
GALAHAD LPA

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package uses the simplex method to solve the linear programming problem

minimize ℓ(x) = gT x+ f (1.1)

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m,

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

where the vectors g, ai, cl , cu, xl , xu and the scalar f are given. Any of the constraint bounds cl
i , cu

i , xl
j and xu

j may be

infinite. Full advantage is taken of any zero coefficients in the matrix A of vectors ai.

N.B. The package is simply a sophisticated interface to the HSL package LA04, and requires that a user has ob-

tained the latter. LA04 is not included in GALAHAD, but is available without charge to recognised academics, see

http://www.hsl.rl.ac.uk/catalogue/la04.html. If LA04 is unavailable, the GALAHAD interior-point linear

programming package LPB is an alternative.

ATTRIBUTES — Versions: GALAHAD LPA single, GALAHAD LPA double. Uses: GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD SPACE, GALAHAD TOOLS, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD QPT, GALAHAD QPD. Date: Oc-

tober 2018. Origin: N. I. M. Gould and J. K. Reid, Rutherford Appleton Laboratory. Language: Fortran 95 + TR

15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD LPA single

with the obvious substitution GALAHAD LPA double, GALAHAD LPA single 64 and GALAHAD LPA double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, QPT problem type,

LPA time type, LPA control type, LPA inform type and LPA data type (Section 2.3) and the subroutines LPA initialize,

LPA solve, LPA terminate, (Section 2.4) and LPA read specfile (Section 2.6) must be renamed on one of the USE

statements.

2.1 Matrix storage formats

The constraint Jacobian A, the matrix whose rows are the vectors aT
i , i = 1, . . . ,m, may be stored in a variety of input

formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LPA (May 24, 2024) 1

LPA GALAHAD

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and value

ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The order

is unimportant, but the total number of entries A%ne is also required.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data types

Ten derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrix A. The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.3.2).

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries

(see §2.1.1–2.1.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be

summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may the column indices

of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 LPA (May 24, 2024) GALAHAD

GALAHAD LPA

2.3.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip), that holds the number of general linear constraints, m.

gradient kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the components of the

gradient g have special or general values. Possible values for gradient kind are:

0 In this case, g = 0.

1 In this case, g j = 1 for j = 1, . . . ,n.

6= 0,1 In this case, general values of g will be used, and will be provided in the component G (see below).

G is a rank-one allocatable array type REAL(rp), that should be allocated to have length n, and its j-th component

filled with the value g j for j = 1, . . . ,n, whenever gradient kind 6= 0,1. If gradient kind = 0, 1, G need not

be allocated.

f is a scalar variable of type REAL(rp), that holds the constant term, f , in the objective function.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A when it is available explicitly. The following

components are used:

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

Just as for H%type above, the procedure SMT put may be used to allocate sufficient space and insert the

required keyword into A%type. Once again, if prob is of derived type LPA problem type and involves a

Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’, istat)

A%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two appropriate schemes.

A%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian

matrix A in any of the appropriate storage schemes discussed in Section 2.1.

A%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two appropriate

schemes.

A%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip), that holds the starting position

of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage scheme

(see Section 2.1.3). It need not be allocated when the other appropriate schemes are used.

C l is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of lower bounds cl

on the general constraints. The i-th component of C l, i = 1, . . . ,m, contains cl
i . Infinite bounds are allowed

by setting the corresponding components of C l to any value smaller than -infinity, where infinity is a

component of the control array control (see Section 2.3.3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LPA (May 24, 2024) 3

LPA GALAHAD

C u is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of upper bounds cu on

the general constraints. The i-th component of C u, i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed

by setting the corresponding components of C u to any value larger than infinity, where infinity is a

component of the control array control (see Section 2.3.3).

X l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xl on

the the variables. The j-th component of X l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting

the corresponding components of X l to any value smaller than -infinity, where infinity is a component of

the control array control (see Section 2.3.3).

X u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xu on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity, where infinity is a component of

the control array control (see Section 2.3.3).

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

C is a rank-one allocatable array of dimension m and type default REAL(rp), that holds the values Ax of the

constraints. The i-th component of C, i = 1, . . . ,m, contains aT
i x ≡ (Ax)i.

Y is a rank-one allocatable array of dimension m and type REAL(rp), that holds the values y of estimates of the

Lagrange multipliers corresponding to the general linear constraints (see Section 4). The i-th component of Y,

i = 1, . . . ,m, contains yi.

