
GALAHAD MIQR

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given a real matrix m by n matrix A, form a multilevel incomplete QR factorization QR so that A ≈ QR or optionally

AT ≈ QR. Only the n by n triangular factor R is retained, and facilities are provided to allow the solutions of the

systems Ru = v and RT x = z for given vectors v and z. The matrix R is particularly helpful as a preconditioner when

applying an iterative method to solve the least-squares problems min‖Ax−b‖2 or min‖AT y− c‖2. Full advantage is

taken of any zero coefficients in the matrices A.

ATTRIBUTES — Versions: GALAHAD MIQR single, GALAHAD MIQR double. Uses: GALAHAD CLOCK, GALAHAD -

SYMBOLS, GALAHAD SPACE, GALAHAD SMT, GALAHAD NORMS, GALAHAD CONVERT, GALAHAD SPECFILE, Date: June 2014.

Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD MIQR single

with the obvious substitution GALAHAD MIQR double, GALAHAD MIQR single 64 and GALAHAD MIQR double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, MIQR time type,

MIQR control type, MIQR inform type and MIQR data type (§2.3) and the subroutines MIQR initialize, MIQR -

form, MIQR apply, MIQR terminate, (§2.4) and MIQR read specfile (§2.6) must be renamed on one of the USE

statements.

2.1 Matrix storage formats

The input matrix A may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and value

ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The order

is unimportant, but the total number of entries A%ne is also required.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MIQR (May 24, 2024) 1

MIQR GALAHAD

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . , A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively.

2.1.4 Sparse column-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in column j appear directly

before those in column j+1. For the j-th column of A, the j-th component of a integer array A%ptr holds the position

of the first entry in this column, while A%ptr (n+1) holds the total number of entries plus one. The row indices i and

values ai j of the entries in the j-th row are stored in components l = A%ptr(j), . . . , A%ptr (j+ 1)− 1 of the integer

array A%row, and real array A%val, respectively.

For sparse matrices, the row and column schemes almost always requires less storage than the coordinate and

dense schemes.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data types

Five derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrix A. The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the storage scheme used.

If the dense storage scheme (see §2.1.1), is used, the first five components of type must contain the string

DENSE. For the sparse co-ordinate scheme (see §2.1.2), the first ten components of type must contain the string

COORDINATE, for the sparse row-wise storage scheme (see §2.1.3), the first fourteen components of type must

contain the string SPARSE BY ROWS, and for the sparse column-wise storage scheme (see §2.1.4), the first sev-

enteen components of type must contain the string SPARSE BY COLUMNS.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into type. For example, if A is of derived type SMT type and we wish to use the co-ordinate storage

scheme, we may simply

CALL SMT_put(A%type, ’COORDINATE’, istat)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 MIQR (May 24, 2024) GALAHAD

GALAHAD MIQR

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2 and §2.1.4).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3) or of dimension at least n + 1, that may hold the pointers to the first

entry in each column (see §2.1.4).

2.3.2 The derived data type for holding control parameters

The derived data type MIQR control type is used to hold controlling data. Default values may be obtained by calling

MIQR initialize (see §2.4.1), while components may also be changed by calling GALAHAD MIQR read spec (see

§2.6.1). The components of MIQR control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in MIQR form, MIQR apply and MIQR terminate is suppressed if error ≤ 0. The default is error =

6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in MIQR form, MIQR apply is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each level of the process. If print level ≥ 2, this output will be increased to

provide significant detail of the factorization. The default is print level = 0.

max level is a scalar variable of type INTEGER(ip), that is used to specify the maximum level allowed when a

multi-level factorization (MIQR) is attempted (see multi level below). The default is max level = 4.

max order is a scalar variable of type INTEGER(ip), that is used to specify the maximum number of columns that

will be processed per level when a multi-level factorization (MIQR) is attempted (see multi level below).

