
GALAHAD LLST

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given a real m by n matrix A, a real n by n symmetric diagonally-dominant matrix S, a real m vector b and a scalar

∆ > 0, this package finds a minimizer of the linear least-squares objective function ‖Ax−b‖2, where the vector

x is required to satisfy the constraint ‖x‖S ≤ ∆, where the S-norm of x is ‖x‖S =
√

xT Sx. This problem commonly

occurs as a trust-region subproblem in nonlinear least-squares calculations. The package may also be used to solve

the related problem in which x is instead required to satisfy the equality constraint ‖x‖S = ∆. The matrix S need not

be provided in the commonly-occurring ℓ2-trust-region case for which S = I, the n by n identity matrix.

Factorization of matrices of the form
(

λS AT

A −I

)

(1.1)

for a succession of scalars λ will be required, so this package is most suited for the case where such a factorization

may be found efficiently. If this is not the case, the package GALAHAD LSTR may be preferred.

ATTRIBUTES — Versions: GALAHAD LLST single, GALAHAD LLST double. Uses: GALAHAD CLOCK, GALAH-

AD SYMBOLS, GALAHAD SPACE, GALAHAD RAND, GALAHAD NORMS, GALAHAD ROOTS, GALAHAD SPECFILE, GALAHAD SBLS,

GALAHAD SLS, GALAHAD IR, GALAHAD MOP Date: October 2008. Origin: N. I. M. Gould, Rutherford Appleton Lab-

oratory. Language: Fortran 95 + TR 15581 or Fortran 2003. Parallelism: Some options may use OpenMP and its

runtime library.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD LLST single

with the obvious substitution GALAHAD LLST double, GALAHAD LLST single 64 and GALAHAD LLST double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT TYPE, LLST control type,

LLST history type, LLST inform type, LLST data type, (Section 2.4) and the subroutines LLST initialize,

LLST solve, LLST terminate (Section 2.5) and LLST read specfile (Section 2.7) must be renamed on one of the

USE statements.

2.1 Matrix storage formats

The matrices A and (if required) S may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since S is symmetric, only the lower triangular part (that is the

part si j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array S%val will hold the value si j (and, by symmetry, s ji) for 1 ≤ j ≤ i ≤ n.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LLST (May 24, 2024) 1

LLST GALAHAD

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The

order is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to S (thus

requiring integer arrays S%row, S%col, a real array S%val and an integer value S%ne), except that only the entries in

the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to S (thus requiring integer arrays S%ptr, S%col,

and a real array S%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If S is diagonal (i.e., si j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries sii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array S%val may be used for the purpose. This scheme is inappropriate and thus unavailable for

A.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 Parallel usage

OpenMP may be used by the GALAHAD LLST package to provide parallelism for some solvers in shared memory

environments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP

must be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number

of threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 LLST (May 24, 2024) GALAHAD

GALAHAD LLST

2.4 The derived data types

Six derived data types are accessible from the package.

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices A and perhaps S. The components of SMT TYPE used here

are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored.

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries si j = s ji of the symmetric matrix S is represented as a single entry (see §2.1.1–

2.1.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least n + 1, that may holds the pointers

to the first entry in each row (see §2.1.3).

2.4.2 The derived data type for holding control parameters

The derived data type LLST control type is used to hold controlling data. Default values may be obtained by calling

LLST initialize (see Section 2.5.1). The components of LLST control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in LLST solve and LLST terminate is suppressed if error≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in LLST solve is suppressed if out< 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level≤ 0. If print level = 1 a single line

of output will be produced for each iteration of the process. If print level ≥ 2 this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

new a is a scalar variable of type INTEGER(ip), that is used to indicate how A has changed (if at all) since the

previous call to LLST solve. Possible values are:

0 A is unchanged.

1 the values in A have changed, but its nonzero structure is as before.

2 both the values and structure of A have changed.

