
GALAHAD LANCELOT B

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

LANCELOT B is a suite of Fortran procedures for minimizing an objective function, where the minimization variables

are required to satisfy a set of auxiliary, possibly nonlinear, constraints. The objective function is represented as a

sum of “group” functions. Each group function may be a linear or nonlinear functional whose argument is the sum of

“finite element” functions; each finite element function is assumed to involve only a few variables or have a second

derivative matrix with low rank for other reasons. The constraints are also represented as group functions. Bounds

on the variables and known values may be specified. The routine is especially effective on problems involving a large

number of variables.

1.1 A brief introduction to terminology and scope

The objective function has the (so-called group-partial separable) form

f (x) = ∑
i∈GO

w
g
i gi

(

∑
j∈Ei

we
i je j(x

e
j,p

e
j)+ aT

i x− bi,p
g
i

)

, x = (x1,x2, . . . ,xn)
T , (1.1)

where GO is a subset of G = {1, . . . ,ng}, the list of indices of group functions gi, each Ei is a subset of E = {1, . . . ,ne},
the list of indices of nonlinear element functions e j, and the w

g
i , p

g
i , we

i j and pe
i are, respectively, group and element

weights and vectors of parameters. Furthermore, the vectors xe
j are either small subsets of the minimization variables

x or are such that the rank of the second derivative matrix of the nonlinear element e j is small for some other reason,

and the vectors ai of the linear elements are sparse. The least value of the objective function within the intersection of

the regions defined by the general constraints

ci(x) = w
g
i gi

(

∑
j∈Ei

we
i je j(x

e
j,p

e
j)+ aT

i x− bi,p
g
i

)

= 0, i ∈ GC = G \ GO \ GI, (1.2)

and the “box”

l j ≤ x j ≤ u j, 1≤ j ≤ n,

is sough; here GI is another subset of G that may be used to specify a list of groups to be (temporarily) ignored. Either

bound on each variable may be infinite, and special considerations are taken when there are no general constraints.

The method used is iterative. There are two levels of iteration. In the outer, a composite function, the (augmented

Lagrangian) merit function,

φ(x,y,µ) = f (x)+ ∑
i∈GC

yici(x)+
1

2µ
∑

i∈GC

(ci(x))
2, (1.3)

where µ is known as the penalty parameter and y is a vector of Lagrange multiplier estimates, is formulated. Each

outer iteration requires the approximate minimization of this merit function within the feasible box, for given values

of µ and y.

The required approximate minimization for fixed µ and y is carried out using a series of inner iterations. At each

inner iteration, a quadratic model of the merit function is constructed. An approximation to the minimizer of this

model within a trust-region is calculated. The trust region can be either a “box” or a hypersphere of specified radius,

centered at the current best estimate of the minimizer. If there is an accurate agreement between the model and the

true objective function at the new approximation to the minimizer, this approximation becomes the new best estimate.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 1

LANCELOT B GALAHAD

Otherwise, the radius of the trust region is reduced and a new approximate minimizer sought. The algorithm also

allows the trust-region radius to increase when necessary. The minimization of the model function can be carried out

by using either a direct-matrix or an iterative approach.

The approximate minimization of the model is performed in two stages. In the first, a so-called generalized Cauchy

point is determined by approximately minimizing the model within the intersection of the feasible box and the trust-

region along a scaled steepest descent direction. Having taken this step, the model is further reduced by solving one

or more quadratic minimization problems in which any constraints activated at the Cauchy point remain so. The latter

computation is essentially equivalent to the solution of a sequence of linear systems, and may be performed using

either direct (factorization) or iterative (preconditioned conjugate gradient) method.

After an appropriate approximation to the minimizer of the merit function is obtained, and if there are general

constraints, µ and y are adjusted to ensure convergence of the outer iteration to the required solution of the constrained

minimization problem.

If there is a linear transformation of variables such that one or more of the element functions depend on fewer

transformed “internal” variables than the original number of variables xe
i , this may be specified. This can lead to a

substantial reduction in computing time.

There are facilities for the user to provide a preconditioner for the conjugate gradient solution of the internal

linear systems (a default is provided) and to provide (optional) first and second derivatives for (subsets) of the element

functions. The subroutine optionally returns control to the user to calculate function and derivative values of the group

functions gi and nonlinear element functions e j. A large number of other options are available, such as the ability

to choose between different generalized Cauchy points, to select different trust-region shapes, including a structured

trust region especially designed for functions with structure like those in (1.1)–(1.2), and to permit non-monotonic

descent of the merit function. Some of these options require external packages, and thus are not available by default

(see Section 1.2).

1.2 External packages

Some of the linear system options make use of the HSL package MA27. This package is available without charge for

academic purposes from the HSL archive

http://hsl.rl.ac.uk/archive/hslarchive.html .

Another option, the Lin-Moré preconditioner ICFS, is available as part of the MINPACK 2 library, via

http://www-unix.mcs.anl.gov/˜more/icfs/ .

Munksgaard’s preconditioner MA61 is only available commercially from HSL. See

http://www.cse.clrc.ac.uk/Activity/HSL+152

for details. In addition, the GALAHAD package SILS may be replaced by the functionally equivalent but state-of-the-art

HSL package HSL MA57 from the same source.

ATTRIBUTES — Versions: LANCELOT single, LANCELOT double, Uses: GALAHAD CPU time, GALAHAD SPECFILE,

LANCELOT INITW, LANCELOT OTHERS, LANCELOT HSPRD, LANCELOT CAUCHY, LANCELOT CG, LANCELOT PRECN, LANC-

ELOT FRNTL, LANCELOT STRUTR, GALAHAD SMT, GALAHAD SILS, GALAHAD SCU, LANCELOT ASMBL, LANCELOT EXTEND.

Date: February 2002. Origin: N. I. M. Gould, Rutherford Appleton Laboratory, England, and Ph. L. Toint, University

of Namur, Belgium. Previous Fortran 77 version also by A. R. Conn, IBM T. J. Watson Research Center, USA. Lan-

guage: Fortran 95 + TR 15581 or Fortran 2003. Remark: This is an enhanced version of the Fortran 77 subroutines

SBMIN and AUGLG, available as part of LANCELOT A, and supersedes them.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE LANCELOT single

with the obvious substitution LANCELOT double, LANCELOT single 64 and LANCELOT double 64 for the other vari-

ants.

If it is required to use more than one of the modules at the same time, the derived types LANCELOT problem type,

LANCELOT time type, LANCELOT control type, LANCELOT inform type (Section 2.2) and the subroutines LANCE-

LOT initialize, LANCELOT solve, LANCELOT terminate, (Section 2.3) and LANCELOT read specfile (Section 2.6)

must be renamed on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 The derived data types

Five derived data types are accessible from the package.

2.2.1 The derived data type for holding the problem

The derived data type LANCELOT problem type is used to hold the problem data. The components of LANCE-

LOT problem type are:

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

ng is a scalar variable of type INTEGER(ip), that holds the number of group functions, ng.

nel is a scalar variable of type INTEGER(ip), that holds the number of nonlinear element functions, ne.

IELING is a rank-one allocatable array of dimension ISTADG(ng+1)-1 and type INTEGER(ip), that holds the indices

of the nonlinear elements Ei used by each group. The indices for group i must immediately precede those for

group i+ 1 and each group’s indices must appear in a contiguous list. See Section 5 for an example.

ISTADG is a rank-one allocatable array of dimension ng+1 and type INTEGER(ip), whose i-th value gives the position

in IELING of the first nonlinear element in group function i. In addition, ISTADG(ng+1) should be equal to the

position in IELING of the last nonlinear element in group ng plus one. See Table 2.1 and Section 5 for an

example.
IELVAR is a rank-one allocatable array of dimension ISTAEV(nel+1)-1 and type INTEGER(ip), that holds the in-

dices of the variables in the first nonlinear element e1, followed by those in the second nonlinear element e2,

. . . . See Section 5 for an example.

ISTAEV is a rank-one allocatable array of dimension nel+1 and type INTEGER(ip), whose k-th value is the position

of the first variable of the k-th nonlinear element function, in the list IELVAR. In addition, ISTAEV(ne+1) must

be equal to the position of the last variable of element ne in IELVAR plus one. See Table 2.2 and Section 5 for

an example.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 3

LANCELOT B GALAHAD

elements elements . . . elements IELING

in g1 in g2 in gn

weights of weights of weights of

elements elements . . . elements ESCALE

in g1 in g2 in gn

↑ ↑ ↑ ↑ ↑
ISTADG(1) ISTADG(2) ISTADG(3) ISTADG(ng) ISTADG(ng + 1)

Table 2.1: Contents of the arrays IELING, ESCALE and ISTADG

variables variables . . . variables IELVAR

in xe
1 in xe

2 in xe
n

↑ ↑ ↑ ↑ ↑
ISTAEV(1) ISTAEV(2) ISTAEV(3) ISTAEV(ne) ISTAEV(ne + 1)

Table 2.2: Contents of the arrays IELVAR and ISTAEV

INTVAR is a rank-one allocatable array of dimension nel+1 and type INTEGER(ip), whose i-th value must be set

to the number of internal variables required for the i-th nonlinear element function ei on initial entry. See

Section 2.4.3 for the precise definition of internal variables and Section 5 for an example.

ISTADH is a rank-one allocatable array of dimension nel+1 and type INTEGER(ip), that is set in LANCELOT solve

so that its i-th value (1 ≤ i ≤ ne) gives the position in the array FUVALS (see Sections 2.3.2 and 2.4.4, and

(particularly) Tables 2.6 and 2.7) of the first component of the Hessian matrix of the i-th nonlinear element

function ei, with respect to its internal variables. Only the upper triangular part of each Hessian matrix is stored

and the storage is by columns (see Section 2.4.7 for details). The element ISTADH(ne + 1) gives the position in

FUVALS of the first component of the gradient of the objective function.

ICNA is a rank-one allocatable array of dimension ISTADA(ng+1)-1 and type INTEGER(ip), that holds the indices

of the nonzero components of a1, the gradient of the first linear element, in any order, followed by those in a2,

etc. See Table 2.3 and Section 5 for an example.

ISTADA is a rank-one allocatable array of dimension ng+1 and type INTEGER(ip), whose i-th value is the position of

the first nonzero component of the i-th linear element gradient, ai, in the list ICNA. In addition, ISTADA(ng+1)

must be equal to the position of the last nonzero component of ang in ICNA plus one. See Table 2.3 and Section 5

for an example.

nonzeros nonzeros . . . nonzeros A

in a1 in a2 in ang

variables variables . . . variables ICNA

in a1 in a2 in ang

↑ ↑ ↑ ↑ ↑
ISTADA(1) ISTADA(2) ISTADA(3) ISTADA(ng) ISTADA(ng + 1)

Table 2.3: Contents of the arrays A, ICNA and ISTADA

KNDOFG is a rank-one allocatable array of dimension ng and type INTEGER(ip), that is used to indicate which of

the groups are to be included in the objective function, which define equality constraints, and which are to be

ignored. If KNDOFG is not ASSOCIATED, all groups will be included in the objective function, and it will be

assumed that there are no general constraints. If KNDOFG is ASSOCIATED, each of the first ng entries of KNDOFG

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

must be set to 0, 1 or 2 on initial entry. If KNDOFG(i) has the value 1, i lies in the set GO and the group will be

included in the objective function (1.1). If, KNDOFG(i) has the value 2, i lies in the complement set GC, and the

i-th group defines an equality constraint of the form (1.2). Finally, if KNDOFG(i) has the value 0, group i will be

ignored; this is useful when, for example, many optimizations are required with different subsets of constraints,

or when a feasible point is sought without reference to the objective.