Any non-positive value will be interpreted as n. The default is max order = -1.

max fill is a scalar variable of type INTEGER(ip), that is used is used to control the incomplete factorization. In

particular the maximum number of elements allowed in each column of R will not exceed max fill. Any

negative value will be interpreted as n. The default is max fill = 100.

max fill q is a scalar variable of type INTEGER(ip), that is used is used to control the incomplete factorization. In

particular the maximum number of elements allowed in each column of Q will not exceed max fill q. Any

negative value will be interpreted as m. The default is max fill q = 100.

increase size is a scalar variable of type INTEGER(ip), that is used increase array sizes in chunks of this when

needed. The default is increase size = 100.

buffer is a scalar variable of type INTEGER(ip), that is used to specify the unit for any out-of-core writing when

expanding arrays needed to store R and other intermediary data. The default is buffer = 70.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MIQR (May 24, 2024) 3

MIQR GALAHAD

smallest diag is a scalar variable of type REAL(rp), that is used to identify those diagonal entries of R that are

considered to be zero (and thus indicate rank deficiency). Any diagonal entry in the R factor that is smaller than

smallest dia will be judged to be zero, and modified accordingly. The default is smallest diag = 10−10.

tol level is a scalar variable of type REAL(rp), that is used as a tolerance for stopping multi-level phase. In

particular, the multi-level phase ends if the dimension of the reduced problem is no smaller that tol level

times that of the previous reduced problem. The default is tol level = 0.3.

tol orthogonal is a scalar variable of type REAL(rp), that is used to judge if two vectors are roughly orthogonal;

specifically vectors u and v are orthogonal if |uT v| ≤ tol orthogonal ∗‖u‖‖v‖. The default is tol orthogonal

= 0.0.

tol orthogonal increase is a scalar variable of type REAL(rp), that is used to indicate the increase in the orthog-

onality tolerance that will be applied at each successive level. The default is tol orthogonal increase =

0.01.

average max fill is a scalar variable of type REAL(rp), that is used to control the incomplete factorization. In

particular the maximum number of elements allowed in each column of R will not exceed average max fill

* ne / n. The default is average max fill = 6.0.

average max fill q is a scalar variable of type REAL(rp), that is used to control the incomplete factorization. In

particular the maximum number of elements allowed in each column of Q will not exceed average max fill q

* ne / m. The default is average max fill q = 24.0.

tol drop is a scalar variable of type REAL(rp), that is used as a dropping tolerance for small generated entries. Any

entry smaller than tol drop will be excluded from the factorization. The default is tol drop = 0.01.

transpose is a scalar variable of type default LOGICAL, that is used to indicate whether the factorization of AT should

be found rather than that of A. The default is transpose = .FALSE..

multi level is a scalar variable of type default LOGICAL, that is used to specify whether a multi-level incomplete

factorization (MIQR) will be attempted or whether an incomplete QR factorization (IQR) suffices. The default

is multi level = .TRUE..

sort is a scalar variable of type default LOGICAL, that is used to specify whether the nodes of the graph of AT A

should be sorted in order of increasing degree. This often improves the quality of the multilevel factorization.

The default is sort = .TRUE..

deallocate after factorization is a scalar variable of type default LOGICAL, that is used to specify whether

temporary workspace should be deallocated after every factorization. This may save space at the expense of

multiple allocations if many factorizations are required. The default is deallocate after factorization =

.FALSE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 MIQR (May 24, 2024) GALAHAD

GALAHAD MIQR

CONVERT control is a scalar variable of type CONVERT control type whose components are used to control the

conversion of the input matrix type into the column-wise scheme used internally by GALAHAD MIQR, as per-

formed by the package GALAHAD CONVERT. See the specification sheet for the package GALAHAD CONVERT for

details, and appropriate default values.

2.3.3 The derived data type for holding timing information

The derived data type MIQR time type is used to hold elapsed CPU and system clock times for the various parts of

the calculation. The components of MIQR time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

form is a scalar variable of type REAL(rp), that gives the CPU time spent computing the multi-level incomplete

factorization.

levels is a scalar variable of type REAL(rp), that gives the CPU time spent in the multi-level phase of the factor-

ization.

iqr is a scalar variable of type REAL(rp), that gives the CPU time spent in the incomplete QR phase of the factor-

ization.

apply is a scalar variable of type REAL(rp), that gives the CPU time spent solving systems involving the computed

factor R.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

clock form is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent computing the

multi-level incomplete factorization.

clock levels is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent in the multi-level

phase of the factorization.

clock iqr is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent in the incomplete

QR phase of the factorization.

clock apply is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent solving systems

involving the computed factor R.