The default is new a = 2.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LLST (May 24, 2024) 3

LLST GALAHAD

new s is a scalar variable of type INTEGER(ip), that is used to indicate how S (if required) has changed (if at all)

since the previous call to LLST solve. Possible values are:

0 S is unchanged.

1 the values in S have changed, but its nonzero structure is as before.

2 both the values and structure of S have changed.

The default is new s = 2.

max factorizations is a scalar variable of type INTEGER(ip), that holds the maximum number of factorizations

which will be permitted. If max factorizations is set to a negative number, there will be no limit on the

number of factorizations allowed. The default is max factorizations = -1.

taylor max degree is a scalar variable of type INTEGER(ip), that specifies the maximum degree of Taylor approx-

imant that will be used to approximate the secular function when trying to improve λ; a first-degree approximant

results in Newton’s method. The higher the degree, the better in general the improvement, but the larger the cost.

Thus there is a balance between many cheap low-degree approximants and a few more expensive higher-degree

ones. Our experience favours higher-degree approximants. The default is taylor max degree = 3, which is

the highest degree currently supported.

initial multiplier is a scalar variables of type REAL(rp), that should be set to an initial estimate of the required

multiplier λ∗ (see Section 4). The algorithm will only use this value if %use initial multiplier is set .TRUE.

(see below), and otherwise will be reset by LLST solve. A good initial estimate may sometimes dramatically

improve the performance of the package. The default is initial multiplier = 0.0.

lower is a scalar variables of type REAL(rp), that holds the value of any known lower bound on the required mul-

tiplier λ∗. A good lower bound may sometimes dramatically improve the performance of the package, but

an incorrect value might cause the method to fail. Thus resetting lower from its default should be used with

caution. The default is lower = - HUGE(1.0) (-HUGE(1.0D0) in GALAHAD LLST double).

upper is a scalar variables of type REAL(rp), that holds the value of any known upper bound on the required mul-

tiplier λ∗. A good upper bound may sometimes dramatically improve the performance of the package, but

an incorrect value might cause the method to fail. Thus resetting upper from its default should be used with

caution. The default is upper = HUGE(1.0) (HUGE(1.0D0) in GALAHAD LLST double).

stop normal is a scalar variable of type REAL(rp), that hold values for the standard convergence tolerances of the

method (see Section 4). In particular, the method is deemed to have converged when the computed solution x

and its multiplier λ satisfy either λ = 0 and |‖x‖S < ∆ or |‖x‖S −∆| ≤ stop normal ∗ max(1,∆). The default

is stop normal = u0.75, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD LLST double).

equality problem is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user requires that the

solution occur on the constraint boundary (i.e., that the inequality constraint be replaced by ‖x‖S = ∆), and

.FALSE. otherwise. The default is equality problem = .FALSE..

use initial multiplier is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes to

use the value of initial multiplier supplied in %initial multiplier, and .FALSE. if the initial value will be

chosen automatically. The default is use initial multiplier = .FALSE..

space critical is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the package

to allocate as little internal storage as possible, and .FALSE. otherwise. The package may be more efficient if

space critical is set .FALSE.. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the

package to return to the user in the unlikely event that an internal array deallocation fails, and .FALSE. if the

package should be allowed to try to continue. The default is deallocate error fatal = .FALSE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 LLST (May 24, 2024) GALAHAD

GALAHAD LLST

definite linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any symmetric positive-definite linear system that might arise. Current possible

choices are ’sils’, ’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma87’, ’ma97’, ’ssids’, ’pardiso’ and ’wsmp’.

See the documentation for the GALAHAD package SLS for further details. The default is definite linear solver

= ’sils’.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

SBLS control is a scalar variable of type SBLS control type that is used to control various aspects of the factor-

ization package SBLS. See the documentation for GALAHAD SBLS for more details.

SLS control is a scalar variable of type SLS control type that is used to control various aspects of the factorization

package SLS. See the documentation for GALAHAD SLS for more details.

IR control is a scalar variable of type IR control type that is used to control various aspects of the iterative

refinement package IR. See the documentation for GALAHAD IR for more details.