ITYPEE is a rank-one allocatable array of dimension nel and type INTEGER(ip), that is used to indicate the types

(See Section 2.4.2) of the nonlinear element functions. The i-th component of ITYPEE specifies the type of

element i.

ISTEPA is a rank-one allocatable array of dimension nel + 1 and type INTEGER(ip), whose i-th component gives

the position in EPVALU (see below) of the first parameter for element function i. In addition, ISTEPA(nel+1) is

the position in EPVALU of the last parameter for element function ne plus one. See Table 2.4 for an illustration.

parameters parameters . . . parameters EPVALU

in pe
1 in pe

2 in pe
ne

↑ ↑ ↑ ↑ ↑
ISTEPA(1) ISTEPA(2) ISTEPA(3) ISTEPA(ne) ISTEPA(ne + 1)

Table 2.4: Contents of the arrays EPVALU and ISTEPA

ITYPEG is a rank-one allocatable array of dimension ng and type INTEGER(ip), that is used to indicate the types

(See Section 2.4.2) of the group functions. The i-th component of ITYPEG specifies the type of group i.

ISTGPA is a rank-one allocatable array of dimension ng +1 and type INTEGER(ip), whose i-th component gives the

position in GPVALU (see below) of the first parameter for group function i. In addition, ISTGPA(ng+1) is the

position in GPVALU of the last parameter for element function ng plus one. See Table 2.5 for an illustration.

parameters parameters . . . parameters GPVALU

in p
g
1 in p

g
2 in p

g
ng

↑ ↑ ↑ ↑ ↑
ISTGPA(1) ISTGPA(2) ISTGPA(3) ISTGPA(ng) ISTGPA(ng + 1)

Table 2.5: Contents of the arrays GPVALU and ISTGPA

A is a rank-one array of dimension ISTADA(ng+1)-1 and type REAL(rp), that holds the values of the nonzero com-

ponents of the gradients of the linear element functions, ai, i = 1, . . . ,ng. The values must appear in the same

order as their indices appear in ICNA, i.e., the nonzero from element i, whose index is, say, ICNA(k) will have

value A(k). See Table 2.3 and Section 5 for an example.

B is a rank-one array of dimension ng and type REAL(rp), whose i-th entry holds the value of the constant bi for each

group.

BL is a rank-one array of dimension n and type REAL(rp), whose i-th entry must be set to the value of the lower

bound li on the i-th variable. If the i-th variable has no lower bound, BL(i) should be set to a large negative

number.

BU is a rank-one array of dimension n and type REAL(rp), whose i-th entry must be set to the value of the upper

bound ui on the i-th variable. If the i-th variable has no upper bound, BU(i) should be set to a large positive

number.

X is a rank-one array of dimension n and type REAL(rp), that holds the current values of the minimization variables,

x.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 5

LANCELOT B GALAHAD

C is a rank-one array of dimension ng and type REAL(rp), that holds the current estimates of the values of the equality

constraints for the problem. If KNDOFG(i) < 2, C(i) will not be set, but if KNDOFG(i) = 2, C(i) contains the

constraint value ci(x) of the i-th constraint (1.2). C need not be ASSOCIATED if KNDOFG is not.

Y is a rank-one array of dimension ng and type REAL(rp), that holds the current estimates of the Lagrange multipliers,

y, for the problem. If KNDOFG(i) < 2, Y(i) will not be set, but if KNDOFG(i) = 2, Y(i) contains the multiplier

estimate yi for the i-th constraint (1.2). Y need not be ASSOCIATED if KNDOFG is not.

GSCALE is a rank-one array of dimension ng and type REAL(rp), whose i-th entry holds the value of i-th group weight

w
g
i .

ESCALE is a rank-one array of dimension ISTADG(ng+1)-1 and type REAL(rp), whose entries hold the values of

element weights we
i j . The weights must occur in the same order as the indices of the elements assigned to each

group in IELING, with the weights for the elements in group i preceding those in group i+ 1, i = 1, . . . ,ng−1.

See Table 2.1 and Section 5 for an example.

VSCALE is a rank-one array of dimension n and type REAL(rp), that holds suitable positive scale factors for the

problem variables x. The i-th variable xi will implicitly be divided by VSCALE(i) within LANCELOT solve.

The scale factors should ideally be chosen so that the rescaled variables are of order one at the solution to the

minimization problem. If the user does not know suitable scalings, each component of VSCALE should be set to

1.0. Good variable scalings can result in considerable savings in computing times.

EPVALU is a rank-one array of dimension ISTEPA(nel+1)-1 and type REAL(rp), that holds the values of the element

parameters pe
i , i = 1, . . . ,ne. The indices for the parameters for element i immediately precede those for element

i+ 1, and each element’s parameters appear in a contiguous list. See Table 2.4 for an illustration.

GPVALU is a rank-one array of dimension ISTGPA(ng+1)-1 and type REAL(rp), that holds the values of the group

parameters p
g
i , i = 1, . . . ,ng. The indices for the parameters for group i immediately precede those for group

i+ 1, and each group’s parameters appear in a contiguous list. See Table 2.5 for an illustration.

GXEQX is a rank-one array of dimension ng and type default LOGICAL, whose i-th entry must be set .TRUE. if the i-th

group function is the trivial function g(x) = x (see Section 2.4.2) and .FALSE. otherwise.

INTREP is a rank-one array of dimension nel and type default LOGICAL, whose i-th entry must be set .TRUE. if the i-th

nonlinear element function has a useful transformation between elemental and internal variables and .FALSE.

otherwise (see Section 2.4.3).

VNAMES is a rank-one array of dimension n and type default CHARACTER and length 10, whose j-th entry contains the

“name” of the j-th variable.

GNAMES is a rank-one array of dimension ng and type default CHARACTER and length 10, whose i-th entry contains the

“name” of the i-th group.

2.2.2 The derived data type for holding control parameters

The derived data type LANCELOT control type is used to hold controlling data. Default values may be obtained

by calling LANCELOT initialize (see Section 2.3.1), while components may also be changed by calling LANCE-

LOT read spec (see Section 2.6.1). The components of LANCELOT control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in LANCELOT solve and LANCELOT terminate is suppressed if error ≤ 0. The default is error =

6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in LANCELOT solve is suppressed if out ≤ 0. The default is out = 6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

alive unit is a scalar variable of type INTEGER(ip). If alive unit > 0, a temporary file named alive file

(see below) will be created on stream number alive unit on initial entry to LANCELOT solve, and execution

of LANCELOT solve will continue so long as this file continues to exist. Thus, a user may terminate execution

simply by removing the temporary file from this unit. If alive unit ≤ 0, no temporary file will be created, and

execution cannot be terminated in this way. The default is alive unit = 60.

alive file is a scalar variable of type default CHARACTER and length 30, that gives the name of the temporary file

whose removal from stream number alive unit terminates execution of LANCELOT solve. The default is

alive unit = ALIVE.d.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if tt print level ≤ 0. If print level = 1, a single line of

output will be produced for each iteration of the process, while additionally if print level = 2 a summary of

the inner iteration will be given. If print level ≥ 3, this output will be increased to provide significant detail

of each iteration. The default is print level = 0.

maxit is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which will be allowed

in LANCELOT solve. The default is maxit = 1000.

start print is a scalar variable of type INTEGER(ip), that specifies the first iteration for which printing will be

permitted in LANCELOT solve. If start print is negative, printing will be permitted from the outset. The

default is start print = -1.

stop print is a scalar variable of type INTEGER(ip), that specifies the last iteration for which printing will be

permitted in LANCELOT solve. If stop print is negative, printing will be permitted once it has been started by

start print. The default is stop print = -1.

print gap is a scalar variable of type INTEGER(ip). Once printing has been started, output will occur once every

print gap iterations. If print gap is no larger than 1, printing will be permitted on every iteration. The default

is print gap = 1.

linear solver is a scalar variable of type INTEGER(ip), that is used to specify the method used to solve the linear

systems of equations which arise at each iteration of the minimization algorithm. Possible values are:

1. The conjugate gradient method will be used without preconditioning.

2. A preconditioned conjugate gradient method will be used with a diagonal preconditioner.

3. A preconditioned conjugate gradient method will be used with a user supplied preconditioner. Control will

be passed back to the user to construct the product of the preconditioner with a given vector prior to a

reentry to LANCELOT solve (see Section 2.4.7).

4. A preconditioned conjugate gradient method will be used with an expanding band incomplete Cholesky

preconditioner. This option is only available if the user has provided one of the external packages MA27 or

HSL MA57, (see Section 1.2).

5. A preconditioned conjugate gradient method will be used with Munksgaard’s preconditioner. This option is

only available if the user has provided the external package MA61 (see Section 1.2).

6. A preconditioned conjugate gradient method will be used with a modified Cholesky preconditioner due to

Gill, Murray, Ponceléon and Saunders, in which an indefinite factorization is altered to give a positive

definite one. This option is only available if the user has provided one of the external packages MA27 or

HSL MA57, (see Section 1.2).

7. A preconditioned conjugate gradient method will be used with a modified Cholesky preconditioner due to

Schnabel and Eskow, in which small or negative diagonals are made sensibly positive during the factoriza-

tion. This option is only available if the user has provided one of the external packages MA27 or HSL MA57,

(see Section 1.2).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 7

LANCELOT B GALAHAD

8. A preconditioned conjugate gradient method will be used with a band preconditioner. The semi-bandwidth

is given by the variable semibandwidth (see below).

9. A preconditioned conjugate gradient method will be used with an incomplete Cholesky factorization precon-

ditioner due to Lin and Moré. This option is only available if the user has provided the external package

ICFS, (see Section 1.2).

11. A multifrontal factorization method will be used. This option is only available if the user has provided one

of the external packages MA27 or HSL MA57, (see Section 1.2).

12. A modified Cholesky factorization method will be used. This option is only available if the user has pro-

vided one of the external packages MA27 or HSL MA57, (see Section 1.2).

Any other value of linear solver will be regarded as 1. The default is linear solver = 8.

icfact is a scalar variable of type INTEGER(ip), that specifies the number of extra vectors of length prob%n used

by the Lin and Moré preconditioner (linear solver = 4) if requested. Usually, the larger the number, the

better the preconditioner, but the more space and effort required to use it. Any negative value will be regarded

as 0. The default is icfact = 5.

semibandwidth is a scalar variable of type INTEGER(ip), that holds the semi-bandwidth used if the band pre-

conditioner (linear solver = 8) is selected. Any negative value will be regarded as 0. The default is

semibandwidth = 5.

max sc is a scalar variable of type INTEGER(ip), that specifies the maximum number of variables that are allowed to

hit their bounds during the calculation of the step before a refactorization of the preconditioner is triggered. A

dense Schur-complement matrix of order at most max sc may be generated in lieu of the refactorization, so some

compromise between many refactorizations and the storage of a potentially large, dense Schur complement must

be made. Any non-positive value will be regarded as 1. The default is max sc = 75.

io buffer is a scalar variable of type INTEGER(ip), that holds the unit number of an input/output buffer for writing

temporary files during array-size re-allocations, if needed. The default is io buffer = 75.

more toraldo is a scalar variable of type INTEGER(ip), that specifies the number of Moré-Toraldo projected

searches that are to be used to improve upon the Cauchy point when finding the step. Any non-positive value

results in a standard add-one-at-a-time conjugate-gradient search. The default is more toraldo = 0.

non monotone is a scalar variable of type INTEGER(ip), that specifies the history-length for non-monotone descent

strategy. Any non-positive value results in standard monotone descent, for which merit function improvement

occurs at each iteration. There are often definite advantages in using a non-monotone strategy with a modest

history, since the occasional local increase in the merit function may enable the algorithm to move across (gentle)

“ripples” in the merit function surface. However, we do not usually recommend large values of non monotone.