Z is a rank-one allocatable array of dimension n and type default REAL(rp), that holds the values z of estimates

of the dual variables corresponding to the simple bound constraints (see Section 4). The j-th component of Z,

j = 1, . . . ,n, contains z j .

2.3.3 The derived data type for holding control parameters

The derived data type LPA control type is used to hold controlling data. Default values may be obtained by calling

LPA initialize (see Section 2.4.1), while components may also be changed by calling LPA read specfile (see

Section 2.6.1). The components of LPA control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in LPA solve and LPA terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in LPA solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

start print is a scalar variable of type INTEGER(ip), that specifies the first iteration for which printing will occur

in LPA solve. If start print is negative, printing will occur from the outset. The default is start print =

-1.

stop print is a scalar variable of type INTEGER(ip), that specifies the last iteration for which printing will occur

in LPA solve. If stop print is negative, printing will occur once it has been started by start print. The

default is stop print = -1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 LPA (May 24, 2024) GALAHAD

GALAHAD LPA

maxit is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which will be allowed

in LPA solve. The default is maxit = 1000.

max iterative refinements is a scalar variable of type default INTEGER(ip), that holds the maximum number of

iterative refinements per linear system solved that may be attempted. The default is max iterative refinements

= 0.

min real factor size is a scalar variable of type INTEGER(ip), that specifies the amount of real storage that will

initially be allocated for the factors and other data. The default is min real factor size = 10000, and this

default is used if min real factor size < 1.

min integer factor size is a scalar variable of type INTEGER(ip), that specifies the amount of integer storage

that will initially be allocated for the factors and other data. The default is min integer factor size =

20000, and this default is used if min integer factor size < 1.

random number seed is a scalar variable of type INTEGER(ip), that holds the initial seed used by the random-

number generator. The default is random number seed = 0.

infinity is a scalar variable of type REAL(rp), that is used to specify which constraint bounds are infinite. Any

bound larger than infinity in modulus will be regarded as infinite. The default is infinity = 1019.

tol data is a scalar variable of type REAL(rp), that hold the maximum violation that a constraint is allowed and be

still considered to be feasible. The default is tol data = u2/3, where u is EPSILON(1.0) (EPSILON(1.0D0) in

GALAHAD LPA double).

feas tol is a scalar variable of type REAL(rp), that hold the maximum violation that a constraint is allowed and be

still considered to be feasible. The default is feas tol = u2/3, where u is EPSILON(1.0) (EPSILON(1.0D0) in

GALAHAD LPA double).

relative pivot tolerance is a scalar variable of type REAL(rp), that holds the relative pivot tolerance that is

used to control the stability of the factorizations of the basis matrices that arise as the iteration proceeds. The

default is relative pivot tolerance = 0.1.

growth limit is a scalar variable of type REAL(rp), that specifies the maximum growth in the entries of the factors

of a basis matrix that will be tolerated before a refactorization is required. The default is growth limit =

1/u2/3, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD LPA double).

zero tolerance is a scalar variable of type REAL(rp), that controls which small entries are to be ignored during

the factorization of a basis matrix. Any entry smaller in absolute value than zero tolerance will be treated

as zero; as a consequence when zero tolerance > 0, the factors produced will be of a perturbation of order

zero tolerance. The default is zero tolerance = u, where u is EPSILON(1.0) (EPSILON(1.0D0) in GA-

LAHAD LPA double).

change tolerance is a scalar variable of type REAL(rp), that provides a tolerance whose purpose is to assess when

a change to a solution component may be neglected. Specifically any change that is smaller than this tolerence

times the largest change may be considered to be zero. The default is change tolerance = u2/3, where u is

EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD LPA double).

identical bounds tol is a scalar variable of type REAL(rp). Every pair of constraint bounds (cl
i ,c

u
i) or (xl

j,x
u
j)

that is closer than identical bounds tol will be reset to the average of their values, 1
2 (c

l
i + cu

i) or 1
2 (x

l
j + xu

j)
respectively. The default is identical bounds tol = u, where u is EPSILON(1.0) (EPSILON(1.0D0) in GA-

LAHAD LPA double).

cpu time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted CPU time.