2.4.3 The derived data type for holding history information

The derived data type LLST history type is used to hold the value of ‖x(λ)‖S, where x(λ) satisfies (H+λS)x(λ) =
−c and Ax(λ) = 0 for a specific λ arising during the computation. The components of LLST history type are:

lambda is a scalar variable of type REAL(rp), that gives the value λ.

x norm is a scalar variable of type default REAL, that gives the corresponding value ‖x(λ)‖S.

2.4.4 The derived data type for holding timing information

The derived data type LLST time type is used to hold elapsed CPU and system clock times for the various parts of

the calculation. The components of LLST time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

assemble is a scalar variable of type REAL(rp), that gives the CPU time spent assembling the matrix (1.1) from its

constituent parts.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing required matrices prior to

factorization.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent using the factors to solve relevant linear

equations.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

clock assemble is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent assembling

the matrix (1.1) from its constituent parts.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing

required matrices prior to factorization.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LLST (May 24, 2024) 5

LLST GALAHAD

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent using the factors

to solve relevant linear equations.

2.4.5 The derived data type for holding informational parameters

The derived data type LLST inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of LLST inform type are:

status is a scalar variable of type INTEGER(ip), that gives the current status of the algorithm. See Section 2.6 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last internal array allocation or

deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

factorizations is a scalar variable of type INTEGER(ip), that gives the number of factorizations of the matrix

(1.1) for different λ, performed during the calculation.

max entries factors is a scalar variable of type INTEGER(ip), that gives the maximum number of entries in any

of the matrix factorizations performed during the calculation.

len history is a scalar variable of type INTEGER(ip), that gives the number of (λ,‖x(λ)‖S) pairs encountered

during the calculation.

r normj is a scalar variable of type REAL(rp), that holds the value of the norm of the residual ‖Ax−b‖2.

x norm is a scalar variable of type REAL(rp), that holds the value of ‖x‖S.

multiplier is a scalar variable of type REAL(rp), that holds the value of the Lagrange multiplier λ associated with

the constraint.

time is a scalar variable of type LLST time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.4.4).

history is an array argument of dimension len history and type LLST history type that contains a list of pairs

(λ,‖x(λ)‖S) encountered during the calculation (see Section 2.4.3).

SBLS inform is a scalar variable of type SBLS inform type, that holds informational parameters concerning the

analysis, factorization and solution phases performed by the GALAHAD sparse matrix factorization package

SBLS. See the documentation for the package SBLS for details of the derived type SBLS inform type.

SLS inform is a scalar variable of type SLS inform type, that holds informational parameters concerning the analy-

sis, factorization and solution phases performed by the GALAHAD sparse matrix factorization package SLS. See

the documentation for the package SLS for details of the derived type SLS inform type.

IR inform is a scalar variable of type IR inform type, that holds informational parameters concerning the iterative

refinement subroutine contained in the GALAHAD refinement package IR. See the documentation for the package

IR for details of the derived type IR inform type.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 LLST (May 24, 2024) GALAHAD

GALAHAD LLST

2.4.6 The derived data type for holding problem data

The derived data type LLST data type is used to hold all the data for a particular problem between calls of LLST

procedures. This data should be preserved, untouched, from the initial call to LLST initialize to the final call to

LLST terminate.

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutine LLST initialize is used to set default values and initialize private data.

2. The subroutine LLST solve is called to solve the problem.

3. The subroutine LLST terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by LLST solve, at the end of the solution process.

We use square brackets [] to indicate OPTIONAL arguments.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL LLST initialize(data, control, inform)

data is a scalar INTENT(INOUT)argument of type LLST data type (see Section 2.4.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT)argument of type LLST control type (see Section 2.4.2). On exit, control con-

tains default values for the components as described in Section 2.4.2. These values should only be changed after

calling LLST initialize.

inform is a scalar INTENT(OUT) argument of type LLST inform type (see Section 2.4.5). A successful call to

LLST initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.6.