The default is non monotone = 1.

first derivatives is a scalar variable of type INTEGER(ip), that specifies what sort of first derivative approx-

imation to use. If the user is able to provide analytical first derivatives for each nonlinear element function,

first derivatives must be set to to be non-positive. If analytical first derivatives are unavailable, they may

be estimated by forward differences by setting first derivatives = 1, or, more accurately but at additional

expense, by central differences by setting first derivatives ≥ 2. The default is first derivatives = 0.

N.B. This value will be ignored whenever the user provides the optional argument ELDERS to LANCELOT solve.

second derivatives is a scalar variable of type INTEGER(ip), that specifies what sort of second derivative approx-

imation to use. If the user is able to provide analytical second derivatives for each nonlinear element function,

second derivatives must be set to be non-positive. If the user is unable to provide second derivatives, these

derivatives will be approximated using one of four secant approximation formulae. If second derivatives is

set to 1, the BFGS formula is used; if it is set to 2, the DFP formula is used; if it is set to 3, the PSB formula is

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

used; and if it is set to 4 or larger, the symmetric rank-one formula is used. The user is strongly advised to use

exact second derivatives if at all possible as this often significantly improves the convergence of the method. The

default is second derivatives = 0. N.B. This value will be ignored whenever the user provides the optional

argument ELDERS to LANCELOT solve.

stopg is a scalar variable of type REAL(rp), that is used to specify the maximum permitted (infinity) norm of the

projected gradient of the Lagrangian function (see Section 4) at the estimate of the solution sought. The default

is stopg = 10−5.

stopc is a scalar variable of type REAL(rp), that is used to specify the maximum permitted violation (measured in

infinity norm) of the constraints at the estimate of the solution sought. The default is stopc = 10−5.

min aug is a scalar variable of type REAL(rp), that is used to specify the smallest permitted value of the merit

function (1.3). Any smaller value will result in the minimization being terminated. The default is min aug = -

HUGE(1.0)/8.0.

acccg is a scalar variable of type REAL(rp), that is used to specify the least relative reduction in (two-) norm of the

residual of the reduced gradient of the model function that is required from the conjugate gradient iteration. The

default is acccg = 0.01.

initial radius is a scalar variable of type REAL(rp), that holds the required initial value of the trust-region ra-

dius. If initial radius ≤ 0, the radius will be chosen automatically by LANCELOT solve The default is

initial radius = - 1.0.

maximum radius is a scalar variable of type REAL(rp), that holds the maximum permitted value of the trust-region

radius. Any radius that exceeds the larger of maximum radius and one during the calculation will be reset to

MAX(maximum radius,1.0). The default is maximum radius = 1020.

eta successful, eta very successful and eta extremely successful are scalar variables of type default REAL(rp),

that control the acceptance and rejection of the trial step and the updates to the trust-region radius. At every

iteration, the ratio of the actual reduction in the merit function following the trial step to that predicted by the

model is computed. The step is accepted whenever this ratio exceeds eta successful; otherwise the trust-

region radius will be reduced. If, in addition, the ratio exceeds eta very successful, the trust-region radius

may be increased. If a structured trust-region is being used (see structured tr below), the radius for an indi-

vidual element will only be increased if additionally the ratio of the actual to predicted decrease for this element

exceeds eta extremely successful. The defaults are eta successful = 0.01, eta very successful =

0.9 and eta extremely successful = 0.95.

gamma smallest, gamma decrease and gamma increase are scalar variables of type REAL(rp), that control the

maximum amounts by which the trust-region radius can contract or expand during an iteration. The radius

will be decreased by powers of gamma decrease until it is smaller than the larger of an internally calcu-

lated prediction of what should be a good value and gamma smallest. It can be increased by at most a factor

gamma increase. The defaults are gamma smallest = 0.0625, gamma decrease = 0.25 and gamma increase

= 2.0.

mu meaningful model and mu meaningful group are scalar variables of type REAL(rp), that hold tolerances that

determine whether a group (and its model) is “meaningful” when a structured trust-region is being used (see

structured tr below). A model of an individual group is meaningful if the change in its value that results

from the trial step is more than a factor mu meaningful model of the overall model decrease. The same

is true of the group itself if if the change in its value that results from the trial step is more than a factor

mu meaningful group of the overall model decrease. The radius update strategies are more liberal for non-

meaningful groups (see Conn, Gould, Toint, 2000, Section 10.2.2). These values are for experts only. The

defaults are mu meaningful model = 0.01 and mu meaningful group = 0.1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 9

LANCELOT B GALAHAD

initial mu is a scalar variable of type REAL(rp), that specifies the initial value of the penalty parameter, µ. Any

value smaller than u will be replaced by u, where u is EPSILON(1.0) (EPSILON(1.0D0) in LANCELOT double).

The default is initial mu = 0.1.

mu tol is a scalar variable of type REAL(rp), that holds a threshold value of the penalty parameter, above which no

attempt will be made to update Lagrange multiplier estimates. The default is mu tol = 0.1.

firstg is a scalar variable of type REAL(rp), that is used to specify the maximum permitted (infinity) norm of the

projected gradient of the Lagrangian function (see Section 4) at the end of the first major iteration. The default

is firstg = 0.1.

firstc is a scalar variable of type REAL(rp), that is used to specify the maximum hoped-for violation (measured

in infinity norm) of the constraints at the end of the first major iteration. No attempt will be made to update

Lagrange multiplier estimates until the violation falls below this threshold. The default is firstc = 0.1.

cpu time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted CPU time.

Any negative value indicates no limit will be imposed. The default is cpu time limit = - 1.0.

quadratic problem is a scalar variable of type default LOGICAL, that should be set .TRUE. if the objective function

is quadratic (or linear) and any constraints linear, and .FALSE. otherwise. LANCELOT B can take some advantage

of quadratic problems, although the GALAHAD packages GALAHAD QPB or GALAHAD QPA are to be preferred in

this case. The default is quadratic problem = .FALSE..

two norm tr is a scalar variable of type default LOGICAL, that should be set .TRUE. if a two-norm (hyperspheri-

cal) trust region is required, and .FALSE. if an infinity-norm (box) trust region is to be used. The default is

two norm tr = .FALSE..

exact gcp is a scalar variable of type default LOGICAL, that should be set .TRUE. if the exact generalized Cauchy

point, the first estimate of the minimizer of the quadratic model within the feasible box, is required, and .FALSE.

if an approximation suffices. The default is exact gcp = .TRUE..

accurate bqp is a scalar variable of type default LOGICAL, that should be set .TRUE. if an accurate minimizer of the

quadratic model within the feasible box is required, and .FALSE. if an approximation suffices. The accurate

minimizer often requires considerably more work, but occasionally this reduces the overall number of iterations.

The default is accurate bqp = .FALSE..

structured tr is a scalar variable of type default LOGICAL, that should be set .TRUE. if the shape of the trust region

should be adjusted to account for the partial separability of the problem, and .FALSE. otherwise. The default is

structured tr = .FALSE..

print max is a scalar variable of type default LOGICAL, that should be set .TRUE. if the printed values of the objective

function and its derivatives should be multiplied by minus one (as might be the case if we aim to maximize f (x)
by minimizing − f (x)), and .FALSE. otherwise. The default is print max = .FALSE..

full solution is a scalar variable of type default LOGICAL, that should be set .TRUE. if all components of the

solution x and constraints c(x) should be printed on termination when print level > 0, and .FALSE. if only

the first and last (representative) few are required. The default is full solution = .TRUE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

SILS cntl is a scalar variable of type SILS control, that holds control parameters for the GALAHAD sparse ma-

trix factorization package SILS. See the documentation for the package SILS for details of the derived type

SILS control, and of the default values given to its components.

2.2.3 The derived data type for holding problem data

The derived data type LANCELOT data type is used to hold all the data for a particular problem between calls of

LANCELOT procedures. This data should be preserved, untouched, from the initial call to LANCELOT initialize to

the final call to LANCELOT terminate.

2.2.4 The derived data type for holding informational parameters

The derived data type LANCELOT info type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of LANCELOT info type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Sections 2.4.7 and

2.5 for details. A value status = 0 indicates successful termination.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or de-allocation.

iter is a scalar variable of type INTEGER(ip), that gives the number of iterations that have been performed since

the start of the minimization. This is one fewer than the number of problem function evaluations that have been

made.

itercg is a scalar variable of type INTEGER(ip), that gives the number of conjugate-gradient iterations that have

been performed since the start of the minimization.

itcgmx is a scalar variable of type INTEGER(ip), that gives the maximum number of conjugate-gradient iterations

that will be allowed at each iteration of the inner minimization.

ncalcf is a scalar variable of type INTEGER(ip), that gives the number of element functions that must be re-

evaluated when the reverse-communication mode is used to evaluate element values.

ncalcg is a scalar variable of type INTEGER(ip), that gives the number of group functions that must be re-evaluated

when the reverse-communication mode is used to evaluate group values.

nvar is a scalar variable of type INTEGER(ip), that gives the current number of free variables, that is the number of

variables which do not lie on either simple bounds.

ngeval is a scalar variable of type INTEGER(ip), that gives the number of problem function gradient evaluations

that have been made since the start of the minimization.

iskip is a scalar variable of type INTEGER(ip), that gives the number of times that an approximation to the second

derivatives of an element function has been rejected.

ifixed is a scalar variable of type INTEGER(ip), that gives the index of the variable that most recently encountered

one of its bounds in the minimization process.

nsemib is a scalar variable of type INTEGER(ip), that gives the bandwidth used if the band or expanding band

preconditioner is selected. (control%linear solver = 4 or 8).

aug is a scalar variable of type REAL(rp), that gives the current value of the augmented Lagrangian merit function.

obj is a scalar variable of type REAL(rp), that gives the current value of the objective function.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 11

LANCELOT B GALAHAD

pjgnrm is a scalar variable of type REAL(rp), that gives the (infinity) norm of the current projected gradient of the

Lagrangian function (see Section 4).

cnorm is a scalar variable of type REAL(rp), that gives the (infinity) norm of the current violation of the constraints.

ratio is a scalar variable of type REAL(rp), that gives the ratio of the actual reduction that has been made in the

merit function value during the current iteration to that predicted by the model function. A value close to one is

to be expected as the algorithm converges.

mu is a scalar variable of type REAL(rp), that gives the current value of the penalty parameter.

radius is a scalar variable of type REAL(rp), that gives the current value of the radius of the trust-region.

ciccg is a scalar variable of type REAL(rp), that gives the current value of the pivot tolerance that is used when

Munksgaard’s incomplete Cholesky factorization (control%linear solver = 5) is chosen for precondition-

ing.

newsol is a scalar variable of type default LOGICAL, that will be .TRUE. if a major iteration has just been completed,

and .FALSE. otherwise.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last array for

which an array allocation/de-allocation was unsuccessful.

