
GALAHAD LSRT

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given a real m by n matrix A, a real m vector b and scalars σ > 0 and p ≥ 2, this package finds an approximate

minimizer of the regularized linear-least-squares objective function 1
2‖Ax−b‖2

2 +
1
p σ‖x‖p

2 . This problem com-

monly occurs as a subproblem in nonlinear optimization calculations involving cubic regularization, and may be used

to regularize the solution of under-determined or ill-conditioned linear least-squares problems. The method may be

suitable for large m and/or n as no factorization involving A is required. Reverse communication is used to obtain

matrix-vector products of the form u+Av and v+AT u.

ATTRIBUTES — Versions: GALAHAD LSRT single, GALAHAD LSRT double. Uses: GALAHAD SYMBOLS, GALAH-

AD SPACE, GALAHAD NORMS, GALAHAD ROOTS, GALAHAD LSTR, GALAHAD SPECFILE, *ROTG. Date: November 2007.

Origin: N. I. M. Gould, Oxford University and Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581

or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD LSRT single

with the obvious substitution GALAHAD LSRT double, GALAHAD LSRT single 64 and GALAHAD LSRT double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived types LSRT control type, LS-

RT inform type, LSRT data type, (Section 2.2) and the subroutines LSRT initialize, LSRT solve, LSRT terminate

(Section 2.3) and LSRT read specfile (Section 2.7) must be renamed on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 The derived data types

Three derived data types are accessible from the package.

2.2.1 The derived data type for holding control parameters

The derived data type LSRT control type is used to hold controlling data. Default values may be obtained by calling

LSRT initialize (see Section 2.3.1). The components of LSRT control type are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSRT (May 24, 2024) 1

LSRT GALAHAD

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in LSRT solve and LSRT terminate is suppressed if error≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in LSRT solve is suppressed if out< 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level≤ 0. If print level = 1 a single line

of output will be produced for each iteration of the process. If print level ≥ 2 this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

itmin is a scalar variable of type INTEGER(ip), that holds the minimum number of iterations which will be per-

formed by LSRT solve. The default is itmin = -1.

itmax is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which will be allowed

in LSRT solve. If itmax is set to a negative number, it will be reset by LSRT solve to max(m,n)+ 1. The

default is itmax = -1.

bitmax is a scalar variable of type INTEGER(ip), that holds the maximum number of Newton inner iterations which

will be allowed for each main iteration in LSRT solve. If bitmax is set to a negative number, it will be reset by

LSRT solve to 10. The default is bitmax = -1.

extra vectors is a scalar variable of type INTEGER(ip), that specifies the number of additional vectors of length n

that will be allocated to try to speed up the computation during the second pass. The default is extra vectors

= 0.

space critical is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the package

to allocate as little internal storage as possible, and .FALSE. otherwise. The package may be more efficient if

space critical is set .FALSE.. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the

package to return to the user in the unlikely event that an internal array deallocation fails, and .FALSE. if the

package should be allowed to try to continue. The default is deallocate error fatal = .FALSE..

stop relative and stop absolute are scalar variables of type REAL(rp), that holds the relative and absolute

convergence tolerances (see Section 4). The computed solution x is accepted by LSRT solve if the computed

value of ‖AT (Ax−b)+λx‖2 is less than or equal to max(‖AT b‖2∗ stop relative, stop absolute), where

the multiplier λ = σ‖x‖p−2
2 . The defaults are stop relative =

√
u and stop absolute = 0.0, where u is

EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD LSRT double).

fraction opt is a scalar variable of type default REAL(rp), that specifies the fraction of the optimal value which

is to be considered acceptable by the algorithm. A negative value is considered to be zero, and a value of

larger than one is considered to be one. Reducing fraction opt below one will result in a reduction of the

computation performed at the expense of an inferior optimal value. The default is fraction opt = 1.0.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

2.2.2 The derived data type for holding informational parameters

The derived data type LSRT inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of LSRT inform type are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 LSRT (May 24, 2024) GALAHAD