2.5.2 The optimization problem solution subroutine

The optimization problem solution algorithm is called as follows:

CALL LLST solve(m, n, radius, A, B, X, data, control, inform[, S])

m is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of residuals, m. Re-

striction: m > 0.

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of unknowns, n. Re-

striction: n > 0.

radius is a scalar INTENT(IN) variable of type REAL(rp), that must be set on initial entry to the value of the radius

of the trust-region constraint, ∆. Restriction: ∆ > 0.

A is a scalar INTENT(IN) argument of type SMT TYPE that holds the constraint matrix A. The following compo-

nents are used:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LLST (May 24, 2024) 7

LLST GALAHAD

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of A%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into A%type. For example, if we wish to store A using the co-ordinate scheme, we may simply

CALL SMT_put(A%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

A%m is a scalar variable of type INTEGER(ip), that holds the number of rows of A.

A%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other schemes.

A%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the constraint

matrix A in any of the storage schemes discussed in Section 2.1.

A%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of A in the sparse

co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other schemes.

A%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension A%m+1 and type INTEGER(ip), that holds the starting

position of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage

scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

B is an array INTENT(IN) argument of dimension m and type REAL(rp), whose i-th entry holds the component bi

of the vector b in the residual.

X is an array INTENT(OUT) argument of dimension n and type REAL(rp), that holds an estimate of the solution x

of the problem on exit.

data is a scalar INTENT(INOUT)argument of type LLST data type (see Section 2.4.6). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to LLST initialize.

control is a scalar INTENT(IN) argument of type LLST control type. (see Section 2.4.2). Default values may be

assigned by calling LLST initialize prior to the first call to LLST solve.

inform is a scalar INTENT(INOUT)argument of type LLST inform type (see Section 2.4.5). On initial entry, the com-

ponent status must be set to 1. The remaining components need not be set. A successful call to LLST solve

is indicated when the component status has the value 0. For other return values of status, see Section 2.6.

S is an OPTIONAL scalar INTENT(IN) argument of type SMT TYPE that holds the diagonally dominant scaling

matrix S. It need only be set if S 6= I and in this case the following components are used:

S%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of S%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of S%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of S%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.1.4), the first eight components of S%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into S%type. For example, if we wish to store S using the co-ordinate scheme, we may simply

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 LLST (May 24, 2024) GALAHAD

GALAHAD LLST

CALL SMT_put(M%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

S%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of S in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

S%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the scaling matrix S in any of the storage schemes discussed in Section 2.1.

S%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of S in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any of

the other three schemes.

S%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of S in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

S%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of the lower triangular part of S, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

If S is absent, the ℓ2-norm, ‖x‖2 =
√

xT x, will be employed.

2.5.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL LLST terminate(data, control, inform)

data is a scalar INTENT(INOUT)argument of type LLST data type exactly as for LLST solve that must not have

been altered by the user since the last call to LLST initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN)argument of type LLST control type exactly as for LLST solve.

inform is a scalar INTENT(OUT)argument of type LLST inform type exactly as for LLST solve. Only the compo-

nent status will be set on exit, and a successful call to LLST terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.6.

2.6 Warning and error messages

A negative value of inform%status on exit from LLST solve or LLST terminate indicates that an error might have

occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. (LLST solve only) One of the restrictions n > 0, m > 0 or radius > 0 has been violated.

-9. (LLST solve only) The analysis phase of the factorization of the matrix (1.1) failed.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LLST (May 24, 2024) 9

LLST GALAHAD

-10. (LLST solve only) The factorization of the matrix (1.1) failed.

-15. (LLST solve only) The matrix S appears not to be diagonally dominant.

-16. (LLST solve only) The problem is so ill-conditioned that further progress is impossible.

-18. (LLST solve only) Too many factorizations have been required. This may happen if control%max factorizations

is too small, but may also be symptomatic of a badly scaled problem.