SCU info is a scalar variable of type SCU info type, that holds informational parameters concerning the the GALA-

HAD bordered matrix factorization package SCU. See the documentation for the package SCU for details of the

derived type SCU info type.

SILS infoa is a scalar variable of type SILS ainfo, that holds informational parameters concerning the analysis

subroutine contained in the GALAHAD sparse matrix factorization package SILS. See the documentation for the

package SILS for details of the derived type SILS ainfo.

SILS infof is a scalar variable of type SILS finfo, that holds informational parameters concerning the factorization

subroutine contained in the GALAHAD sparse matrix factorization package SILS. See the documentation for the

package SILS for details of the derived type SILS finfo.

2.3 Argument lists and calling sequences

There are three principal procedures for user calls (see Section 2.6 for further features):

1. The subroutine LANCELOT initialize is used to set default values, and initialize private data, before solving

the specified optimization problem.

2. The subroutine LANCELOT solve is called to solve the optimization problem.

3. The subroutine LANCELOT terminate is provided to allow the user to automatically deallocate array compo-

nents of the private data, allocated by LANCELOT solve, at the end of the solution process.

We use square brackets [] to indicate OPTIONAL arguments.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL LANCELOT_initialize(data, control)

data is a scalar INTENT(INOUT)argument of type LANCELOT data type (see Section 2.2.3). It is used to hold data

about the problem being solved.

control is a scalar INTENT(OUT)argument of type LANCELOT control type (see Section 2.2.2). On exit, control

contains default values for the components as described in Section 2.2.2. These values should only be changed

after calling LANCELOT initialize.

2.3.2 The minimization subroutine

The minimization algorithm is called as follows:

CALL LANCELOT_solve(prob, RANGE, GVALS, FT, XT, FUVALS, lfuval, ICALCF, ICALCG, &
IVAR, Q, DGRAD, control, inform, data[, ELDERS] [, ELFUN] &
[, ELFUN_flexible] [, GROUP])

prob is a scalar INTENT(INOUT)argument of type LANCELOT problem type (see Section 2.2.1). It is used to hold data

about the problem being solved. Components n, ng, nel, IELING, ISTADG, IELVAR, ISTAEV, ICNA, ISTADA, A,

B, BL, BU, GSCALE, ESCALE, VSCALE, GXEQX, INTREP, VNAMES, and GNAMES must all be set on entry as described

in Section 2.2.1, and will thereafter be unaltered.

The component INTVAR must also be set as described in Section 2.2.1, but will subsequently be reset by

LANCELOT solve so that its i-th value gives the position in the array FUVALS (see below) of the first component

of the gradient of the i-th nonlinear element function, with respect to its internal variables (see FUVALS). The

component X must also be set, but will be altered by LANCELOT solve. The component ISTADH need not be set

on initial entry, but will be set by LANCELOT solve as described in Section 2.2.1.

If the dummy argument ELFUN (see below) is present, the components ISTEPA and EPVALU must also be set

on entry as described in Section 2.2.1—they will not subsequently be altered—but otherwise they need not be

associated or assigned. Likewise if the dummy argument GROUP (see below) is present, the components ISTGPA,

GPVALU and ITYPEG must also be set on entry as described in Section 2.2.1—they will not subsequently be

altered—but otherwise they need not be associated or assigned.

If the problem involves general constraints (1.2), the components KNDOFG, Y and C must be associated, and

the first two assigned values—KNDOFG will not subsequently be altered, while C will be set by LANCELOT solve.

If the problem does not involve general constraints, KNDOFG, Y and C need not be associated.

RANGE is a user-supplied subroutine whose purpose is to define the linear transformation of variables for those non-

linear elements which have different elemental and internal variables. See Section 2.4.3 for details. RANGE must

be declared EXTERNAL in the calling program.

GVALS is a rank-two INTENT(OUT)array argument of shape (prob%ng, 3) and type REAL(rp) that is used to store

function and derivative information for the group functions. The user may be asked to provide values for

these functions and/or derivatives, evaluated at the argument FT (see FT) when control is returned to the calling

program with a negative value of the variable inform%status. This information needs to be stored by the user

in specified locations within GVALS. Details of the required information are given in Section 2.4.7.

FT is a rank-one INTENT(INOUT)array argument of dimension prob%ng and type REAL(rp) that is set within LANC-

ELOT solve to a trial value of the argument of the i-th group function at which the user may be required to

evaluate the values and/or derivatives of that function. Precisely what group function information is required at

FT is under the control of the variable inform%status and details are given in Section 2.4.7.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 13

LANCELOT B GALAHAD

XT is a rank-one INTENT(INOUT)array argument of dimension prob%n and type REAL(rp) that is set within LANC-

ELOT solve to a trial value of the variables x at which the user may be required to evaluate the values and/or

derivatives of the nonlinear elements functions. Precisely what element function information is required at XT

is under the control of the variable inform%status and details are given in Section 2.4.7.

FUVALS is a rank-one INTENT(INOUT)array argument of dimension lfuval and type REAL(rp) that is used to store

function and derivative information for the nonlinear element functions. The user is asked to provide values for

these functions and/or derivatives, evaluated at the argument XT (see XT), at specified locations within FUVALS,

when control is returned to the calling program with a negative value of the variable inform%status. Alterna-

tively, the user may have provided a suitable subroutine ELFUN to compute the required function or derivative

values (see below). Details of the required information are given in Sections 2.4.4 and 2.4.7. The layout of

FUVALS is indicated in Table 2.6.

←− ne −→ ←− n −→ ←− n −→
element element element objective Hessian

values gradients Hessians gradient diagonal

↑ ↑ ↑ ↑
INTVAR(1) ISTADH(1) ISTADH(ne + 1) lfuval

Table 2.6: Partitioning of the workspace array FUVALS

The first segment of FUVALS contains the values of the nonlinear element functions; the next two segments

contain their gradients and Hessian matrices, taken with respect to their internal variables, as indicated in Sec-

tion 2.4.7. The remaining two used segments contain the gradient of the objective function and the diagonal

elements of the second derivative approximation, respectively. At the solution, the components of the gradient

of the augmented Lagrangian function corresponding to variables which lie on one of their bounds are of partic-

ular interest in many applications areas. In particular they are often called shadow prices, and are used to assess

the sensitivity of the solution to variations in the bounds on the variables.

lfuval is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the actual length of FUVALS in

the calling program. The required length may be calculated using the following code segment:

lfuval = prob%nel + 2 * prob%n

DO i = 1, prob%nel

lfuval = lfuval + (prob%INTVAR(i) * (prob%INTVAR(i) + 3)) / 2

END DO

ICALCF is a rank-one INTENT(INOUT)array argument of dimension prob%nel and type INTEGER(ip). If the user

has chosen not to perform internal element evaluations, and if the value of inform%status on return from

LANCELOT solve indicates that further element functions values or their derivatives are required prior to a re-

entry, the first inform%ncalcf components of ICALCF give the indices of the group functions which need to

be recalculated at XT. Precisely what group function information is required is under the control of the variable

inform%status and details are given in Section 2.4.7.

ICALCG is a rank-one INTENT(INOUT)array argument of dimension prob%ng and type INTEGER(ip). If the user has

chosen not to perform internal group evaluations, and if the value of inform%status on return from LANC-

ELOT solve indicates that further group functions values or their derivatives are required prior to a re-entry,

the first inform%ncalcg components of ICALCG give the indices of the group functions which need to be re-

calculated at FT. Precisely what group function information is required is under the control of the variable

inform%status and details are given in Section 2.4.7.

IVAR is a rank-one INTENT(INOUT)array argument of dimension prob%n and type INTEGER(ip) that is required

when the user is providing a special preconditioner for the conjugate gradient inner iteration (see Section 2.4.7).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

Q and DGRAD are rank-one INTENT(INOUT)array arguments of dimension prob%n and type REAL(rp) that are re-

quired when the user is providing a special preconditioner for the conjugate gradient inner iteration (see Sec-

tion 2.4.7).

control is a scalar INTENT(INOUT)argument of type LANCELOT control type (see Section 2.2.2). On exit, control

contains default values for the components as described in Section 2.2.2. These values should only be changed

after calling LANCELOT initialize.

inform is a scalar INTENT(INOUT)argument of type LANCELOT type (see Section 2.2.4). The component status

must be set to 0 on initial entry, and a successful call to LANCELOT solve is indicated when the component

status has the value 0. For other return values of status, see Sections 2.4.7 and 2.5.

data is a scalar INTENT(INOUT)argument of type LANCELOT data type (see Section 2.2.3). It is used to hold

data about the problem being solved. It must not have been altered by the user since the last call to LANC-

ELOT initialize.

ELDERS is an OPTIONAL rank-two INTENT(INOUT)array argument of shape (2, prob%nel) and type INTEGER(ip)

that may be used to specify what kind of first- and second-derivative approximations will be required for each

nonlinear element function. If ELDERS is not present, the first- and second-derivative requirements for every ele-

ment will be as specified by the variables control%first derivatives and control%second derivatives

(see Section 2.2.2) respectively. For finer control, if ELDERS is present, and the user is able to provide analytical

first derivatives for the i-th nonlinear element function, ELDERS(1,i) must be set to to be non-positive. If ana-

lytical first derivatives are unavailable, they may be estimated by forward differences by setting ELDERS(1,i) =

1 or, more accurately but at additional expense, by central differences by setting ELDERS(1,i) ≥ 2. Similarly,

if ELDERS is present, and the user is able to provide analytical second derivatives for the i-th nonlinear element

function, ELDERS(2,i) must be set to to be non-positive. If the user is unable to provide second derivatives,

these derivatives will be approximated using one of four secant approximation formulae. If ELDERS(2,i) is set

to 1, the BFGS formula is used; if it is set to 2, the DFP formula is used; if it is set to 3, the PSB formula is

used; and if it is set to 4 or larger, the symmetric rank-one formula is used. The user is strongly advised to use

analytic first and second derivatives if at all possible as this often significantly improves the convergence of the

method.

ELFUN and ELFUN flexible are OPTIONAL user-supplied subroutines whose purpose is to evaluate the values and

derivatives of the nonlinear element functions. See Section 2.4.1 for background information and Sections 2.4.4

and 2.4.5 for details. Only one of ELFUN and ELFUN flexible may be present at once, and, if present, must be

declared EXTERNAL in the calling program. Which of the two arguments is permitted depends on whether ELDERS

(see above) is present. ELFUN flexible is only permitted when ELDERS is present, since ELFUN flexible

allows the user to provide element-specific levels of derivative information. In the absence of ELDERS, ELFUN

should be used instead of ELFUN flexible. If both ELFUN and ELFUN flexible are absent, LANCELOT solve

will use reverse communication to obtain element function values and derivatives.

GROUP is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the values and derivatives of the group

functions. See Section 2.4.1 for background information and Section 2.4.6 for details. If GROUP is present,

it must be declared EXTERNAL in the calling program. If GROUP is absent, LANCELOT solve will use reverse

communication to obtain group function values and derivatives. GROUP need not be present if all components of

prob%GXEQX are .TRUE..