GALAHAD LSRT

status is a scalar variable of type INTEGER(ip), that gives the current status of the algorithm. See Sections 2.4 and

2.5 for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last internal array allocation or

deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

obj is a scalar variable of type default REAL(rp), that holds the value of the objective function 1
2‖Ax−b‖2

2+
1
p σ‖x‖p

2 .

multiplier is a scalar variable of type default REAL(rp), that holds the value of the multiplier λ = σ‖x‖p−2
2 .

x norm is a scalar variable of type REAL(rp), that holds the current value of ‖x‖2.

r norm is a scalar variable of type REAL(rp), that holds the current value of ‖Ax−b‖2.

Atr norm is a scalar variable of type REAL(rp), that holds the current value of ‖AT (Ax− bbb)+λx‖2.

iter is a scalar variable of type INTEGER(ip), that holds the current number of Lanczos vectors used.

iter pass2 is a scalar variable of type INTEGER(ip), that holds the current number of Lanczos vectors used in the

second pass.

2.2.3 The derived data type for holding problem data

The derived data type LSRT data type is used to hold all the data for a particular problem between calls of LSRT

procedures. This data should be preserved, untouched, from the initial call to LSRT initialize to the final call to

LSRT terminate.

2.3 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutine LSRT initialize is used to set default values, and initialize private data.

2. The subroutine LSRT solve is called repeatedly to solve the problem. On each exit, the user may be expected

to provide additional information and, if necessary, re-enter the subroutine.

3. The subroutine LSRT terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by LSRT solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem since LSRT initialize cannot test for this situation, and any existing

associated targets will subsequently become unreachable.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL LSRT initialize(data, control, inform)

data is a scalar INTENT(INOUT)argument of type LSRT data type (see Section 2.2.3). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT)argument of type LSRT control type (see Section 2.2.1). On exit, control con-

tains default values for the components as described in Section 2.2.1. These values should only be changed after

calling LSRT initialize.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSRT (May 24, 2024) 3

LSRT GALAHAD

inform is a scalar INTENT(OUT) argument of type LSRT inform type (see Section 2.2.2). A successful call to LS-

RT initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

2.3.2 The optimization problem solution subroutine

The optimization problem solution algorithm is called as follows:

CALL LSRT solve(m, n, p, sigma, X, U, V, data, control, inform)

m is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of equations, m. Re-

striction: m > 0.

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of unknowns, n. Re-

striction: n > 0.

p is a scalar INTENT(IN) variable of type default REAL(rp), that must be set on initial entry to the desired order

p of regularization. Restriction: p ≥ 2.

sigma is a scalar INTENT(IN) variable of type default REAL(rp), that must be set on initial entry to the value of the

weight σ associated with the regularization term. Restriction: σ > 0.

X is an array INTENT(INOUT) argument of dimension n and type REAL(rp), that holds an estimate of the solution

x of the linear system. On initial entry, X need not be set. It must not be changed between entries. On exit, X

contains the current best estimate of the solution.

U is an array INTENT(INOUT) argument of dimension m and type REAL(rp), that is used to hold left-Lanczos

vectors used during the iteration. On initial entry, U must contain the vector b. If inform%status = 2 or 4 on

exit, U must be reset as directed by inform%status; otherwise it must be left unchanged.

V is an array INTENT(INOUT) argument of dimension n and type REAL(rp), that is used to hold left-Lanczos

vectors used during the iteration. It need not be set on initial entry. If inform%status = 3 on exit, V must be

reset as directed by inform%status; otherwise it must be left unchanged.

data is a scalar INTENT(INOUT)argument of type LSRT data type (see Section 2.2.3). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to LSRT initialize.

control is a scalar INTENT(IN) argument of type LSRT control type. (see Section 2.2.1). Default values may be

assigned by calling LSRT initialize prior to the first call to LSRT solve.

inform is a scalar INTENT(INOUT)argument of type LSRT inform type (see Section 2.2.2). On initial entry, the

component status must be set to 1. The remaining components need not be set. A successful call to LS-

RT solve is indicated when the component status has the value 0. For other return values of status, see

Sections 2.4 and 2.5.

