
GALAHAD LMS

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given a sequence of vectors {sk} and {yk} and scale factors δk, obtain the product of a limited-memory secant

approximation Hk (or its inverse) with a given vector, using one of a variety of well-established formulae.

ATTRIBUTES — Versions: GALAHAD LMS single, GALAHAD LMS double. Uses: GALAHAD CLOCK, GALAHAD SY-

MBOLS, GALAHAD SPACE, GALAHAD LAPACK interface, GALAHAD BLAS interface, GALAHAD SPECFILE. Date: July

2014. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD LMS single

with the obvious substitution GALAHAD LMS double, GALAHAD LMS single 64 and GALAHAD LMS double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, LMS time type,

LMS control type, LMS inform type and LMS data type (§2.2) and the subroutines LMS initialize, LMS setup,

LMS form, LMS form shift, LMS apply, LMS terminate, (§2.3) and LMS read specfile (§2.5) must be renamed

on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp ) and INTEGER(ip ), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 The derived data types

Four derived data types are accessible from the package.

2.2.1 The derived data type for holding control parameters

The derived data type LMS control type is used to hold controlling data. Default values may be obtained by call-

ing LMS initialize (see §2.3.1), while components may also be changed by calling GALAHAD LMS read spec (see

§2.5.1). The components of LMS control type are:

error is a scalar variable of type INTEGER(ip ), that holds the stream number for error messages. Printing of error

messages in LMS setup, LMS apply and LMS terminate is suppressed if error ≤ 0. The default is error =

6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LMS (May 24, 2024) 1



LMS GALAHAD

out is a scalar variable of type INTEGER(ip ), that holds the stream number for informational messages. Printing

of informational messages in LMS setup, LMS apply is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip ), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each level of the process. If print level ≥ 2, this output will be increased to

provide significant detail of the factorization. The default is print level = 0.

memory length is a scalar variable of type INTEGER(ip ), that is used to specify the maximum number of vec-

tors {sk} and {yk} that will be used when building the secant approximation. Any non-positive value will be

interpreted as 1. The default is memory length = 10.

method is a scalar variable of type INTEGER(ip ), that is used to specify the limited-memory formula that will be

applied. Possible values are

1. A limited-memory BFGS formula will be applied.

2. A limited-memory symmetric rank-one formula will be applied.

3. The inverse of the limited-memory BFGS formula will be applied.

4. The inverse of the shifted limited-memory BFGS formula will be applied. This should be used instead of

%method = 3 whenever a shift is planned.

Any value outside this range will be interpreted as 1. The default is method = 1.

any method is a scalar variable of type default LOGICAL, that must be set .TRUE. if more than one method (see

%method above) is to be used and .FALSE. otherwise. The package will require more storage and may run

slower if any method is .TRUE.. The default is any method = .FALSE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

2.2.2 The derived data type for holding timing information

The derived data type LMS time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of LMS time type are:

total is a scalar variable of type REAL(rp ), that gives the total CPU time spent in the package.

setup is a scalar variable of type REAL(rp ), that gives the CPU time spent setting up the data structures to represent

the limited-memory matrix.

form is a scalar variable of type REAL(rp ), that gives the CPU time spent forming and updating the limited-memory

matrix as new data arrives.

apply is a scalar variable of type REAL(rp ), that gives the CPU time spent applying the matrix to given vectors.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 LMS (May 24, 2024) GALAHAD



GALAHAD LMS

clock total is a scalar variable of type REAL(rp ), that gives the total elapsed system clock time spent in the

package.

clock setup is a scalar variable of type REAL(rp ), that gives the elapsed system clock time spent setting up the

data structures to represent the limited-memory matrix.

clock form is a scalar variable of type REAL(rp ), that gives the elapsed system clock time spent forming and

updating the limited-memory matrix as new data arrives.

clock apply is a scalar variable of type REAL(rp ), that gives the elapsed system clock time spent applying the

matrix to given vectors. factor R.