2.3.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL LANCELOT_terminate(data, control, inform)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 15

LANCELOT B GALAHAD

data is a scalar INTENT(INOUT)argument of type LANCELOT data type exactly as for LANCELOT solve that must

not have been altered by the user since the last call to LANCELOT initialize.

control is a scalar INTENT(IN)argument of type LANCELOT control type exactly as for LANCELOT solve.

inform is a scalar INTENT(INOUT)argument of type LANCELOT type exactly as for LANCELOT solve. Only the com-

ponents status, alloc status and bad alloc might have been altered on exit, and a successful call to LANC-

ELOT terminate is indicated when this component status has the value 0. For other return values of status,

see Section 2.5.

2.4 Function and derivative values

2.4.1 Evaluating problem functions

As we saw in Section 1.1, both the objective function (1.1) and constraints (1.2) are composed from element functions

e j(x
e
j,p

e
j) and group functions gi(αi,p

g
i), all other defining data being linear (and thus described accurately on initial

input to LANCELOT solve by components of prob)—here we refer to the scalar

αi
def
= ∑

j∈Ei

we
i je j(x

e
j,p

e
j)+ aT

i x− bi.

as the i-th group variable. If we wish to evaluate (1.1)–(1.2) and their derivatives, it thus remains for the user to supply

function and derivatives of the element and group functions to LANCELOT solve as required. LANCELOT solve allows

the user to do this in one of two ways.

The first method simply requires that the user provides subroutines, with prescribed argument lists, that accept

input values (xe
j,p

e
j) or (αi,p

g
i), and provide as output e j(x

e
j,p

e
j) or gi(αi,p

g
i) or their derivatives. If this method is

used, control will only return to the user once the required minimizer has been obtained (or an error condition flagged).

The disadvantage of this approach is the inflexibility of the argument lists, while the advantage is often its speed of

execution.

The second method is to exit from LANCELOT solve whenever function or derivative values are required, and sim-

ply ask the user to provide values/derivatives of e j(x
e
j,p

e
j) or gi(αi,p

g
i) from given arguments (xe

j,p
e
j) or (αi,p

g
i) before

re-entering. Here, the advantage is its flexibility—function/derivative values may be computed by any means, possibly

even by a completely separate calculation—while the disadvantage is there may be severe performance penalties as

argument values are saved and retrieved on entry/exit from LANCELOT solve.

The first method is known as internal evaluation, while the second is an example of reverse communication. Note

that we allow the possibility that the user may wish to provide element values/derivatives using one of the above

options, and group values/derivatives using the other.

2.4.2 Element and group function types

The value of the i-th element function e j depends on its elemental variables x j and its parameters pe
j. It is extremely

common in practice that although each element has its own list of elemental variables and parameters, the functional

form of many (if not all) is identical. For example, suppose that x j = (x j) and pe
j = (p j), and that

e j(x j,p
e
j) = p jx

2
j .

Then each element e j(x j,p
e
) can be expressed as

e j(x j,p
e
j)≡ e(x j, p j)

of the single element type

e(x, p) = px2.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

Thus, rather than writing a subroutine to evaluate the values and derivatives of each element separately, we simply

need to write a subroutine to evaluate the value/derivative of the single element type, and then to evaluate these

values/derivatives at each pair (xi, pi) in turn.

This very simple idea can significantly simplify the coding of function/derivative evaluation subroutines. In prac-

tice, it is unlikely that each element is of the same type, but usually a few types suffice to describe all the elements.

Thus we provide the flexibility of allowing the user of specifying how many element types are involved, and of saying

to which type each element belongs. Traditionally, if there are nt
e types, they will be numbered from 1 to nt

e, and there

will be a mapping et : E → {1, . . . ,nt
e} that describes the type for each element i ∈ E . In practice, the types may be

numbered in whatever way best suits the user, so long as distinct types have unique identifiers—in this case, the set

of type identifiers is some E t , and et : E → E t . Moreover, there is nothing to prevent the user from assigning each

element its own type (in which case nt
e = ne), and setting et(i) = i.

Precisely the same idea applies to group functions. We will allow the user to specify how many group types, nt
g

there are, and to provide a mapping gt : G→G t , the set of group type identifiers. It is also convenient to have a special

group type, the trivial group, for which g(α) = α, since this special type is extremely common—the value/derivative

of any group identified as trivial is indeed so trivial to compute that the user is not required to do so!

2.4.3 Internal variables and Subroutine RANGE

A nonlinear element function e j is assumed to be a function of the variables xe
j, a subset of the problem variables x.

Suppose that xe
j has n j elements. Then another way of saying this is that (ignoring any element parameters) we have

an element function e j(v1, . . . ,vn j
), where in our special case, we choose v1 = (xe

j)1, . . . ,vn j
= (xe

j)n j
. The elemental

variables for the element function e j are the variables v̄ and, while we need to associate the particular values xe
j with v̄

(using the array IELVAR), it is the elemental variables which are important in defining the nonlinear element functions.

As an example, the seventh nonlinear element function for a particular problem might be

e7(v1,v2,v3) = (v1 + v2)e
v1−v3 , (2.1)

where for our example v1 = x29, v2 = x3 and v3 = x17. For this example, there are three elemental variables. However,

the example illustrates an additional point. Although e7 is a function of three variables, the function itself is really only

composed of two independent parts; the product of (v1 + v2) with ev1−v3 , or, if we write u1 = v1 + v2 and u2 = v1− v3,

the product of u1 with eu2 . The variables u1 and u2 are known as internal variables for the element function. They

are obtained as linear combinations of the elemental variables. The important feature as far as LANCELOT solve is

concerned is that each nonlinear function involves as few variables as possible, as this allows for compact storage and

more efficient derivative approximation. By representing the function in terms of its internal variables, this goal is

achieved. LANCELOT solve only stores derivatives of the element functions with respect to internal variables, so it

pays to use an internal representation in this case. It frequently happens, however, that a function does not have useful

internal variables. For instance, another element function might be

e9(v1,v2) = v1 sinv2, (2.2)

where for example v1 = x6 and v2 = x12. Here, we have broken e9 down into as few pieces as possible. Although there

are internal variables, u1 = v1 and u2 = v2, they are the same in this case as the elemental variables and there is no

virtue in exploiting them. Moreover it can happen that although there are special internal variables, there are just as

many internal as elemental variables and it therefore doesn’t particularly help to exploit them. For instance, if

e14(v1,v2) = (v1 + v2) log(v1− v2),

where for example v1 = x12 and v2 = x2, the function can be formed as u1 log(u2) where u1 = v1+v2 and u2 = v1−v2.

But as there are just as many internal variables as elementals, it will not normally be advantageous to use this internal

representation.

Finally, although an element function may have useful internal variables, the user need not bother with them.

LANCELOT solve will still work, but at the expense of extra storage and computational effort. The user decides on

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 17

LANCELOT B GALAHAD

input to LANCELOT solve which elements have useful transformations by setting the appropriate elements of the array

INTREP to .TRUE. .

In general, there will be a linear transformation from the elemental variables to the internal ones. For example

(2.1), we have
(

u1

u2

)

=

(

1 1 0

1 0 −1

)

v1

v2

v3

 ,

while in (2.2), we have
(

u1

u2

)

=

(

1 1

1 0

)(

v1

v2

)

.

Most generally, the transformation will be of the form

u = Wv,

and this transformation is useful if the matrix W has fewer rows than columns.

The purpose of the RANGE routine is to define the transformation between internal and elemental variables for

nonlinear elements with useful internal representations. The routine has the following argument list:

SUBROUTINE RANGE(ielemn, transp, W1, W2, nelvar, ninvar, ieltyp, lw1, lw2)

ielemn is a scalar INTENT(IN) argument of type INTEGER(ip), that gives the index of the nonlinear element whose

transformation is required by LANCELOT solve.

transp is a scalar INTENT(IN) argument of type default LOGICAL. If transp is .FALSE., the subroutine must put

the result of the transformation Wv in the array W2, where v is input in the array W1. Otherwise, the subroutine

must supply the result of the transposed transformation WT u in the array W2, where u is input in the array W1.

W1 is a rank-one INTENT(IN)array argument of type REAL(rp) whose dimension is the number of elemental

variables if transp is .FALSE. and the number of internal variables otherwise.

W2 is a rank-one INTENT(OUT)array argument of type REAL(rp) whose dimension is the number of internal vari-

ables if transp is .FALSE. and the number of elemental variables otherwise. The result of the transformation

of W1 or its transpose, as defined by transp, must be set in W2.

nelvar is a scalar INTENT(IN) argument of type INTEGER(ip), that gives the number of elemental variables for the

element specified by ielemn.

ninvar is a scalar INTENT(IN) argument of type INTEGER(ip), which gives the number of internal variables for the

element specified by ielemn.

ieltyp is a scalar INTENT(IN) argument of type INTEGER(ip), that defines the type for the element specified by

ielemn.

lw1 is a scalar INTENT(IN) argument of type INTEGER(ip), that will have been set to the actual length of W1.

Restriction: lw1 ≥ ninvar if transp is .TRUE. and lw1 ≥ nelvar if transp is .FALSE. .

lw2 is a scalar INTENT(IN) argument of type INTEGER(ip), that will have been set to the actual length of W2.

Restriction: lw2 ≥ nelvar if transp is .TRUE. and lw2 ≥ ninvar if transp is .FALSE. .

The user will already have specified which elements have useful transformations in the array INTREP. RANGE will

only be called for elements for which the corresponding component of INTREP is .TRUE. .

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

2.4.4 Element function values and derivatives via internal evaluation

If the argument ELFUN is present when calling LANCELOT solve, the user is expected to provide a subroutine of that

name to evaluate function or derivative values (with respect to internal variables) of (a given subset of) the element

functions. N.B. This routine is only permitted if the argument ELDERS is absent. The routine has the following

argument list:

SUBROUTINE ELFUN (FUVALS, XVALUE, EPVALU, ncalcf, ITYPEE, ISTAEV, IELVAR, INTVAR, &
ISTADH, ISTEPA, ICALCF, ltypee, lstaev, lelvar, lntvar, lstadh, &
lstepa, lcalcf, lfuval, lxvalu, lepvlu, ifflag, ifstat)

FUVALS is a rank-one INTENT(INOUT)array argument of dimension lfuval and type REAL(rp) which is used to

store function and derivative information for the nonlinear element functions. The subroutine is asked to pro-

vide values for these functions and/or derivatives, evaluated at the argument XVALUE (see XVALUE), at specified

locations within FUVALS. The layout of FUVALS is indicated in Table 2.7.

←− ne −→
element element element

values gradients Hessians

↑ ↑ ↑
INTVAR(1) ISTADH(1) ISTADH(ne + 1)

Table 2.7: Partitioning of the workspace array FUVALS

The first segment of FUVALS is used to hold the values of the nonlinear element functions, component i

holding the value of the i-th element function. The second segment holds the components of the gradients

of the element functions taken with respect to their internal variables, as described by INTVAR below. The

final segment contains the elements’ Hessian matrices, again taken with respect to their internal variables, as

described by ISTADH below.