Any negative value indicates no limit will be imposed. The default is cpu time limit = - 1.0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LPA (May 24, 2024) 5

LPA GALAHAD

clock time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted elapsed

system clock time. Any negative value indicates no limit will be imposed. The default is clock time limit =

- 1.0.

scale is a scalar variable of type default LOGICAL, that must be set .TRUE. if the problem data is to be scaled prior

to solution in an attempt to make the process faster and more accurate. The default is scale = .FALSE..

warm start is a scalar variable of type default LOGICAL, that must be set .TRUE. if an initial guess to the optimal

status of the constraints and simple bounds is to be provided, and .FALSE. if the algorithm is to make its own

initial choice. The default is warm start = .FALSE..

dual is a scalar variable of type default LOGICAL, that must be set .TRUE. if the simplex method is to be applied to

the dual of the linear program, and .FALSE. if the primal problem should be solved. The default is dual =

.FALSE..

steepest edge is a scalar variable of type default LOGICAL, that must be set .TRUE. if steepest-edge weights are to

be used to try to improve the choice of variable that will leave the basis at each iteration of the simplex method,

and .FALSE. if weights of one are used. The default is steepest edge = .TRUE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

2.3.4 The derived data type for holding timing information

The derived data type LPA time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of LPA time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

preprocess is a scalar variable of type REAL(rp), that gives the CPU time spent preprocess the problem prior to

solution.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

clock preprocess is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent preprocess

the problem prior to solution.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent computing the

search direction.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 LPA (May 24, 2024) GALAHAD

GALAHAD LPA

2.3.5 The derived data type for holding informational parameters

The derived data type LPA inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of LPA inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.5 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

iter is a scalar variable of type INTEGER(ip), that gives the number of iterations performed.

la04 job is a scalar variable of type INTEGER(ip), that gives the value of the argument job returned from LA04.

See the specification sheet, http://www.hsl.rl.ac.uk/specs/la04.pdf, for the package LA04 for details.

la04 job info is a scalar variable of type INTEGER(ip), that gives the value of the argument RINFO(35) returned

from an unsuccessful call to LA04. See the specification sheet, http://www.hsl.rl.ac.uk/specs/la04.pdf,

for the package LA04 for details.

obj is a scalar variable of type REAL(rp), that holds the value of the objective function at the best estimate of the

solution found.

primal infeasibility is a scalar variable of type REAL(rp), that holds the norm of the violation of primal opti-

mality (see Section 2.3.4) at the best estimate of the solution found.

feasible is a scalar variable of type default LOGICAL, that has the value .TRUE. if the output value of x satisfies the

constraints, and the value .FALSE. otherwise.

time is a scalar variable of type LPA time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.3.4).

2.3.6 The derived data type for holding problem data

The derived data type LPA data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of LPA procedures. This data should be preserved, untouched, from the initial

call to LPA initialize to the final call to LPA terminate.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.6 for further features):

1. The subroutine LPA initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine LPA solve is called to solve the problem.

3. The subroutine LPA terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by LPA solve, at the end of the solution process.

We use square brackets [] to indicate OPTIONAL arguments.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LPA (May 24, 2024) 7

LPA GALAHAD

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL LPA initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type LPA data type (see Section 2.3.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type LPA control type (see Section 2.3.3). On exit, control con-

tains default values for the components as described in Section 2.3.3. These values should only be changed after

calling LPA initialize.

inform is a scalar INTENT(OUT) argument of type LPA inform type (see Section 2.3.5). A successful call to

LPA initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

2.4.2 The linear programming subroutine

The linear programming solution algorithm is called as follows:

CALL LPA solve(prob, data, control, inform[, C stat, X stat])

prob is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.3.2). It is used to hold data about

the problem being solved. The user must allocate all the array components, and set values for all components

except prob%X, prob%C, prob%Y and prob%Z

On exit, the components prob%X , prob%C, prob%Y, and prob%Z will contain the best estimates of the primal

variables x, the linear constraints Ax, Lagrange multipliers, y, for the general constraints and dual variables

for the bound constraints z, respectively. Restrictions: prob%n > 0, prob%m ≥ 0, prob%A type ∈ {’DENSE’,

’COORDINATE’, ’SPARSE BY ROWS’ }.

data is a scalar INTENT(INOUT) argument of type LPA data type (see Section 2.3.6). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to LPA initialize.

control is a scalar INTENT(IN) argument of type LPA control type (see Section 2.3.3). Default values may be

assigned by calling LPA initialize prior to the first call to LPA solve.

inform is a scalar INTENT(INOUT) argument of type LPA inform type (see Section 2.3.5). A successful call to

LPA solve is indicated when the component status has the value 0. For other return values of status, see

Section 2.5.