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type LLST control type (see Section 2.4.2), by reading an appropriate data specification file using the

subroutine LLST read specfile. This facility is useful as it allows a user to change LLST control parameters without

editing and recompiling programs that call LLST.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by LLST read specfile must start with a ”BEGIN LLST” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by LLST_read_specfile ..)

BEGIN LLST

keyword value

.......

keyword value

END

(.. lines ignored by LLST_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN LLST” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN LLST SPECIFICATION

and

END LLST SPECIFICATION

are acceptable. Furthermore, between the “BEGIN LLST” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when LLST read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 LLST (May 24, 2024) GALAHAD

GALAHAD LLST

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by LLST read specfile.

Control parameters corresponding to the components SLS control and IR control may be changed by including

additional sections enclosed by “BEGIN SLS” and “END SLS”, and “BEGIN IR” and “END IR”, respectively. See the

specification sheets for the packages GALAHAD SLS and GALAHAD IR for further details.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL LLST_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type LLST control type (see Section 2.4.2). Default values should

have already been set, perhaps by calling LLST initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.4.2) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

use-dense-factorization %dense factorization integer

has-a-changed %new a integer

has-s-changed %new s integer

factorization-limit %max factorizations integer

max-degree-taylor-approximant %taylor max degree integer

initial-multiplier %initial multiplier real

lower-bound-on-multiplier %lower real

upper-bound-on-multiplier %upper real

stop-normal-case %stop normal real

use-initial-multiplier %use initial multiplier logical

initialize-approximate-eigenvector %initialize approx eigenvector real

equality-problem %equality problem logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

definite-linear-equation-solver %definite linear solver character

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. In the

first phase of the algorithm, this will include the current estimate of the multiplier and known brackets on its optimal

value. In the second phase, the residual ‖x‖S −∆, the current estimate of the multiplier and the size of the correction

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LLST (May 24, 2024) 11

LLST GALAHAD

will be printed. If control%print level ≥ 2, this output will be increased to provide significant detail of each

iteration. This extra output includes times for various phases.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: LLST solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS, GA-

LAHAD SPACE, GALAHAD RAND, GALAHAD NORMS, GALAHAD ROOTS, GALAHAD SPECFILE, GALAHAD SBLS, GALAH-

AD SLS, GALAHAD IR and GALAHAD MOP.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: n > 0, ∆ > 0.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x∗ necessarily satisfies the optimality condition AT Ax∗ + λ∗Sx∗ = AT b, where λ∗ ≥ 0 is a

Lagrange multiplier corresponding to the constraint ‖x‖S ≤ ∆; for the equality-constrained problem ‖x‖S = ∆ and the

multiplier is unconstrained.

The method is iterative, and proceeds in two phases. Firstly, lower and upper bounds, λL and λU, on λ∗ are computed

using Gershgorin’s theorems and other eigenvalue bounds, including those that may involve the Cholesky factorization

of S The first phase of the computation proceeds by progressively shrinking the bound interval [λL,λU] until a value λ

for which ‖x(λ)‖S ≥ ∆ is found. Here x(λ) and its companion y(λ) are defined to be a solution of

(AT A+λS)x(λ) = AT b; (4.1)

along the way the possibility that ‖x(0)‖S ≤ ∆ is examined, and if this transpires the process is terminated with

x∗ = x(0). Once the terminating λ from the first phase has been discovered, the second phase consists of applying

Newton or higher-order iterations to the nonlinear “secular” equation ‖x(λ)‖S = ∆ with the knowledge that such

iterations are both globally and ultimately rapidly convergent.

The dominant cost is the requirement that we solve a sequence of linear systems (4.1). This may be rewritten as

(

λS AT

A −I

)(

x(λ)
y(λ)

)

=

(

AT b

0

)

, (4.2)

for some auxiliary vector y(λ). In general a sparse symmetric, indefinite factorization of the coefficient matrix of (4.2)

is often preferred to a Cholesky factorization of that of (4.1).