2.2.3 The derived data type for holding informational parameters

The derived data type LMS inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of LMS inform type are:

status is a scalar variable of type INTEGER(ip ), that gives the exit status of the algorithm. See §2.4 for details.

alloc status is a scalar variable of type INTEGER(ip ), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

length is a scalar variable of type INTEGER(ip ), that gives the number of pairs {sk,yk} currently used to represent

the limited-memory matrix

updates skipped is a scalar variable of type default LOGICAL, that will be .TRUE. if one or more of the current pairs

{sk,yk} has been ignored for stability reasons when building the current limited-memory matrix, and .FALSE.

otherwise.

time is a scalar variable of type LMS time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.2.2).

2.2.4 The derived data type for holding problem data

The derived data type LMS data type is used to hold all the data for the problem and the workspace arrays used to

construct the multi-level incomplete factorization between calls of LMS procedures. This data should be preserved,

untouched, from the initial call to LMS initialize to the final call to LMS terminate.

2.3 Argument lists and calling sequences

There are seven procedures for user calls (see §2.5 for further features):

1. The subroutine LMS initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine LMS setup is called to set up the data structures needed to represent the limited-memory matrix

Hk or its inverse.

3. The subroutine LMS form is called to form the limited-memory matrix Hk or its inverse as new data (sk,yk,δk)
arrives. The matrix Hk +λkI or its inverse for a specified shift λk may be formed instead.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LMS (May 24, 2024) 3



LMS GALAHAD

4. The subroutine LMS form shift is called to update the inverse of the limited-memory matrix Hk +λkI when a

new shift λk is required.

5. The subroutine LMS change method is called to build the limited-memory matrices Hk, Hk+λkI or their inverse

for a new method from the current data.

6. The subroutine LMS apply is called to form the product u = Hkv, u = (Hk + λkI)v, u = H−1
k v or u = (Hk +

λkI)−1v for a given vector v.

7. The subroutine LMS terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by LMS setup at the end of the solution process.

We use square brackets [ ] to indicate OPTIONAL arguments.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL LMS initialize( data, control, inform )

data is a scalar INTENT(INOUT) argument of type LMS data type (see §2.2.4). It is used to hold data about the

problem being solved.

control is a scalar INTENT(OUT) argument of type LMS control type (see §2.2.1). On exit, control contains

default values for the components as described in §2.2.1. These values should only be changed after calling

LMS initialize.

inform is a scalar INTENT(OUT) argument of type LMS inform type (see Section 2.2.3). A successful call to

LMS initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.4.

2.3.2 The subroutine for setting up the required data structures

The data structures needed to represent the limited-memory matrix Hk or its inverse are set up as follows:

CALL LMS setup( n, data, control, inform )

n is a scalar INTENT(IN) argument of type INTEGER(ip ), that must be set to the dimension of the limited-

memory matrix required. Restriction: n ≥ 1.

data is a scalar INTENT(INOUT) argument of type LMS data type (see §2.2.4). It is used to hold data about the

factors obtained. It must not have been altered by the user since the last call to LMS initialize.

control is a scalar INTENT(IN) argument of type LMS control type (see §2.2.1). Default values may be assigned

by calling LMS initialize prior to the first call to LMS setup.

inform is a scalar INTENT(OUT) argument of type LMS inform type (see §2.2.3). A successful call to LMS setup is

indicated when the component status has the value 0. For other return values of status, see §2.4.

2.3.3 The subroutine for updating the limited memory matrix

The required limited memory matrix is updated to accommodate the incoming triple (sk,yk,δk) as follows:

CALL LMS form( S, Y, delta, data, control, inform[, lambda] )

S is an INTENT(IN) rank-1 array of type REAL(rp )and length at least as large as the value n as set on input to

LMS setup, whose first n components must hold the incoming vector sk.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 LMS (May 24, 2024) GALAHAD



GALAHAD LMS

Y is an INTENT(IN) rank-1 array of type REAL(rp )and length at least as large as the value n as set on input

to LMS setup, whose first n components must hold the incoming vector yk. Restriction: the update will be

skipped for for limited-memory BFGS methods if the inner product sT
k yk <= 0.

delta is an INTENT(IN) REAL(rp )scalar that must hold the value δk. Restriction: the update will be skipped if

delta ≤ 0.

