symmetric, and set .FALSE. otherwise. If symmetric is not provided, then the dafault value of

.FALSE. is used.

out is an OPTIONAL scalar INTENT(IN) argument of type INTEGER(ip), that holds the stream number for informa-

tional messages. If this argument is not provided, then the default value out = 6 is used.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 MOP (May 24, 2024) GALAHAD

GALAHAD MOP

error is an OPTIONAL scalar INTENT(IN) argument of type INTEGER(ip), that holds the stream number for error

messages. If this argument is not provided, then the default value error = 6 is used.

print level is an OPTIONAL scalar INTENT(IN) argument of type INTEGER(ip), that is used to control the amount

of informational output which is required. No informational output will occur if print level≤ 0. If print level

= 1, minimal output will be produced and if print level ≥ 2 then output will be increased to provide full de-

tails. The default is print level = 0.

2.5.1 Warning and error messages

All warning and error messages will be printed on unit error as discussed in the previous section.

2.5.2 Information printed

If print level is positive, information about the subroutine data will be printed on unit out as discussed previously.

In particular, if print level = 1, then the values A%m, A%n, A%type, A%id, row, col, and the resulting value val are

printed. If print level ≥ 2, then additionally A%ptr, A%val, A%row, and A%col are printed.

2.6 The subroutine to scale the matrix

The subroutine MOP scaleA may be called to scale the rows of the m by n matrix A by the vector u ∈ IRm and the

columns by the vector v∈ IRn. In other words, it forms the scaled matrix whose (i, j)-th element is uiai, jv j. This scaled

matrix is stored in A on return. If the OPTIONAL argument symmetric is set .TRUE. , then the rows and columns of A

are scaled by the vector u. The calling sequence is given by

CALL MOP scaleA(A, [u, v, out, error, print level, symmetric])

where square brackets indicate OPTIONAL arguments.

A is a scalar INTENT(INOUT) argument of type SMT type (see Section 2.3) that must contain the matrix A.

u is an OPTIONAL rank-one INTENT(IN) argument of type REAL(rp) of length A%m whose i-th component is used to

scale the i-th row of the matrix A.

v is an OPTIONAL rank-one INTENT(IN) argument of type REAL(rp) of length A%n whose i-th component is used to

scale the i-th column of the matrix A.

out is an OPTIONAL scalar INTENT(IN) argument of type INTEGER(ip), that holds the stream number for informa-

tional messages. If this argument is not provided, then the default value out = 6 is used.

error is an OPTIONAL scalar INTENT(IN) argument of type INTEGER(ip), that holds the stream number for error

messages. If this argument is not provided, then the default value error = 6 is used.

print level is an OPTIONAL scalar INTENT(IN) argument of type INTEGER(ip), that is used to control the amount

of informational output which is required. No informational output will occur if print level≤ 0. If print level

= 1, minimal output will be produced and if print level ≥ 2 then output will be increased to provide full de-

tails. The default is print level = 0.

symmetric is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL that should be set .TRUE. if the

matrix A is symmetric, and set .FALSE. otherwise. If symmetric is not provided, then the dafault value of

.FALSE. is used.

2.6.1 Warning and error messages

All warning and error messages will be printed on unit error as discussed in the previous section.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MOP (May 24, 2024) 5

MOP GALAHAD

2.6.2 Information printed

If print level is positive, information about the arguments will be printed on unit out as discussed previously. In

particular, if print level ≥ 1, then the values A%m, A%n, A%type, A%id, A%ptr, A%val, A%row, A%col, u and v will

be printed.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: The GALAHAD package GALAHAD SMT is used by the subroutines MOP Ax, MOP getval,

and MOP scaleA.

Input/output: Output is provided under the control of the OPTIONAL input arguments print level, out, and error.

The argument print level controls the amount of information printed to the device with unit number out; all

error messages will be printed to the device with unit number error. If the user does not supply any of these

optional arguments, then the default values print level = 0, out = 6, and error = 6 are used.

Restrictions: A%n> 0, A%m> 0, and A%type ∈{’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’SPARSE BY COLUMNS’

’DIAGONAL’ }.

Portability: ISO Fortran 90.

4 EXAMPLE OF USE

Suppose we wish to perform the following operations. We first compute

r← αAx+βr

where

A =

(

1 2 3

4 5 6

)

, x =

1

1

1

 , r =

(

3

3

)

, α = 3, and β = 2.

Next we scale the rows of A by the vector u and columns of A by the vector v, where

u =

(

2

−1

)

and v =

3

1

2

 .

In other words, we over-write the matrix A with the scaled matrix whose (i, j)th element is uiai, jv j. Finally, we retrieve

the (1,2) element of the scaled matrix.

We may use the following code

! THIS VERSION: GALAHAD 4.1 - 2022-11-25 AT 09:00 GMT.