Reference: The method is the obvious adaptation to the linear least-squares problem of that described in detail in

H. S. Dollar, N. I. M. Gould and D. P. Robinson. On solving trust-region and other regularised subproblems in

optimization. Mathematical Programming Computation 2(1) (2010) 21–57.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 LLST (May 24, 2024) GALAHAD

GALAHAD LLST

5 EXAMPLE OF USE

Suppose we wish to solve a problem with m = 5,000 residuals and n = 10,001 unknowns, whose data is

A =













1 1 1

1 . 2 . 1

. 1

. 1 . m− 1 1

1 m 1













, S =













1

4

.
(n− 1)2

n2













, and b =













1

1

.
1

1













,

with a radius ∆ = 10. Then we may use the following code:

PROGRAM GALAHAD_LLST_EXAMPLE ! GALAHAD 4.1 - 2023-05-17 AT 13:05 GMT

USE GALAHAD_LLST_DOUBLE ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: working = KIND(1.0D+0) ! set precision

REAL (KIND = working), PARAMETER :: one = 1.0_working, zero = 0.0_working

INTEGER, PARAMETER :: m = 1000, n = 2 * m + 1 ! problem dimensions

INTEGER :: i, l

REAL (KIND = working) :: radius = 1.0_working ! radius of one

REAL (KIND = working), DIMENSION(n) :: X

REAL (KIND = working), DIMENSION(m) :: B

TYPE (SMT_type) :: A, S

TYPE (LLST_data_type) :: data

TYPE (LLST_control_type) :: control

TYPE (LLST_inform_type) :: inform

CALL LLST_initialize(data, control, inform) ! Initialize control parameters

control%sbls_control%symmetric_linear_solver = "sytr "

control%sbls_control%definite_linear_solver = "sytr "

B = one ! The term b is a vector e of ones

A%m = m ; A%n = n ; A%ne = 3 * m ! A = (I : Diag(1:n) : e)

CALL SMT_put(A%type, ’COORDINATE’, i)

ALLOCATE(A%row(A%ne), A%col(A%ne), A%val(A%ne))

DO i = 1, m

A%row(i) = i ; A%col(i) = i ; A%val(i) = one

A%row(m + i) = i ; A%col(m + i) = m + i

A%val(m + i) = REAL(i, working)

A%row(2 * m + i) = i ; A%col(2 * m + i) = n

A%val(2 * m + i) = one

END DO

S%m = n ; S%n = n ; S%ne = n ! S = diag(1:n)**2

CALL SMT_put(S%type, ’DIAGONAL’, i)

ALLOCATE(S%val(n))

DO i = 1, n

S%val(i) = REAL(i * i, working)

END DO

CALL LLST_solve(m, n, radius, A, B, X, data, control, inform, S = S)

IF (inform%status == 0) THEN ! Successful return

DO l = 1, A%ne

i = A%row(l)

B(i) = B(i) - A%val(l) * X(A%col(l))

END DO

WRITE(6, "(’ ||x||_S recurred and calculated = ’, 2ES16.8)") &

inform%x_norm, SQRT(DOT_PRODUCT(X, S%val * X))

WRITE(6, "(’ ||Ax-b||_2 recurred and calculated = ’, 2ES16.8)") &

inform%r_norm, SQRT(DOT_PRODUCT(B, B))

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LLST (May 24, 2024) 13

LLST GALAHAD

ELSE ! Error returns

WRITE(6, "(’ LLST_solve exit status = ’, I0) ") inform%status

END IF

CALL LLST_terminate(data, control, inform) ! delete workspace

DEALLOCATE(A%row, A%col, A%val, S%val, A%type, S%type)

END PROGRAM GALAHAD_LLST_EXAMPLE

This produces the following output:

||x||_S recurred and calculated = 1.00000000E+00 1.00000000E+00

||Ax-b||_2 recurred and calculated = 3.12835273E+01 3.12835273E+01

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 LLST (May 24, 2024) GALAHAD