data is a scalar INTENT(INOUT) argument of type LMS data type (see §2.2.4). It is used to hold data about the

factors obtained. It must not have been altered by the user since the last call to LMS setup.

control is a scalar INTENT(IN) argument of type LMS control type (see §2.2.1). Default values may be assigned

by calling LMS initialize prior to the first call to LMS setup.

inform is a scalar INTENT(OUT) argument of type LMS inform type (see §2.2.3). A successful call to LMS setup is

indicated when the component status has the value 0. For other return values of status, see §2.4.

lambda is an OPTIONAL, INTENT(IN) REAL(rp )scalar that if present will be used to specify the shift λk that is used

by the limited memory methods defined by control%method = 1, 2 or 4. Restriction: the update will be

skipped if lambda < 0 for these methods.

2.3.4 The subroutine for shifting the limited-memory matrix

The required limited memory matrix is updated to accommodate the shift λk as follows—this call is mandatory when

control%method = 4 if λk was not set during the call to LMS form:

CALL LMS form shift( lambda, data, control, inform )

lambda is an INTENT(IN) REAL(rp )scalar that must hold the value λk. Restriction: the update will be skipped if

lambda < 0 or if control%method = 3.

data is a scalar INTENT(INOUT) argument of type LMS data type (see §2.2.4). It is used to hold data about the

factors obtained. It must not have been altered by the user since the last call to LMS form.

control is a scalar INTENT(IN) argument of type LMS control type (see §2.2.1). Default values may be assigned

by calling LMS initialize prior to the first call to LMS setup.

inform is a scalar INTENT(OUT) argument of type LMS inform type (see §2.2.3). A successful call to LMS setup is

indicated when the component status has the value 0. For other return values of status, see §2.4.

2.3.5 The subroutine for changing the method defining the limited-memory matrix

The required limited memory matrix is updated to accommodate the shift λk as follows—this call is only permitted if

control%any method = .TRUE. was set when LMS setup was originally called:

CALL LMS change method( data, control, inform, lambda )

data is a scalar INTENT(INOUT) argument of type LMS data type (see §2.2.4). It is used to hold data about the

factors obtained. It must not have been altered by the user since the last call to LMS form.

control is a scalar INTENT(IN) argument of type LMS control type (see §2.2.1). Default values may be assigned

by calling LMS initialize prior to the first call to LMS setup.

inform is a scalar INTENT(OUT) argument of type LMS inform type (see §2.2.3). A successful call to LMS setup is

indicated when the component status has the value 0. For other return values of status, see §2.4.

lambda is an OPTIONAL, INTENT(IN) REAL(rp )scalar that if present will be used to specify the shift λk that is used

by the limited memory methods defined by control%method = 1, 2 or 4. Restriction: the update will be

skipped if lambda < 0 for these methods.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LMS (May 24, 2024) 5



LMS GALAHAD

2.3.6 The subroutine for applying the limited-memory formula to a vector

Given the vector v, the required limited-memory formula, as specified in the most recent call to LMS form, LMS form -

shift or LMS change method, is applied to v as follows:

CALL LMS apply( V, U, data, control, inform )

V is a rank-one INTENT(IN) array of type default REAL that must be set on entry to hold the components of the

vector v.

U is a rank-one INTENT(OUT) array of type default REAL that will be set on exit to the result of applying the

required limited-memory formula to v.

data is a scalar INTENT(INOUT) argument of type LMS data type (see §2.2.4). It is used to hold data about the

factors obtained. It must not have been altered by the user since the last call to LMS setup.

control is a scalar INTENT(IN) argument of type LMS control type (see §2.2.1). Default values may be assigned

by calling LMS initialize prior to the first call to LMS setup.

inform is a scalar INTENT(OUT) argument of type LMS inform type (see §2.2.3). A successful call to LMS apply is

indicated when the component status has the value 0. For other return values of status, see §2.4.