XVALUE is a rank-one INTENT(IN)array argument of dimension lxvalu and type REAL(rp) that contains the values

of x at which the subroutine is required to evaluate the values or derivatives of the nonlinear elements functions.

EPVALU is a rank-one INTENT(IN)array argument of dimension lepvlu and type REAL(rp) that contains the values

of the element parameters pe
i , i = 1, . . . ,ne. The indices for the parameters for element i immediately precede

those for element i+ 1, and each element’s parameters appear in a contiguous list. See Table 2.4 for an illustra-

tion.

ncalcf is a scalar INTENT(IN) argument of type INTEGER(ip), that specifies how many of the nonlinear element

functions or their derivatives are to be evaluated.

ITYPEE is a rank-one INTENT(IN)array argument of dimension ltypee and type INTEGER(ip) whose i-th compo-

nent specifies the type of element i.

ISTAEV is a rank-one INTENT(IN)array argument of dimension lstaev and type INTEGER(ip) exactly as described

in Section 2.2.1.

IELVAR is a rank-one INTENT(IN)array argument of dimension lelvar and type INTEGER(ip) exactly as described

in Section 2.2.1.

INTVAR is a rank-one INTENT(IN)array argument of dimension lntvar and type INTEGER(ip) whose i-th com-

ponent (1 ≤ i ≤ ne) gives the position in the array FUVALS of the first component of the gradient of the i-th

nonlinear element function, with respect to its internal variables. See Table 2.8 for an illustration.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 19

LANCELOT B GALAHAD

. gradient of e1 wrt gradient of e2 wrt . . . gradient of ene wrt . FUVALS

its internal variables its internal variables its internal variables

↑ ↑ ↑ ↑ ↑
INTVAR(1) INTVAR(2) INTVAR(3) INTVAR(ne) INTVAR(ne + 1)

≡ ISTADH(1)

Table 2.8: Contents of the arrays INTVAR and (part of) FUVALS

ISTADH is a rank-one INTENT(IN)array argument of dimension lstadh and type INTEGER(ip) whose i-th compo-

nent (1 ≤ i ≤ ne) gives the position in the array FUVALS of the first component of the Hessian matrix of the

i-th nonlinear element function ei, with respect to its internal variables. Only the upper triangular part of each

Hessian matrix is stored and the storage is by columns. That is to say that the component of the Hessian of the

k-th nonlinear element with respect to internal variables i and j, i≤ j,

∂2ek

∂ui∂u j

,

must be placed in FUVALS(ISTADH(k)+(j(j−1)/2)+ i−1). The element ISTADH(ne +1) is space required to

finish storing the Hessian of the last nonlinear element in FUVALS plus one. See Table 2.9 for an illustration.

. Hessian of e1 wrt Hessian of e2 wrt . . . Hessian of ene wrt FUVALS

its internal variables its internal variables its internal variables

↑ ↑ ↑ ↑ ↑
ISTADH(1) ISTADH(2) ISTADH(3) ISTADH(ne) ISTADH(ne + 1)

Table 2.9: Contents of the arrays ISTADH and (part of) FUVALS

ISTEPA is a rank-one INTENT(IN)array argument of dimension lstepa and type INTEGER(ip) whose i-th compo-

nent gives the position in EPVALU of the first parameter for element function i. In addition, ISTEPA(ne+1) is the

position in EPVALU of the last parameter for element function ne plus one. See Table 2.4 for an illustration.

ICALCF is a rank-one INTENT(IN)array argument of dimension lcalcf and type INTEGER(ip) whose first ncalcf

components gives the indices of the nonlinear element functions whose values or derivatives are to be evaluated.

ltypee, lstaev, lelvar, lntvar, lstadh, lstepa, lcalcf, lfuval, lxvalu and lepvlu are all scalar INTENT(IN)

arguments of type INTEGER(ip). They will have been set to the actual lengths of ITYPEE, ISTAEV, IELVAR,

INTVAR, ISTADH, ISTEPA, ICALCF, FUVALS, XVALUE and EPVALU respectively.

Restrictions: ltypee ≥ prob%nel, lstaev ≥ prob%nel+1, lelvar ≥ ISTAEV(prob%nel+1)-1,

lntvar ≥ prob%nel+1, lstadh ≥ prob%nel+1, lstepa ≥ prob%nel+1, lcalcf ≥ ncalcf,

lfuval ≥ ISTADH(prob%nel+1)-1, lxvalu ≥ prob%n, and lepvlu ≥ ISTEPA(prob%nel+1)-1.

ifflag is a scalar INTENT(IN) argument of type INTEGER(ip), whose value defines whether it is the values of the

element functions that are required (ifflag = 1) or if it is the derivatives (ifflag > 1). Possible values and

their requirements are:

ifflag = 1. The values of nonlinear element functions ICALCF(i), i =1, . . . , ncalcf, are to be computed and

placed in FUVALS(ICALCF(i)).

ifflag = 2. The gradients of nonlinear element functions ICALCF(i), i =1, . . . , ncalcf, are to be com-

puted. The gradient of the ICALCF(i)-th element is to be placed in the segment of FUVALS starting at

INTVAR(ICALCF(i)) (see Table 2.8).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

ifflag = 3. The gradients and Hessians of nonlinear element functions ICALCF(i), i =1, . . . , ncalcf, are to

be computed. The gradient of the ICALCF(i)-th element is to be placed in the segment of FUVALS starting

at INTVAR(ICALCF(i)) (see Table 2.8). The Hessian of this element should be placed in the segment of

FUVALS starting at ISTADH(ICALCF(i)) (see Table 2.9).

N.B. If the user intends to use approximate second derivatives (control%second derivatives > 0, see Sec-

tion 2.2.2), LANCELOT solve will never call ELFUN with ifflag = 3, so the user need not provide Hessian

values. Furthermore, if the user intends to use approximate first derivatives (control%first derivatives >
0, see Section 2.2.2), LANCELOT solve will never call ELFUN with ifflag = 2 or 3, so the user need then not

provide gradient or Hessian values.

ifstat is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if all of the required values

have been found, and to any nonzero value if, for any reason, one or more of the required values could not

be determined. For instance, if the value of a nonlinear element (or its derivative) was required outside of its

domain of definition, a nonzero value of ifstat should be returned.

2.4.5 Element function values and flexible derivatives via internal evaluation

If the argument ELFUN flexible is present when calling LANCELOT solve, the user is expected to provide a subrou-

tine of that name to evaluate function or derivative values (with respect to internal variables) of (a given subset of) the

element functions. N.B. This routine is only permitted if the argument ELDERS is also present. The routine has the

following argument list:

SUBROUTINE ELFUN_flexible (FUVALS, XVALUE, EPVALU, ncalcf, ITYPEE, ISTAEV, IELVAR, &
INTVAR, ISTADH, ISTEPA, ICALCF, ltypee, lstaev, lelvar, &
lntvar, lstadh, lstepa, lcalcf, lfuval, lxvalu, lepvlu, &
llders, ifflag, ELDERS, ifstat)

FUVALS, FUVALS, XVALUE, EPVALU, ncalcf, ITYPEE, ISTAEV, IELVAR, INTVAR, ISTADH, ISTEPA, ICALCF, ltypee,

lstaev, lelvar, lntvar, lstadh, lstepa, lcalcf, lfuval, lxvalu, lepvlu and ifstat are all exactly as

described for subroutine ELFUN in Section 2.4.4

llders is a scalar INTENT(IN) argument of type INTEGER(ip), that will have been set to the actual length of

ELDERS.

Restriction: llders ≥ prob%nel.

ifflag is a scalar INTENT(IN) argument of type INTEGER(ip), whose value defines whether it is the values of

the element functions that are required (ifflag = 1) or if it is the derivatives (ifflag > 1). If ifflag =

1, the values of nonlinear element functions ICALCF(i), i =1, . . . , ncalcf, are to be computed and placed in

FUVALS(ICALCF(i)). If ifflag > 1, those derivative values specified by ELDERS (see below) are required.

ELDERS is an rank-two INTENT(INOUT)array argument of shape (2, llders) and type INTEGER(ip) that specifies

what first- and second-derivative information (if any) is required for each nonlinear element function when

ifflag > 1. Specifically, in this case, the gradient of each nonlinear element function ICALCF(i), i =1, . . . ,
ncalcf, for which ELDERS(1,ICALCF(i)) ≤ 0 should be computed. The gradient of the ICALCF(i)-th element

is to be placed in the segment of FUVALS starting at INTVAR(ICALCF(i)) (see Table 2.8). Furthermore, if

additionally ELDERS(2,ICALCF(i)) ≤ 0, the Hessian of the nonlinear element function ICALCF(i) should be

computed and placed in the segment of FUVALS starting at ISTADH(ICALCF(i)) (see Table 2.9).

2.4.6 Group function values and derivatives via internal evaluation

If the argument GROUP is present when calling LANCELOT solve, the user is expected to provide a subroutine of that

name to evaluate function or derivative values of (a given subset of) the group functions. The routine has the following

argument list:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 21

LANCELOT B GALAHAD

SUBROUTINE GROUP (GVALUE, lgvalu, FVALUE, GPVALU, ncalcg, ITYPEG, ISTGPA, ICALCG, &
ltypeg, lstgpa, lcalcg, lfvalu, lgpvlu, derivs, igstat)

GVALUE is a rank-two INTENT(OUT)array argument of shape (lgvalu, 3) and type REAL(rp). The value and

first and second derivative of the i-th group function are held in GVALUE(i,1), GVALUE(i,2) and GVALUE(i,3)

respectively.

lgvalu is a scalar INTENT(IN) argument of type INTEGER(ip), that will have been set to the actual length of the

leading dimension of GVALUE.

Restriction: lgvalu ≥ prob%ng.

FVALUE is a rank-one INTENT(IN)array argument of dimension lfvalu and type REAL(rp) whose i-th component

contains the value of group variable at which the subroutine is required to evaluate the value or derivatives of

the i-th group function.

GPVALU is a rank-one INTENT(IN)array argument of dimension lgpvlu and type REAL(rp) that contains the values

of the group parameters p
g
i , i = 1, . . . ,ng. The indices for the parameters for group i immediately precede those

for group i+ 1, and each group’s parameters appear in a contiguous list. See Table 2.5 for an illustration.

ncalcg is a scalar INTENT(IN) argument of type INTEGER(ip), that specifies how many of the group functions or

their derivatives are to be evaluated.

ITYPEG is a rank-one INTENT(IN)array argument of dimension ltypeg and type INTEGER(ip) whose i-th compo-

nent specifies the type of group i.

ISTGPA is a rank-one INTENT(IN)array argument of dimension lstgpa and type INTEGER(ip) whose i-th compo-

nent gives the position in GPVALU of the first parameter for group function i. In addition, ISTGPA(ng+1) is the

position in GPVALU of the last parameter for element function ng plus one. See Table 2.5 for an illustration.

ICALCG is a rank-one INTENT(IN)array argument of dimension lcalcg and type INTEGER(ip) whose first ncalcg

components gives the indices of the nonlinear group functions whose values or derivatives are to be evaluated.

ltypeg, lstgpa, lcalcg, lfvalu and lgpvlu are all scalar INTENT(IN) arguments of type INTEGER(ip). They

will have been set to the actual lengths of ITYPEG, ISTGPA, ICALCG, FVALUE and GPVALU.