C stat is an OPTIONAL rank-one INTENT(OUT) array argument of dimension p%m and type INTEGER(ip), that in-

dicates which of the general linear constraints are in the optimal active set. Possible values for C stat(i),

i= 1, . . . , p%m, and their meanings are

<0 the i-th general constraint is in the active set, on its lower bound,

>0 the i-th general constraint is in the active set, on its upper bound, and

0 the i-th general constraint is not in the active set.

If a warm start is to be performed (see control%wam start), C stat must be provided and set as above.

X stat is an OPTIONAL rank-one INTENT(OUT) array argument of dimension p%n and type INTEGER(ip), that in-

dicates which of the simple bound constraints are in the current active set. Possible values for X stat(j),

j= 1, . . . , p%n, and their meanings are

<0 the j-th simple bound constraint is in the active set, on its lower bound,

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 LPA (May 24, 2024) GALAHAD

GALAHAD LPA

>0 the j-th simple bound constraint is in the active set, on its upper bound, and

0 the j-th simple bound constraint is not in the active set.

If a warm start is to be performed (see control%wam start), X stat must be provided and set as above.

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL LPA terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type LPA data type exactly as for LPA solve, which must not have

been altered by the user since the last call to LPA initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type LPA control type exactly as for LPA solve.

inform is a scalar INTENT(OUT) argument of type LPA inform type exactly as for LPA solve. Only the component

status will be set on exit, and a successful call to LPA terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.5.

2.5 Warning and error messages

A negative value of inform%status on exit from LPA solve or LPA terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n > 0 , prob%m ≥ 0 or the requirement that prob%A type contain its relevant string

’DENSE’, ’COORDINATE’ or ’SPARSE BY ROWS’, has been violated.

-4. The bound constraints are inconsistent.

-5. The constraints appear to have no feasible point.

-7. The objective function appears to be unbounded from below on the feasible set.

-16. The problem is so ill-conditioned that further progress is impossible.

-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be

symptomatic of a badly scaled problem.

-19. The elapsed CPU or system clock time limit has been reached. This may happen if either control%cpu time limit

or control%clock time limit is too small, but may also be symptomatic of a badly scaled problem.

-29. The HSL solver LA04 is unavailable.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LPA (May 24, 2024) 9

LPA GALAHAD

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type LPA control type (see Section 2.3.3), by reading an appropriate data specification file using the

subroutine LPA read specfile. This facility is useful as it allows a user to change LPA control parameters without

editing and recompiling programs that call LPA.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by LPA read specfile must start with a ”BEGIN LPA” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by LPA_read_specfile ..)

BEGIN LPA

keyword value

.......

keyword value

END

(.. lines ignored by LPA_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN LPA” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN LPA SPECIFICATION

and

END LPA SPECIFICATION

are acceptable. Furthermore, between the “BEGIN LPA” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when LPA read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

LPA read specfile.

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL LPA_read_specfile(control, device)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 LPA (May 24, 2024) GALAHAD

GALAHAD LPA

control is a scalar INTENT(INOUT)argument of type LPA control type (see Section 2.3.3). Default values should

have already been set, perhaps by calling LPA initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.3) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

start-print %start print integer

stop-print %stop print integer

maximum-number-of-iterations %maxit integer

max-iterative-refinements %max iterative refinements integer

minimum-real-factor-size %min real factor size integer

minimum-integer-factor-size %min integer factor size integer

random-number-seed %random number seed integer

infinity-value %infinity real

tolerable-relative-data-perturbation % tol data real

feasibility-tolerance %feas tol real

relative-pivot-tolerance %relative pivot tolerance real

growth-limit-tolerance % growth limit real

zero-basis-entry-tolerance %zero tolerance real

change-tolerance %change tolerance real

identical-bounds-tolerance %identical bounds tol real

maximum-cpu-time-limit %cpu time limit real

maximum-clock-time-limit %clock time limit real

scale-problem-data %remove dependencies logical

warm-startl %warm start logical

solve-dual %dual logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level = 1, a summary of the return status of the algorithm will be printed on unit control%out.

If control%print level ≥ 2, information about the progress of the algorithm will be given. At each iteration two

lines of output are produced showing :

(i) The iteration number.

(ii) The length LENL of the L part of the factorization of the basis matrix.