2.3.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL LSRT terminate(data, control, inform)

data is a scalar INTENT(INOUT)argument of type LSRT data type exactly as for LSRT solve that must not have

been altered by the user since the last call to LSRT initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN)argument of type LSRT control type exactly as for LSRT solve.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 LSRT (May 24, 2024) GALAHAD

GALAHAD LSRT

inform is a scalar INTENT(OUT)argument of type LSRT type exactly as for LSRT solve. Only the component status

will be set on exit, and a successful call to LSRT terminate is indicated when this component status has the

value 0. For other return values of status, see Section 2.5.

2.4 Reverse communication

A positive value of inform%status on exit from LSRT solve indicates that the user needs to take appropriate action

before re-entering the subroutine. Possible values are:

2. The user must perform the operation

u := u+Av,

and recall LSRT solve. The vectors u and v are available in the arrays U and V respectively, and the result u

must overwrite the content of U. No argument except U should be altered before recalling LSRT solve.

3. The user must perform the operation

v := v+AT u,

and recall LSRT solve. The vectors u and v are available in the arrays U and V respectively, and the result v

must overwrite the content of V. No argument except V should be altered before recalling LSRT solve.

4. The user should reset U to b and recall LSRT solve. No argument except U should be altered before recalling

LSRT solve.

2.5 Warning and error messages

A negative value of inform%status on exit from LSRT solve or LSRT terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. (LSRT solve only) At least one of the restrictions m > 0, n > 0, sigma > 0 or p ≥ 2 has been violated.

-18. (LSRT solve only) More than control%itmax iterations have been performed without obtaining convergence.

-25. (LSRT solve only) inform%status is not > 0 on entry.

2.6 Weighted least-squares, scaled regularization and preconditioning

The package may also be used to solve a weighted regularization least-squares problem

min 1
2‖W(Ax−b)‖2

2+
1
p σ‖Sx‖p

2

simply by solving instead the problem

min 1
2‖Āx̄− b̄‖2

2 +
1
p σ‖x̄‖p

2

where Ā = WAS−1 and b̄ = Wb and then recovering x = S−1x̄. Note the implication here that S must be non-singular.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSRT (May 24, 2024) 5

LSRT GALAHAD

Thus on initial entry (inform%status = 1) and re-entry (inform%status = 4), U should contain Wb, while for

inform%status = 2 and 3 entries, the operations

u := u+WAS−1v and v := v+S−T AT WT u

respectively, should be performed.

Note that the choice of W and S will affect the convergence of the method, and thus good choices may be used

to accelerate its convergence. This is often known as preconditioning, but be aware that preconditioning changes the

norms that define the problem. Good preconditioners will cluster the singular values of Ā around a few distinct values,

and ideally (but usually unrealistically) all the singular values will be mapped to 1.

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type LSRT control type (see Section 2.2.1), by reading an appropriate data specification file using the

subroutine LSRT read specfile. This facility is useful as it allows a user to change LSRT control parameters without

editing and recompiling programs that call LSRT.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by LSRT read specfile must start with a ”BEGIN LSRT” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by LSRT_read_specfile ..)

BEGIN LSRT

keyword value

.......

keyword value

END

(.. lines ignored by LSRT_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN LSRT” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN LSRT SPECIFICATION

and

END LSRT SPECIFICATION

are acceptable. Furthermore, between the “BEGIN LSRT” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 LSRT (May 24, 2024) GALAHAD