2.3.4 The derived data type for holding informational parameters

The derived data type MIQR inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of MIQR inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See §2.5 for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

entries in factors is a scalar variable of type INTEGER(ip), that gives the number of nonzeros in the incomplete

factor R.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MIQR (May 24, 2024) 5

MIQR GALAHAD

drop is a scalar variable of type INTEGER(ip), that gives the number of entries that were dropped during the incom-

plete factorization.

zero diagonals is a scalar variable of type INTEGER(ip), that gives the number of diagonal entries of R that were

judged to be zero during the incomplete factorization.

time is a scalar variable of type MIQR time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.3.3).

CONVERT inform is a scalar variable of type CONVERT inform type whose components are used to provide infor-

mation concerning the conversion of the input matrix type into the column-wise scheme used internally by

GALAHAD MIQR, as performed by the package GALAHAD CONVERT. See the specification sheet for the package

GALAHAD CONVERT for details, and appropriate default values.

2.3.5 The derived data type for holding problem data

The derived data type MIQR data type is used to hold all the data for the problem and the workspace arrays used to

construct the multi-level incomplete factorization between calls of MIQR procedures. This data should be preserved,

untouched, from the initial call to MIQR initialize to the final call to MIQR terminate.

2.4 Argument lists and calling sequences

There are four procedures for user calls (see §2.6 for further features):

1. The subroutine MIQR initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine MIQR form is called to form the multi-level incomplete factorization.

3. The subroutine MIQR apply is called to apply the computed factor R to solve systems Rx = b or RT x = b for a

given vector b.

4. The subroutine MIQR terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by MIQR form at the end of the solution process.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL MIQR initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type MIQR data type (see §2.3.5). It is used to hold data about the

problem being solved.

control is a scalar INTENT(OUT) argument of type MIQR control type (see §2.3.2). On exit, control contains

default values for the components as described in §2.3.2. These values should only be changed after calling

MIQR initialize.

inform is a scalar INTENT(OUT) argument of type MIQR inform type (see Section 2.3.4). A successful call to

MIQR initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 MIQR (May 24, 2024) GALAHAD

GALAHAD MIQR

2.4.2 The subroutine for forming the multi-level incomplete factorization

The multi-level incomplete QR factorization A ≈ QR or AT ≈ QR or is formed as follows:

CALL MIQR form(A, data, control, inform)

A is a scalar INTENT(IN) argument of type SMT type whose components must be set to specify the data defining the

matrix A (see §2.3.1).

data is a scalar INTENT(INOUT) argument of type MIQR data type (see §2.3.5). It is used to hold data about the

factors obtained. It must not have been altered by the user since the last call to MIQR initialize.

control is a scalar INTENT(IN) argument of type MIQR control type (see §2.3.2). Default values may be assigned

by calling MIQR initialize prior to the first call to MIQR form.

inform is a scalar INTENT(OUT) argument of type MIQR inform type (see §2.3.4). A successful call to MIQR form

is indicated when the component status has the value 0. For other return values of status, see §2.5.

2.4.3 The subroutine for solving systems involving the incomplete factors

Given the right-hand side b, one or other of the systems Rx = b or RT x = b may be solved as follows:

CALL MIQR apply(SOL, transpose, data, inform)

SOL is a rank-one INTENT(INOUT) array of type default REAL that must be set on entry to hold the components of the

vector y. On successful exit, the components of SOL will contain the solution x.

transpose is a scalar INTENT(IN) argument of type default LOGICAL, that should be set .TRUE. if the user wishes

to solve RT x = b and .FALSE. if the solution to Rx = b is required.

data is a scalar INTENT(INOUT) argument of type MIQR data type (see §2.3.5). It is used to hold data about the

factors obtained. It must not have been altered by the user since the last call to MIQR initialize.

inform is a scalar INTENT(OUT) argument of type MIQR inform type (see §2.3.4). A successful call to MIQR apply

is indicated when the component status has the value 0. For other return values of status, see §2.5.