(iii) The length LENU of the U part of the factorization of the basis matrix.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LPA (May 24, 2024) 11

LPA GALAHAD

(iv) The variable, JIN, entering the basis.

(v) The variable, JOUT, leaving the basis.

(vi) The number, NINF, of infeasibilities.

(vii) The value of the objective function (or the sum of the infeasibilities if the phase-one problem is being solved).

(viii) The growth parameter, G.

(ix) The number, NCP, of compresses performed when updating the factors of the basis matrix.

(x) The reduced cost, Z, of the incoming variable.

(xi) The recurred approximation, APPROX Z, to this reduced cost.

(xii) The steepest-edge weight GAMMA used to choose the incoming variable.

(xiii) The recurred approximation, APPROX GAMMA, to this weight.

(xiv) The time taken so far.

(xv) The value of the pivot.

When the run terminates, a message to this effect is printed and the value of the objective function is output. If

control%print level ≥ 100 this output will be increased to provide detailed debuging information.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: LPA solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS, GALA-

HAD SPACE, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD QPT and GALAHAD QPD, and the HSL package LA04.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n> 0, prob%m≥ 0, prob%A type and prob%H type ∈{’DENSE’, ’COORDINATE’, ’SPARSE BY -

ROWS’, ’DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x necessarily satisfies the primal optimality conditions

Ax = c (4.1)

and

cl ≤ c ≤ cu, xl ≤ x ≤ xu, (4.2)

the dual optimality conditions

g = AT y+ z (4.3)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 LPA (May 24, 2024) GALAHAD

GALAHAD LPA

where

y = yl + yu, z = zl + zu yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0, (4.4)

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0, (4.5)

where the vectors y and z are known as the Lagrange multipliers for the general linear constraints, and the dual

variables for the bounds, respectively, and where the vector inequalities hold component-wise.

The so-called dual to this problem is another linear program

−minimize clT yl + cuT yu + xlT zl + xuT zu + f subject to the constraints (4.3) and (4.4)

that uses the same data. The solution to the two problems, it is exists, is the same, but if one is infeasible, the other is

unbounded. It can be more efficient to solve the dual, particularly if m is much larger than n.

The bulk of the work is peformed by the HSL package LA04. The main subbroutine from this package requires

that the input problem be transformed into the “standard form”

minimize g′T x′

subject to A′x′ = b

li ≤ x′i ≤ ui, (i ≤ k)
and x′l ≥ 0, (i ≥ l)

(4.6)

by introducing slack an surpulus variables, reordering and removing fixed variables and free constraints. The resulting

problem involves n′ unknowns and m′ general constraints. In order to deal with the possibility that the general con-

straints are inconsistent or not of full rank, LA04 introduces additional “artifical” variables v, replaces the constraints

of (4.6) by

A′x′+ v = b (4.7)

and gradually encourages v to zero as a first solution phase.

Once a selection of m′ independent (non-basic) variables is made, the constraints (4.7) determine the remaining

m′ dependent (basic) variables. The simplex method is a scheme for systematically adjusting the choice of basic and

non-basic variables until a set which defines an optimal solution of (4.6) is obtained. Each iteration of the simplex

method requires the solution of a number of sets of linear equations whose coefficient matrix is the basis matrix B,

made up of the columns of [A′ I] corresponding to the basic variables, or its transpose BT . As the basis matrices

for consecutive iterations are closely related, it is normally advantageous to update (rather than recompute) their

factorizations as the computation proceeds. If an initial basis is not provided by the user, a set of basic variables which

provide a (permuted) triangular basis matrix is found by the simple crash algorithm of Gould and Reid (1989), and

initial steepest-edge weights are calculated.

Phases one (finding a feasible solution) and two (solving (4.6)) of the simplex method are applied, as appropriate,

with the choice of entering variable as described by Goldfarb and Reid (1977) and the choice of leaving variable as

proposed by Harris (1973). Refactorizations of the basis matrix are performed whenever doing so will reduce the aver-

age iteration time or there is insufficient memory for its factors. The reduced cost for the entering variable is computed

afresh. If it is found to be of a different sign from the recurred value or more than 10% different in magnitude, a fresh

computation of all the reduced costs is performed. Details of the factorization and updating procedures are given by

Reid (1982). Iterative refinement is encouraged for the basic solution and for the reduced costs after each factorization

of the basis matrix and when they are recomputed at the end of phase 1.