GALAHAD LSRT

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when LSRT read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by LSRT read specfile.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL LSRT_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type LSRT control type (see Section 2.2.1). Default values should

have already been set, perhaps by calling LSRT initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.2.1) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

minimum-number-of-iterations %itmin integer

maximum-number-of-iterations %itmax integer

maximum-number-of-inner-iterations %bitmax integer

number-extra-n-vectors-used %extra vectors integer

relative-accuracy-required %stop relative real

absolute-accuracy-required %stop absolute real

fraction-optimality-required %fraction opt real

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. So

long as the current estimate lies within the constraint boundary, this will include the iteration number, the norm of

the residual Ax−b, the norm of the gradient, and the norm of x. A further message will be printed if the constraint

boundary is encountered during the current iteration. Thereafter, the one-line summary will also record the value of

the Lagrange multiplier λ = σ‖x‖p−2
2 and the number of Newton steps required to find λ. If control%print level

≥ 2, this output will be increased to provide significant detail of each iteration. This extra output includes a complete

history of the inner iteration required to solve the “bi-diagonal” least-squares subproblem.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSRT (May 24, 2024) 7

LSRT GALAHAD

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: LSRT solve calls the BLAS function *ROTG, where * is S for the default real version

and D for the double precision version.

Other modules used directly: LSRT solve calls the GALAHAD packages GALAHAD SYMBOLS, GALAHAD SPACE, GA-

LAHAD NORMS, GALAHAD ROOTS, GALAHAD LSTR and GALAHAD SPECFILE.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: m > 0, n > 0, σ > 0, p ≥ 2.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x necessarily satisfies the optimality condition AT (Ax−b)+λx= 0, where λ = σ‖x‖p−2
2 .

The method is iterative. Starting with the vector u1 = b, a bi-diagonalisation process is used to generate the vectors vk

and uk + 1 so that the n by k matrix Vk = (v1 . . .vk) and the m by (k+ 1) matrix Uk = (u1 . . .uk+1) together satisfy

AVk = Uk+1Bk and b = ‖b‖2Uk+1e1,

where Bk is (k+ 1) by k and lower bi-diagonal, Uk and Vk have orthonormal columns and e1 is the first unit vector.

The solution sought is of the form xk = Vkyk, where yk solves the bi-diagonal regularized least-squares problem

min 1
2‖Bky−‖b‖e1‖2

2 +
1
p σ‖y‖p

2 . (4.1)

To minimize (4.1), the optimality conditions

(BT
k (Bky(λ)−‖b‖e1)+λy(λ) = 0, (4.2)

where λ = σ‖y(λ)‖p−2
2 , are used as the basis of an iteration. The vector y(λ) is equivalently the solution to the

regularized least-squares problem

min

∥

∥

∥

∥

(

Bk

λ
1
2 I

)

y−‖b‖e1

∥

∥

∥

∥

2

. (4.3)

Thus, given an estimate λ ≥ 0, (4.3) may be efficiently solved to give y(λ). It is then simply a matter of adjusting λ

(for example by a Newton-like process) to solve the scalar nonlinear equation

θ(λ)≡ ‖y(λ)‖p−2
2 − λ

σ
= 0. (4.4)

In practice (4.4) is reformulated, and a more rapidly converging iteration is used. Having found yk, a second pass in

which xk = Vkyk is regenerated is needed—this need only be done once xk has implicitly deemed to be sufficiently

close to optimality. As this second pass is an additional expense, a record is kept of the optimal objective function

values for each value of k, and the second pass is only performed so far as to ensure a given fraction of the final optimal

objective value. Large savings may be made in the second pass by choosing the required fraction to be significantly

smaller than one.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 LSRT (May 24, 2024) GALAHAD

GALAHAD LSRT

Special code is used in the special case p = 2, as in this case a single pass suffices.

References: A complete description of the un- and quadratically-regularized cases is given by

C. C. Paige and M. A. Saunders, LSQR: an algorithm for sparse linear equations and sparse least squares. ACM

Transactions on Mathematical Software, 8(1):43–71, 1982

and

C. C. Paige and M. A. Saunders, ALGORITHM 583: LSQR: an algorithm for sparse linear equations and sparse least

squares. ACM Transactions on Mathematical Software, 8(2):195–209, 1982.