2.4.4 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL MIQR terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type MIQR data type exactly as for MIQR form, which must not have

been altered by the user since the last call to MIQR initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type MIQR control type exactly as for MIQR form.

inform is a scalar INTENT(OUT) argument of type MIQR inform type exactly as for MIQR form. Only the component

status will be set on exit, and a successful call to MIQR terminate is indicated when this component status

has the value 0. For other return values of status, see §2.5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MIQR (May 24, 2024) 7

MIQR GALAHAD

2.5 Warning and error messages

A negative value of inform%status on exit from MIQR form, MIQR apply or MIQR terminate indicates that an error

has occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions A%n > 0 or a%m > 0 or requirements that prob%A type contain the string ’DENSE’,

’COORDINATE’, ’SPARSE BY ROWS’ or ’SPARSE BY COLUMNS’ has been violated.

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type MIQR control type (see §2.3.2), by reading an appropriate data specification file using the subrou-

tine MIQR read specfile. This facility is useful as it allows a user to change MIQR control parameters without editing

and recompiling programs that call MIQR.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by MIQR read specfile must start with a ”BEGIN MIQR” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by MIQR_read_specfile ..)

BEGIN MIQR

keyword value

.......

keyword value

END

(.. lines ignored by MIQR_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN MIQR” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN MIQR SPECIFICATION

and

END MIQR SPECIFICATION

are acceptable. Furthermore, between the “BEGIN MIQR” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 MIQR (May 24, 2024) GALAHAD

GALAHAD MIQR

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when MIQR read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by MIQR read specfile.

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL MIQR_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type MIQR control type (see §2.3.2). Default values should have

already been set, perhaps by calling MIQR initialize. On exit, individual components of control may have

been changed according to the commands found in the specfile. Specfile commands and the component (see

§2.3.2) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

max-level-allowed %max level integer

max-order-allowed-per-level %max order integer

out-of-core-buffer %buffer integer

increase-array-size-by %increase size real

max-entries-per-column %max fill real

max-entries-per-column-of-q %max fill q real

smallest-diagonal-factor-allowed %smallest diag real

level-stop-tolerance %tol level real

orthogonality-tolerance %tol orthogonal real

orthogonality-tolerance-increase %tol orthogonal increase real

dropping-tolerance %tol drop real

proportion-max-entries-per-column %average max fill real

proportion-max-entries-per-column-of-q %average max fill q real

factorize-transpose %transpose logical

use-multi-level %multi level logical

sort-vertices %sort logical

deallocate-workspace-after-factorization %deallocate after factorization logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MIQR (May 24, 2024) 9

MIQR GALAHAD

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level ≥ 1, statistics concerning the formation of R as well as warning and error messages

will be reported.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: MIQR form calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS,

GALAHAD SPACE, GALAHAD SMT, GALAHAD NORMS, GALAHAD CONVERT and GALAHAD SPECFILE,

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: A%n > 0, a%m> 0, A type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’SPARSE BY COLUMNS’}.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

Given the matrix A, a decomposition

A ≈ Q0

(

R0 S0

A1

)

is found. Here R0 is upper triangular and Q0 is constructed as normalized, structurally-orthogonal columns of A, or

columns that are approximately so. The same approach is then applied recursively to A1 to obtain R1 and A2, etc. The

recursion ends either before or at a prescribed level k, and thereafter an incomplete QR factorization of the remaining

block Ak is computed.

The basic algorithm is a slight generalisation of that given by

Na Li and Yousef Saad (2006). MIQR: A Multilevel Incomplete QR preconditioner for large sparse least-squares

problems. SIAM. J. Matrix Anal. & Appl., 28(2) 524–550,

and follows in many aspects the design of the C package

http://www-users.cs.umn.edu/˜saad/software/MIQR.tar.gz

The principal use of R is as a preconditioner when solving linear least-squares problems via an iterative method. In

particular, the minimizer of ‖Ax−b‖2 satisfies the normal equations AT Ax=AT b, and if A=QR with orthogobal Q,

it follows that we may find x by forward and back substitution from RT Rx = AT b. Moreover R−T AT AR−1 = I, the

n by n identity matrix. Since the matrix R computed by MIQR is incomplete, we expect instead that R−T AT AR−1 ≈ I,

and this may be used to advantage by iterative methods like CGNE and LSQR. See $2.5 of the specification sheets for

the packages GALAHAD LSTR, GALAHAD LSRT and GALAHAD L2RT for uses within GALAHAD.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 MIQR (May 24, 2024) GALAHAD

GALAHAD MIQR

5 EXAMPLE OF USE

Suppose

A =









1 2

3

4

5









,

that we wish to form a multi-level incomplete factorization of A, and then to solve the resulting systems

RT z = b and Rx = z, where b =





14

42

75



 .