2.3.7 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL LMS terminate( data, control, inform )

data is a scalar INTENT(INOUT) argument of type LMS data type exactly as for LMS setup, which must not have

been altered by the user since the last call to LMS initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type LMS control type exactly as for LMS setup.

inform is a scalar INTENT(OUT) argument of type LMS inform type exactly as for LMS setup. Only the component

status will be set on exit, and a successful call to LMS terminate is indicated when this component status

has the value 0. For other return values of status, see §2.4.

2.4 Warning and error messages

A negative value of inform%status on exit from LMS setup, LMS apply or LMS terminate indicates that an error

has occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions n > 0, delta > 0, lambda ≥ 0 or sT y > 0 has been violated and the update has been

skipped.

-10. The matrix cannot be built from the current vectors {sk} and {yk} and values δk and λk and the update has been

skipped.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 LMS (May 24, 2024) GALAHAD



GALAHAD LMS

-31. A call to subroutine LMS apply has been made without a prior call to LMS form shift or LMS form with

lambda specified when control%method = 4, or LMS form shift has been called when control%method =

3, or LMS change method has been called after control%any method = .FALSE. was specified when calling

LMS setup.

2.5 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type LMS control type (see §2.2.1), by reading an appropriate data specification file using the subroutine

LMS read specfile. This facility is useful as it allows a user to change LMS control parameters without editing and

recompiling programs that call LMS.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by LMS read specfile must start with a ”BEGIN LMS” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

( .. lines ignored by LMS_read_specfile .. )

BEGIN LMS

keyword value

....... .....

keyword value

END

( .. lines ignored by LMS_read_specfile .. )

where keyword and value are two strings separated by (at least) one blank. The “BEGIN LMS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN LMS SPECIFICATION

and

END LMS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN LMS” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when LMS read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

LMS read specfile.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LMS (May 24, 2024) 7



LMS GALAHAD

2.5.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL LMS_read_specfile( control, device )

control is a scalar INTENT(INOUT)argument of type LMS control type (see §2.2.1). Default values should have

already been set, perhaps by calling LMS initialize. On exit, individual components of control may have

been changed according to the commands found in the specfile. Specfile commands and the component (see

§2.2.1) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

limited-memory-length %memory length integer

limited-memory-method %method integer

allow-any-method %any method logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip ), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.6 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level ≥ 1, statistics concerning the formation of R as well as warning and error messages

will be reported.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: LMS calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS,

GALAHAD SPACE, GALAHAD LAPACK interface, GALAHAD BLAS interface and GALAHAD SPECFILE,

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: n > 0, delta > 0, lambda ≥ 0.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 LMS (May 24, 2024) GALAHAD



GALAHAD LMS

4 METHOD

Given a sequence of vectors {sk} and {yk} and scale factors δk, a limited-memory secant approximation Hk is chosen

so that Hmax(k−m,0) = δkI, Hk− jsk− j = yk− j and ‖Hk− j+1−Hk− j‖ is “small” for j =min(k−1,m−1), . . . ,0. Different

ways of quantifying “small” distinguish different methods, but the crucial observation is that it is possible to construct

Hk quickly from {sk}, {yk} and δk, and to apply it and its inverse to a given vector v. It is also possible to apply similar

formulae to the “shifted” matrix Hk +λkI that occurs in trust-region methods.

References:

The basic methods are those given by

R. H. Byrd, J. Nocedal and R. B. Schnabel (1994) “Representations of quasi-Newton matrices and their use in limited

memory methods”. Mathematical Programming 63(2) 129–156,

with obvious extensions.

5 EXAMPLE OF USE

Suppose that we generate random vectors {sk} and {yk} and scale factors δk, that we build the limited-memory BFGS

matrix Hk and its inverse H−1
k and that we apply Hk and then H−1

k to a given vector v. Suppose further, that at some

stage, we instead apply the inverse (Hk +λkI)−1 with λk = 0. Then we may use the following code; of course since

we have the identities v = H−1
k (Hkv) and v = (Hk +λkI)−1(Hkv) when λk = 0, we expect to recover the original v

after every step:

! THIS VERSION: GALAHAD 2.6 - 12/06/2014 AT 15:30 GMT.