Additional details on the Newton-like process needed to determine λ and other details are described in

C. Cartis, N. I. M. Gould and Ph. L. Toint, Trust-region and other regularisation of linear least-squares problems. BIT

49(1):21-53 (2009).

5 EXAMPLE OF USE

Suppose we wish to solve a problem in 50 unknowns, whose data is

A =

1

1

. . .

1

1

2

. . .

50

and b =

1

.

.

.

.

.

.

.

1

,

with regularization weight σ = 1 and order p = 3. Suppose further that we are content with an approximation which

is within 99% of the best. Then we may use the following code:

PROGRAM GALAHAD_LSRT_EXAMPLE ! GALAHAD 4.1 - 2022-11-27 AT 13:50 GMT.

USE GALAHAD_LSRT_DOUBLE ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: working = KIND(1.0D+0) ! set precision

REAL (KIND = working), PARAMETER :: one = 1.0_working

INTEGER, PARAMETER :: n = 50, m = 2 * n ! problem dimensions

INTEGER :: i

REAL (KIND = working) :: p = 3.0_working ! order of regulatisation

REAL (KIND = working) :: sigma = 1.0_working ! regulatisation weight

REAL (KIND = working), DIMENSION(n) :: X, V

REAL (KIND = working), DIMENSION(m) :: U, RES

TYPE (LSRT_data_type) :: data

TYPE (LSRT_control_type) :: control

TYPE (LSRT_inform_type) :: inform

CALL LSRT_initialize(data, control, inform) ! Initialize control parameters

control%fraction_opt = 0.99 ! Only require 99% of the best

U = one ! The term b is a vector of ones

inform%status = 1

DO ! Iteration to find the minimizer

CALL LSRT_solve(m, n, p, sigma, X, U, V, data, control, inform)

SELECT CASE(inform%status) ! Branch as a result of inform%status

CASE(2) ! Form u <- u + A * v

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LSRT (May 24, 2024) 9

LSRT GALAHAD

U(: n) = U(: n) + V ! AˆT = (I : diag(1:n))

DO i = 1, n

U(n + i) = U(n + i) + i * V(i)

END DO

CASE(3) ! Form v <- v + AˆT * u

V = V + U(: n)

DO i = 1, n

V(i) = V(i) + i * U(n + i)

END DO

CASE (4) ! Restart

U = one ! re-initialize u to b

CASE (0) ! Successful return

RES = one ! Compute the residuals for checking

RES(: n) = RES(: n) - X

DO i = 1, n

RES(n + i) = RES(n + i) - i * X(i)

END DO

WRITE(6, "(1X, I0, ’ 1st pass and ’, I0, ’ 2nd pass iterations’)") &

inform%iter, inform%iter_pass2

WRITE(6, "(’ objective recurred and calculated = ’, 2ES16.8)") &

inform%obj, 0.5_working * DOT_PRODUCT(RES, RES) + (sigma / p) * &

(SQRT(DOT_PRODUCT(X, X))) ** p

WRITE(6, "(’ ||x|| recurred and calculated = ’, 2ES16.8)") &

inform%x_norm, SQRT(DOT_PRODUCT(X, X))

WRITE(6, "(’ ||Ax-b|| recurred and calculated = ’, 2ES16.8)") &

inform%r_norm, SQRT(DOT_PRODUCT(RES, RES))

CALL LSRT_terminate(data, control, inform) ! delete internal workspace

EXIT

CASE DEFAULT ! Error returns

WRITE(6, "(’ LSRT_solve exit status = ’, I6) ") inform%status

CALL LSRT_terminate(data, control, inform) ! delete internal workspace

EXIT

END SELECT

END DO

END PROGRAM GALAHAD_LSRT_EXAMPLE

This produces the following output:

59 1st pass and 26 2nd pass iterations

objective recurred and calculated = 2.19903278E+01 2.19903278E+01

||x|| recurred and calculated = 9.04718377E-01 9.04718377E-01

||Ax-b|| recurred and calculated = 6.59446524E+00 6.59446524E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 LSRT (May 24, 2024) GALAHAD