PROGRAM GALAHAD_mop_example

USE GALAHAD_SMT_double ! double precision version

USE GALAHAD_MOP_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! Define the working precision

REAL (KIND = wp), parameter :: one = 1.0_wp, two = 2.0_wp, three = 3.0_wp

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 MOP (May 24, 2024) GALAHAD

GALAHAD MOP

REAL (KIND = wp), dimension(:), allocatable :: X, u, v, R

REAL (KIND = wp) :: val, alpha, beta

INTEGER :: row, col, out, error, print_level, stat

LOGICAL :: symmetric, transpose

TYPE (SMT_type) :: A

! Begin problem data.

A%m = 2 ; A%n = 3 ; A%ne = 6

ALLOCATE(A%row(A%ne), A%col(A%ne), A%val(A%ne), X(A%n), &

u(A%m), v(A%n), R(A%m))

A%row = (/ 1, 1, 1, 2, 2, 2 /) ; A%col = (/ 1, 2, 3, 1, 2, 3 /)

A%val = (/ 1, 2, 3, 4, 5, 6 /)

CALL SMT_put(A%id, ’Toy 2x3 matrix’, stat);

CALL SMT_put(A%type, ’COORDINATE’, stat)

X = (/ one, one, one /) ; R = (/ three, three /)

u = (/ two, -one /) ; v = (/ three, one, two /)

! Compute : R <- 3*A X + 2*R

alpha = three ; print_level = 3

beta = two ; symmetric = .false.

out = 6 ; transpose = .false.

error = 6

write(*,*) ’Compute R <- alpha*A*X + beta*R’

CALL MOP_Ax(alpha, A, X, beta, R, out, error, print_level, symmetric, &

transpose)

! Scale rows of A by u and columns by v.

WRITE(*, *) ’Scale rows of A by u and columns by v’

CALL MOP_scaleA(A, u, v, out, error, print_level, symmetric)

! Get the (1,2) element of scaled matrix.

row = 1 ; col = 2

WRITE(*, *) ’Obtain the (1,2) element of the scaled matrix A’

CALL MOP_getval(A, row, col, val, symmetric, out, error, print_level)

WRITE(*, *) ’The value of the (1,2) element of the scaled matrix is’, val

END PROGRAM GALAHAD_mop_example

This produces the following output:

Compute R <- alpha*A*X + beta*R

* BEGIN: mop_Ax *

* GALAHAD sparse matrix operation subroutine *

A%type = COORDINATE

A%id = Toy 2x3 matrix

transpose = F m = 2 alpha = 3.0000000000E+00

symmetric = F n = 3 beta = 2.0000000000E+00

A%row A%col A%val

----- ----- -------------

1 1 1.0000000000E+00

1 2 2.0000000000E+00

1 3 3.0000000000E+00

2 1 4.0000000000E+00

2 2 5.0000000000E+00

2 3 6.0000000000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MOP (May 24, 2024) 7

MOP GALAHAD

X R(in)

--------- ---------

1.0000000000E+00 3.0000000000E+00

1.0000000000E+00 3.0000000000E+00

1.0000000000E+00

R (out)

2.4000000000E+01

5.1000000000E+01

* END: mop_Ax *

Scale rows of A by u and columns by v

* BEGIN: mop_scaleA *

* GALAHAD sparse matrix operation subroutine *

Matrix Pre-scaling

A%type = COORDINATE

A%id = Toy 2x3 matrix

SYMMETRIC = F

(m,n) = (2, 3)

A%row A%col A%val

----- ----- -------------

1 1 1.0000000000E+00

1 2 2.0000000000E+00

1 3 3.0000000000E+00

2 1 4.0000000000E+00

2 2 5.0000000000E+00

2 3 6.0000000000E+00

u v

--------- ---------

2.0000000000E+00 3.0000000000E+00

-1.0000000000E+00 1.0000000000E+00

2.0000000000E+00

Matrix Post-scaling

A%row A%col A%val

----- ----- -------------

1 1 6.0000000000E+00

1 2 4.0000000000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 MOP (May 24, 2024) GALAHAD

GALAHAD MOP

1 3 1.2000000000E+01

2 1 -1.2000000000E+01

2 2 -5.0000000000E+00

2 3 -1.2000000000E+01

* END: mop_scaleA *

Obtain the (1,2) element of the scaled matrix A

* BEGIN: mop_getval *

* GALAHAD gets a single element of a sparse matrix *

A%type = COORDINATE

A%id = Toy 2x3 matrix

m = 2 row = 1 symmetric = F

n = 3 col = 2

A%row A%col A%val

----- ----- -------------

1 1 6.0000000000E+00

1 2 4.0000000000E+00

1 3 1.2000000000E+01

2 1 -1.2000000000E+01

2 2 -5.0000000000E+00

2 3 -1.2000000000E+01

ON EXIT: value = 4.000000000E+00

* END: mop_getval *

The value of the (1,2) element of the scaled matrix is 4.0000000000000000

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MOP (May 24, 2024) 9