Then storing the matrices in sparse row format, we may use the following code:

! THIS VERSION: GALAHAD 2.6 - 13/05/2014 AT 15:00 GMT.

PROGRAM GALAHAD_MIQR_EXAMPLE

USE GALAHAD_MIQR_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (SMT_type) :: A

TYPE (MIQR_data_type) :: data

TYPE (MIQR_control_type) :: control

TYPE (MIQR_inform_type) :: inform

REAL (KIND = wp), ALLOCATABLE, DIMENSION(:) :: SOL

INTEGER :: s

! set problem data

A%m = 4 ; A%n = 3 ; A%ne = 5

! sparse row-wise storage format

CALL SMT_put(A%type, ’SPARSE_BY_ROWS’, s) ! storage for A

ALLOCATE(A%ptr(A%m + 1), A%col(A%ne), A%val(A%ne))

A%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp, 5.0_wp /) ! matrix A

A%col = (/ 1, 2, 1, 2, 3 /)

A%ptr = (/ 1, 3, 4, 5, 6 /) ! set row pointers

! problem data complete

CALL MIQR_initialize(data, control, inform) ! Initialize control parameters

CALL MIQR_form(A, data, control, inform) ! form factors

ALLOCATE(SOL(A%n))

SOL = (/ 14.0, 42.0, 75.0 /) ! set b

CALL MIQR_apply(SOL, .TRUE., data, inform) ! solve RˆT z = b

WRITE(6, "(’ z ’, /, (5ES12.4))") SOL

CALL MIQR_apply(SOL, .FALSE., data, inform) ! solve R x = z

WRITE(6, "(’ x ’, /, (5ES12.4))") SOL

CALL MIQR_terminate(data, control, inform) ! delete internal workspace

END PROGRAM GALAHAD_MIQR_EXAMPLE

This produces the following output:

z

1.5000E+01 4.4272E+00 8.8544E+00

x

1.0000E+00 2.0000E+00 3.0000E+00

The same problem may be solved holding the data in a sparse column-wise storage format by replacing the lines

! sparse row-wise storage format

...

! problem data complete

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD MIQR (May 24, 2024) 11

MIQR GALAHAD

by

! sparse column-wise storage format

CALL SMT_put(A%type, ’SPARSE_BY_COLUMNS’, i) ! storage for A

ALLOCATE(A%val(A%ne), A%row(A%ne), A%ptr(A%n + 1))

A%val = (/ 1.0_wp, 3.0_wp, 2.0_wp, 4.0_wp, 5.0_wp /) ! matrix A

A%row = (/ 1, 2, 1, 3, 4 /)

A%ptr = (/ 1, 3, 5, 6 /) ! set column pointers

! problem data complete

or using a sparse co-ordinate storage format with the replacement lines

! sparse co-ordinate storage format

CALL SMT_put(A%type, ’COORDINATE’, i) ! storage for A

ALLOCATE(A%val(A%ne), A%row(A%ne), A%col(A%ne))

A%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp, 5 /) ! matrix A

A%row = (/ 1, 1, 2, 3, 4 /)

A%col = (/ 1, 2, 1, 2, 3 /)

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(A%type, ’DENSE’, i) ! storage for A

ALLOCATE(A%val(A%n * A%m))

A%val = (/ 1.0_wp, 2.0_wp, 0.0_wp, 3.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 4.0_wp, &

0.0_wp, 0.0_wp, 0.0_wp, 5.0_wp /) ! matrix A, dense by rows

! problem data complete

respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 MIQR (May 24, 2024) GALAHAD