PROGRAM GALAHAD_LMS_example

USE GALAHAD_LMS_double ! double precision version

USE GALAHAD_rand_double

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND( 1.0D+0 ) ! set precision

INTEGER, PARAMETER :: n = 5, m = 3

TYPE ( LMS_data_type ) :: data, data2

TYPE ( LMS_control_type ) :: control, control2

TYPE ( LMS_inform_type ) :: inform, inform2

REAL ( KIND = wp ), DIMENSION( n ) :: S, Y, U, V

INTEGER :: iter, fail

REAL ( KIND = wp ) :: delta, lambda

TYPE ( RAND_seed ) :: seed

CALL RAND_initialize( seed ) ! Initialize the random generator word

CALL LMS_initialize( data, control, inform ) ! initialize data

control%memory_length = m ! set the memory length

control2 = control

control%method = 1 ! start with L-BFGS

CALL LMS_setup( n, data, control, inform )

control2%method = 3 ! then inverse L-BFGS

control2%any_method =.TRUE. ! allow the 2nd update to change method

CALL LMS_setup( n, data2, control2, inform2 )

fail = 0 ! count the failures

DO iter = 1, 5 * n

IF ( iter == 3 * n ) THEN ! switch to inverse shifted L-BFGS

CALL LMS_setup( n, data, control, inform )

control2%method = 4

CALL LMS_setup( n, data2, control2, inform2 )

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LMS (May 24, 2024) 9



LMS GALAHAD

END IF

CALL RAND_random_real( seed, .FALSE., S ) ! pick random S, Y and delta

CALL RAND_random_real( seed, .FALSE., Y )

IF ( DOT_PRODUCT( S, Y ) < 0.0_wp ) Y = - Y ! ensure that SˆT Y is positive

CALL RAND_random_real( seed, .TRUE., delta )

CALL LMS_form( S, Y, delta, data, control, inform ) ! update the model

IF ( inform%status /= 0 ) THEN

WRITE( 6, "( ’ update error, status = ’, I0 )" ) inform%status

fail = fail + 1 ; CYCLE

END IF

V = 1.0_wp ! form the first product with the vector ones

CALL LMS_apply( V, U, data, control, inform ) ! form the required product

IF ( inform%status /= 0 ) THEN

WRITE( 6, "( ’ apply error, status = ’, I0 )" ) inform%status

fail = fail + 1 ; CYCLE

END IF

CALL LMS_form( S, Y, delta, data2, control2, inform2 ) ! update model 2

IF ( inform2%status /= 0 ) THEN

WRITE( 6, "( ’ update error, status = ’, I0 )" ) inform2%status

fail = fail + 1 ; CYCLE

END IF

IF ( control2%method == 4 ) THEN

lambda = 0.0_wp ! apply the shifted L_BFGS (inverse) with zero shift

CALL LMS_form_shift( lambda, data2, control2, inform2 )

IF ( inform2%status /= 0 ) THEN

WRITE( 6, "( ’ update error, status = ’, I0 )" ) inform2%status

fail = fail + 1 ; CYCLE

END IF

END IF

! note, the preceeding two calls could have been condensed as

! CALL LMS_form( S, Y, delta, data2, control2, inform2, lambda = 0.0_wp )

CALL LMS_apply( U, V, data2, control2, inform2 ) ! form the new product

IF ( inform2%status /= 0 ) THEN

WRITE( 6, "( ’ apply error, status = ’, I0 )" ) inform2%status

fail = fail + 1 ; CYCLE

END IF

IF ( MAXVAL( ABS( V - 1.0_wp ) ) > 0.00001_wp ) fail = fail + 1

END DO

IF ( fail == 0 ) THEN ! check for overall success

WRITE( 6, "( ’ no failures ’ )" )

ELSE

WRITE( 6, "( I0, ’ failures ’ )" ) fail

END IF

CALL LMS_terminate( data, control, inform ) ! delete internal workspace

CALL LMS_terminate( data2, control2, inform2 )

END PROGRAM GALAHAD_LMS_example

This produces the following output:

no failures

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 LMS (May 24, 2024) GALAHAD