References:

D. Goldfarb and J. K. Reid (1977). “A practicable steepest-edge simplex algorithm”. Mathematical Programming 12

361-371.

N. I. M. Gould and J. K. Reid (1989). “New crash procedures for large systems of linear constraints”. Mathematical

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LPA (May 24, 2024) 13

LPA GALAHAD

Programming 45 475-501.

P. M. J. Harris (1973). “Pivot selection methods of the Devex LP code”. Mathematical Programming 5 1-28.

J. K. Reid (1982). “A sparsity-exploiting variant of the Bartels-Golub decomposition for linear-programming bases”.

Mathematical Programming 24 55-69.

5 EXAMPLE OF USE

Suppose we wish to minimize x1+2x2+1 subject to the the general linear constraints 1≤ 2x1+x2 ≤ 2 and x2+x3 = 2,

and simple bounds −1 ≤ x1 ≤ 1, x2 ≥ 3 and x3 ≤ 2. Then, on writing the data for this problem as f = 1,

g =

1

2

0

 , xl =

−1

3

−∞

 and xu =

1

∞

2

 ,

and

A =

(

2 1

1 1

)

, cl =

(

1

2

)

, and cu =

(

2

2

)

in sparse co-ordinate format, we may use the following code:

! THIS VERSION: GALAHAD 3.1 - 07/10/2018 AT 12:05 GMT.

PROGRAM GALAHAD_LPA_EXAMPLE

USE GALAHAD_LPA_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (LPA_data_type) :: data

TYPE (LPA_control_type) :: control

TYPE (LPA_inform_type) :: inform

INTEGER, ALLOCATABLE, DIMENSION(:) :: C_stat, X_stat

INTEGER :: s

INTEGER, PARAMETER :: n = 3, m = 2, a_ne = 4

! start problem data

ALLOCATE(p%G(n), p%X_l(n), p%X_u(n), p%X(n), p%Z(n), X_stat(n))

ALLOCATE(p%C(m), p%C_l(m), p%C_u(m), p%Y(m), C_stat(m))

p%new_problem_structure = .TRUE. ! new structure

p%n = n ; p%m = m ; p%f = 1.0_wp ! dimensions & objective constant

p%G = (/ 1.0_wp, 2.0_wp, 0.0_wp /) ! objective gradient

p%C_l = (/ 1.0_wp, 2.0_wp /) ! constraint lower bound

p%C_u = (/ 2.0_wp, 2.0_wp /) ! constraint upper bound

p%X_l = (/ - 1.0_wp, 3.0_wp, - infinity /) ! variable lower bound

p%X_u = (/ 1.0_wp, infinity, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ; p%Y = 0.0_wp ; p%Z = 0.0_wp ! start from zero

! sparse co-ordinate storage format

CALL SMT_put(p%A%type, ’COORDINATE’, s) ! Specify co-ordinate storage for A

ALLOCATE(p%A%val(a_ne), p%A%row(a_ne), p%A%col(a_ne))

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%row = (/ 1, 1, 2, 2 /)

p%A%col = (/ 1, 2, 2, 3 /) ; p%A%ne = a_ne

! problem data complete

CALL LPA_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

! Solve the problem

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 LPA (May 24, 2024) GALAHAD

GALAHAD LPA

CALL LPA_solve(p, data, control, inform, C_stat = C_stat, X_stat = X_stat)

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ LPA: ’, I0, ’ iterations. Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, p%X

ELSE ! Error returns

WRITE(6, "(’ LPA_solve exit status = ’, I6) ") inform%status

END IF

CALL LPA_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(p%G, p%X_l, p%X_u, p%X, p%Z, X_stat)

DEALLOCATE(p%C, p%C_l, p%C_u, p%Y, C_stat)

END PROGRAM GALAHAD_LPA_EXAMPLE

This produces the following output:

LPA: 2 iterations. Optimal objective value = 6.0000E+00

Optimal solution = -1.0000E+00 3.0000E+00 -1.0000E+00

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(p%A%type, ’SPARSE_BY_ROWS’) ! storage for A

ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%col = (/ 1, 2, 2, 3 /)

p%A%ptr = (/ 1, 3, 5 /) ! Set row pointers

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(p%A%type, ’DENSE’) ! storage for A

ALLOCATE(p%A%val(n * m))

p%A%val = (/ 2.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian

! problem data complete

respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LPA (May 24, 2024) 15