Restrictions: ltypeg ≥ prob%n, lstgpa ≥ prob%ng+1, lcalcg ≥ ncalcg, lfvalu ≥ prob%ng, and

lgpvlu ≥ ISTGPA(prob%ng+1)-1.

derivs is a scalar INTENT(IN) argument of type default LOGICAL. When derivs is .FALSE., the subroutine must

return the values of group functions ICALCG(i), i =1, . . . , ncalcg in GVALUE(ICALCF(i),1). When derivs

is .TRUE., the subroutine must return the first and second derivatives of group functions ICALCG(i), i =1, . . . ,
ncalcg in GVALUE(ICALCF(i),2) and GVALUE(ICALCF(i),3) respectively.

igstat is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if all of the required values

have been found, and to any nonzero value if, for any reason, one or more of the required values could not be

determined. For instance, if the value of a group function (or its derivative) was required outside of its domain

of definition, a nonzero value of igstat should be returned.

2.4.7 Reverse Communication Information

When a return is made from LANCELOT solve with inform%status set negative, LANCELOT solve is asking the user

for further information—this will happen if the user has chosen not to evaluate element or group values internally

(see Section 2.4), or if the user wishes to provide his or her own preconditioner. The user should normally compute

the required information and re-enter LANCELOT solve with inform%status unchanged (but see inform%status

=−11, below, for an exception).

Possible values of inform%status and the information required are

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

22 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

inform%status =−1. The user should compute the function and, if they are available, derivative values of the

nonlinear element functions numbered ICALCF(i) for i = 1, . . . , ncalcf (see below).

inform%status =−2. The user should compute the function and derivative values of all non-trivial nonlinear group

functions, numbered ICALCG(i) for i = 1, . . . , ncalcg (see below).

inform%status =−3. The user should compute the function values of the nonlinear element functions numbered

ICALCF(i) for i = 1, . . . , ncalcf (see below).

inform%status =−4. The user should compute the function values of all non-trivial nonlinear group functions

numbered ICALCG(i) for i = 1, . . . , ncalcg (see below).

inform%status =−5. If exact derivatives are available, the user should compute the derivative values of all nonlin-

ear element functions numbered ICALCF(i) for i = 1, . . . , ncalcf. The user should also compute the derivative

values of all non-trivial nonlinear group functions numbered ICALCG(i) for i = 1, . . . , ncalcg (see below).

inform%status =−6. The user should compute the derivative values of all nonlinear element functions numbered

ICALCF(i) for i = 1, . . . , ncalcf (see below).

inform%status =−7. The user should compute the function values of the nonlinear element functions numbered

ICALCF(i) for i = 1, . . . , ncalcf (see below).

inform%status =−8,−9,−10. The user should compute the product q = Md of a preconditioning matrix M with

the vector d and return the value in q (see below).

When inform%status = −1, −3 or −7, the user must return the values of all of the nonlinear element functions

ek(x
e
k), k =ICALCF(i), i = 1, . . . , ncalcf. The functions are to be evaluated at the point x given in the array XT. The

k-th function value must be placed in FUVALS(k).

When inform%status =−1,−5 or −6 and all first derivatives are available (that is when control%first der-

ivatives = 0), the user must return the values of the gradients, with respect to their internal variables, of all the

nonlinear element functions ek(x
e
k,p

e
k), k =ICALCF(i), i = 1, . . . , ncalcf—if a subset of the gradients are available

(those for which ELDERS(1,k) ≤ 0), only these need be provided. The gradients are to be evaluated at the point x

given in the array XT. The gradient with respect to internal variable i of the k-th nonlinear element,

∂ek

∂ui
,

must be placed in FUVALS(INTVAR(k)+i-1). If, in addition, exact second derivatives are to be provided (control%se-

cond derivatives = 0), the user must return the values of the Hessian matrices, with respect to their internal

variables, of the same nonlinear element functions evaluated at x—again, if a subset of the Hessians are available

(those for which ELDERS(2,k) ≤ 0), only these need be provided. Only the “upper triangular” part of the required

Hessians should be specified. The component of the Hessian of the k-th nonlinear element with respect to internal

variables i and j, i≤ j,

∂2ek

∂ui∂u j

,

must be placed in FUVALS(ISTADH(k)+(j(j− 1)/2)+ i− 1).

When inform%status = −2 or −4, the user must return the values of all the group functions gk, k =ICALCG(i),

i = 1, . . . , ncalcg. The k-th such function should be evaluated with the argument FT(k) and the result placed in

GVALS(k,1).

When inform%status = −2 or −5, the user must return the values of the first and second derivatives of each of

the group functions gk, k =ICALCG(i), i = 1, . . . , ncalcg, with respect to its argument. The derivatives of the k-th

such function should be evaluated with the argument FT(k). The first derivative of the k-th group function should be

placed in GVALS(k,2) and the corresponding second derivative returned in GVALS(k,3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 23

LANCELOT B GALAHAD

When inform%status = −8,−9 or −10, the user must return the values of the components Q(IVAR(i)) = qi,

i = 1, . . . , inform%nvar, such that q = Md and where di =DGRAD(i) i = 1, . . . , inform%nvar. Here M is a symmetric

positive definite approximation to the inverse of the matrix whose i-th row and column are the IVAR(i)-th row and

column of the Hessian matrix of augmented Lagrangian function (see section 4), i = 1, . . . , inform%nvar. These

values can only occur if control%linear solver = 3.

If the user does not wish, or is unable, to compute an element or group function at a particular argument returned

from LANCELOT solve, inform%status may be reset to -11 and LANCELOT solve re-entered. LANCELOT solve will

treat such a re-entry as if the current iteration had been unsuccessful and reduce the trust-region radius. This facility

is useful when, for instance, the user is asked to evaluate a function at a point outside its domain of definition.

2.5 Warning and error messages

If inform%status is positive on return from LANCELOT solve, an error has been detected. The user should correct

the error and restart the minimization. Possible values of inform%status and their consequences are:

inform%status = 1. More than control%maxit iterations have been performed. This is often a symptom of in-

correctly programmed derivatives or of the preconditioner used being insufficiently effective. Recheck the

derivatives. Otherwise, increase control%maxit and re-enter LANCELOT solve at the best point found so far.

inform%status = 2. The trust-region radius has become too small. This is often a symptom of incorrectly pro-

grammed derivatives or of requesting more accuracy in the projected gradient than is reasonable on the user’s

machine. If the projected gradient is small, the minimization has probably succeeded. Otherwise, recheck the

derivatives.

inform%status = 3. The step taken during the current iteration is so small that no difference will be observed in

the function values. This sometimes occurs when too much accuracy is required of the final gradient. If the

projected gradient is small, the minimization has probably succeeded.

inform%status = 4. One of the INTEGER arrays has been initialized with insufficient space. A message indicating

which array is at fault and the required space will be printed on unit number control%error.

inform%status = 5. One of the REAL (DOUBLE PRECISION in the D version) arrays has been initialized with insuf-

ficient space. A message indicating which array is at fault and the required space will be printed on unit number

control%error.

inform%status = 6. One of the LOGICAL arrays has been initialized with insufficient space. A message indicating

which array is at fault and the required space will be printed on unit number control%error.

inform%status = 7. One or more of the components of the array KNDOFG does not have the value 0, 1 or 2.

inform%status = 8. The problem does not appear to have a feasible solution. Check the constraints and try starting

with different initial values for x.

inform%status = 9. One of the arrays prob%KNDOFG, prob%C or prob%Y is either not associated or is not large

enough. (Re-)allocate the arrays to have dimensions at least prob%ng.

inform%status = 10. The user has provided ELFUN to perform internal element evaluation, but one or both of

prob%ISTEPA and prob%EPVALU is not associated or at least one is not large enough. (Re-)allocate (and

reset) prob%ISTEPA to have dimension at least prob%nel+1 and prob%EPVALU to have dimension at least

prob%ISTEPA(prob%nel+1)-1.

inform%status = 11. The user has provided GROUP to perform internal group evaluation, but one or both of prob-

%ISTGPA and prob%GPVALU is not associated or at least one is not large enough. (Re-)allocate (and reset)

prob%ISTGPA to have dimension at least prob%ng+1 and prob%GPVALU to have dimension at least prob%ISTG-

PA(prob%ng+1)-1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

24 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

inform%status = 12. An internal array allocation or de-allocation has failed. The name of the offending array is

given in inform%bad alloc, and the allocation status is inform%alloc status.

inform%status = 13. One or more of the problem functions cannot be computed at the initial point. Try starting

with a different initial value for x.

inform%status = 14. The user has forced termination of LANCELOT solve by removing the file named control%a-

live file from unit unit control%alive unit.

inform%status = 15. One or more of the problem dimensions prob%n, prob%ng or prob%nel is too small. Ensure

that prob%n > 0, prob%ng > 0 or prob%nel ≥ 0.

inform%status = 16. Both optional arguments ELDERS and ELFUN are present at the same time. Either remove

ELDERS (or ELFUN) or replace ELFUN by ELFUN flexible.

inform%status = 17. The optional argument ELFUN flexible is present, but ELDERS is absent. Either include

ELDERS or remove ELFUN flexible.

inform%status = 18. The current value of the merit function (1.3), inform%aug, is smaller than its smallest per-

mitted value, control%min aug. Check the formulation to see if this seems reasonable.

inform%status = 19. The maximum CPU time limit has been exceed.

inform%status = 26. A requested linear solver is unavailable.

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type LANCELOT B control type (see Section 2.2.2), by reading an appropriate data specification file

using the subroutine LANCELOT B read specfile. This facility is useful as it allows a user to change LANCELOT B

control parameters without editing and recompiling programs that call LANCELOT B.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by LANCELOT B read specfile must start with a ”BEGIN LANCELOT B”

command and end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by LANCELOT_read_specfile ..)

BEGIN LANCELOT

keyword value

.......

keyword value

END

(.. lines ignored by LANCELOT_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN LANCELOT B” and “END”

delimiter command lines may contain additional (trailing) strings so long as such strings are separated by one or more

blanks, so that lines such as

BEGIN LANCELOT SPECIFICATION

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 25

LANCELOT B GALAHAD

and

END LANCELOT SPECIFICATION

are acceptable. Furthermore, between the “BEGIN LANCELOT B” and “END” delimiters, specification commands may

occur in any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line

after a ! or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment

out” some specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of five different types, namely integer, logical, real, character string,

or symbolic. Integer and real values may be expressed in any relevant Fortran integer and floating-point formats

(respectively), while character strings are arbitrary collections of default Fortran character constants (without quotation

marks). A symbolic value is a special string (defined in the GALAHAD SYMBOLS module), that may help to express a

control parameter for LANCELOT B in a ”language” that is close to natural. Permitted values for logical parameters are

”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”. Empty values are also

allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when LANCELOT B read specfile is called, and the associated

device number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes

it possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by LANCELOT B read specfile.

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL LANCELOT_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type LANCELOT B control type (see Section 2.2.2). Default values

should have already have set, perhaps by calling LANCELOT B initialize. On exit, individual components of

control may have been changed according to the commands found in the specfile. Specfile commands and the

component (see Section 2.2.2) of control that each affects are given in Table 2.10; permitted string values are

described in Table 2.11.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

The user is able to control the amount of intermediate printing performed in the course of the minimization. Printing

is under the control of the parameter control%print level and output is sent to I/O unit number control%error.

Possible values of control%print level and the levels of output produced are as follows.

control%print level ≤ 0. No printing, except warning messages, will be performed.

control%print level ≥ 1. Details of the minimization function will be output. This includes the number of vari-

ables, groups and nonlinear elements which are used and a list of the variables which occur in each of the linear

and nonlinear elements in every group.

If the current iterate provides an acceptable estimate of the minimizer of the augmented Lagrangian function,

the two-norm of the general constraints and the current value of the penalty parameter are given.

control%print level = 1. A simple one line description of each iteration is given. This includes the iteration num-

ber, the number of derivative evaluations that have been made, the number of conjugate-gradient iterations that

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

26 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

command component of control value type

error-printout-device %error integer

printout-device %out integer

alive-device %alive unit integer

print-level %print level integer

maximum-number-of-iterations %maxit integer

start-print %start print integer

stop-print %stop print integer

iterations-between-printing %print gap integer

linear-solver-used %linear solver string

number-of-lin-more-vectors-used %icfact integer

semi-bandwidth-for-band-preconditioner %semibandwidth integer

maximum-dimension-of-schur-complement %max sc integer

unit-number-for-temporary-io %io buffer integer

more-toraldo-search-length %more toraldo integer

history-length-for-non-monotone-descent %non monotone integer

first-derivative-approximations %first derivatives string

second-derivative-approximations %second derivatives string

primal-accuracy-required %stopc real

dual-accuracy-required %stopg real

minimum-merit-value %min aug real

inner-iteration-relative-accuracy-required %acccg real

initial-trust-region-radius %initial radius real

maximum-radius %maximum radius real

eta-successful %eta successful real

eta-very-successful %eta very successful real

eta-extremely-successful %eta extremely successful real

gamma-smallest %gamma smallest real

gamma-decrease %gamma decrease real

gamma-increase %gamma increase real

mu-meaningful-model %mu meaningful model real

mu-meaningful-group %mu meaningful group real

initial-penalty-parameter %initial mu real

no-dual-updates-until-penalty-parameter-below %mu tol real

initial-primal-accuracy-required %firstc real

initial-dual-accuracy-required %firstg real

pivot-tolerance-used %SILS cntl%u real

maximum-cpu-time-limit cpu time limit real

quadratic-problem %quadratic problem logical

two-norm-trust-region-used %two norm tr logical

exact-GCP-used %exact gcp logical

magical-steps-allowed %magical steps logical

subproblem-solved-accurately %accurate bqp logical

structured-trust-region-used %structured tr logical

print-for-maximization %print max logical

print-full-solution %full solution logical

alive-filename %alive file character

Table 2.10: Specfile commands and associated components of control. See Table 2.11 for permitted string values.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 27

LANCELOT B GALAHAD

command string value control component assignment

CG %linear solver = 1

DIAGONAL CG %linear solver = 2

USERS CG %linear solver = 3

EXPANDING BAND CG %linear solver = 4

MUNKSGAARD CG %linear solver = 5

linear-solver-used SCHNABEL ESKOW CG %linear solver = 6

GMPS CG %linear solver = 7

BAND CG %linear solver = 8

LIN MORE CG %linear solver = 9

MULTIFRONTAL %linear solver = 11

MODIFIED MULTIFRONTAL %linear solver = 12

EXACT %first derivatives = 0

first-derivative-approximations FORWARD %first derivatives = 1

CENTRAL %first derivatives = 2

EXACT %second derivatives = 0

BFGS %second derivatives = 1

second-derivative-approximations DFP %second derivatives = 2

PSB %second derivatives = 3

SR1 %second derivatives = 4

Table 2.11: String values and their interpretation.

have been performed, the current value of the augmented Lagrangian function, the (two-) norm of the projected

gradient, the ratio ρ of the actual to predicted decrease in augmented Lagrangian function value achieved, the

current trust-region radius, the norm of the step taken, an indication of how the direct or iterative method ended,

the number of variables which lie away from their bounds and the total time spent on the minimization.

control%print level = 2. In addition to the information output with control%print level = 1, a short descrip-

tion of the approximate solution to the inner-iteration linear system is given. Before a successful (inform%status

= 0) exit, details of the estimate of the minimizer and the gradient of the augmented Lagrangian function are

given.

control%print level = 3. A list of the current iteration number, the value of the augmented Lagrangian function,

the number of derivative evaluations that have been made, the (two-) norm of the projected gradient, the number

of conjugate gradients iterations that have been performed and the current trust-region radius are given, followed

by the current estimate of the minimizer. The values of the reduction in the model of the augmented Lagrangian

function and the actual reduction in this function, together with their ratio, are also given. Before a success-

ful (inform%status = 0) exit, details of the estimate of the minimizer and the gradient of the augmented

Lagrangian function are given.

If the current iterate also provides an acceptable estimate of the minimizer of the augmented Lagrangian

function, values of the general constraints and estimates of the Lagrange multipliers are also given.

control%print level = 4. In addition to the information output with control%print level= 3, the gradient

of the augmented Lagrangian function at the current estimate of the minimizer is given. Full details of the

approximate solution to the inner-iteration linear system are also given. This level of output is intended as a

debugging aid for the expert only.

control%print level = 5. In addition to the information output with control%print level = 4, the diagonal

elements of the second derivative approximation are given.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

28 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

control%print level ≥ 6. In addition to the information output with control%print level = 5, the second

derivative approximations (taken with respect to the internal variables) to each nonlinear element function are

given.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: The user must provide an external RANGE subroutine (see Section 2.4.3), and op-

tionally may provide external ELFUN (see Section 2.4.4), ELFUN flexible (see Section 2.4.5) and GROUP (see

Section 2.4.6) subroutines. Since these routines are all dummy arguments to LANCELOT solve their names may

be adapted for the user’s purposes.

Other modules used directly: GALAHAD CPU time, GALAHAD SPECFILE, LANCELOT INITW, LANCELOT OTHERS, LAN-

CELOT HSPRD, LANCELOT CAUCHY, LANCELOT CG, LANCELOT PRECN, LANCELOT FRNTL, LANCELOT STRUTR, GAL-

AHAD SMT, GALAHAD SILS, GALAHAD SCU, LANCELOT ASMBL, LANCELOT EXTEND.

Input/output: No input; output on device numbers control%out and control%error. Output is provided un-

der the control of control%print level. If the user supplies positive unit numbers to control%out and

control%error, messages are printed to the user supplied units. However if one of unit numbers is non-

positive, printing to this unit is suppressed.

Restrictions: prob%n > 0, prob%ng > 0, prob%nel ≥ 0.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The basic method implemented within LANCELOT B is described in detail by Conn, Gould and Toint (1991). The

method used to solve the inner iteration subproblem is described by Conn, Gould and Toint (1988b). The concept

of partial separability was first suggested by Griewank and Toint (1982). The extension to group partially separable

functions was given by Conn, Gould and Toint (1990). Also see Chapter 3 of the LANCELOT A manual.

The Lagrangian function associated with objective function (1.1) and general constraints (1.2) is the composite

function

ℓ(x,y) = f (x)+ ∑
i∈GC

yici(x).

The scalars yi are known as Lagrange multiplier estimates. At a solution x⋆ to the constrained minimization problem,

there are Lagrange multipliers y⋆ for which the components of the gradient of the Lagrangian function ∂ℓ(x⋆,y⋆,)/∂xi

= 0 whenever the corresponding variable x⋆i lies strictly between its lower and upper bounds. It is useful, but not

essential, for the initial Lagrange multiplier estimates to be close to y⋆.

The augmented Lagrangian function is the composite function

φ(x,y,µ) = ℓ(x,y)+
1

2µ
∑

i∈GC

(ci(x))
2, (4.1)

where µ is known as the penalty parameter. An inner iteration is used to find an approximate minimizer of (4.1) within

the feasible box for fixed values of the penalty parameter and Lagrange multiplier estimates. The outer iteration of

LANCELOT B automatically adjusts the penalty parameter and Lagrange multiplier estimates to ensure convergence of

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 29

LANCELOT B GALAHAD

these approximate minimizers to a solution of the constrained optimization problem. Each inner iteration is terminated

as soon as a norm of the projected gradient,

min(max(x−∇xφ(x,y,µ),xl),xu)− x,

is sufficiently small.

In the inner iteration, a step from the current estimate of the solution is determined using a trust-region approach.

That is, a quadratic model of the augmented Lagrangian function is approximately minimized within the intersection

of the constraint “box” and another convex region, the trust-region. This minimization is carried out in two stages.

Firstly, the so-called generalized Cauchy point for the quadratic subproblem is found. (The purpose of this point is to

ensure that the algorithm converges and that the set of bounds which are satisfied as equations at the solution is rapidly

identified.) Thereafter an improvement to the quadratic model is sought using either a direct-matrix or truncated

conjugate-gradient algorithm. The trust-region size is increased if the reduction obtained in the objective function is

reasonable when compared with the reduction predicted by the model and reduced otherwise.

A central idea is that a collection of small matrices approximating the Hessian matrices of each ek is used and

updated at every iteration using one of a number of possible updating formulae. Augmented Lagrangian function

values and derivatives are assembled from these components as required.

The strategy for treating bound constraints is based on the usual projection device and is described in detail in

Conn, Gould and Toint (1988a). Of the new features in LANCELOT B, structured trust regions are described in Conn,

Gould and Toint (2000), Section 10.2, and non-monotone descent, ibid, Section 10.1, while the alternative projection

is due to Moré and Toraldo (1991), and the alternative incomplete Cholesky factorization is described by Lin and Moré

(1998)

References:

The basic method is described in detail in

A. R. Conn, N. I. M. Gould and Ph. L. Toint (1992). LANCELOT. A fortran package for large-scale nonlinear

optimization (release A). Springer Verlag Series in Computational Mathematics 17, Berlin,

and details of its computational performance may be found in

A. R. Conn, N. I. M. Gould and Ph. L. Toint (1996). Numerical experiments with the LANCELOT package (Release

A) for large-scale nonlinear optimization Mathematical Programming 73 73-110.

Convergence properties of the method are described in

A. R. Conn, N. I. M. Gould and Ph. L. Toint (1991). A Globally Convergent Augmented Lagrangian Algorithm for

Optimization with General Constraints and Simple Bounds. SIAM Journal on Numerical Analysis 28 545-572,

and

A. R. Conn, N. I. M. Gould and Ph. L. Toint (1988a). Global convergence of a class of trust region algorithms for

optimization with simple bounds. SIAM Journal on Numerical Analysis 25 433-460,

while details of the inner iteration are provided by

A. R. Conn, N. I. M. Gould and Ph. L. Toint (1988b). Testing a class of methods for solving minimization problems

with simple bounds on the variables. Mathematics of Computation 50 399-430.

Partial separability was introduced by

A. Griewank and Ph. L. Toint (1982). Partitioned variable metric updates for large structured optimization problems.

Numerische Mathematik 39 119-137,

and its generalization to group partial separability was given by

A. R. Conn, N. I. M. Gould and Ph. L. Toint (1990). An introduction to the structure of large scale nonlinear

optimization problems and the LANCELOT project. In “Computing Methods in Applied Sciences and Engineering”

(R. Glowinski and A. Lichnewsky, eds), SIAM, Philadelphia, 42-51.

Many of the newer issues are discussed by

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

30 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

A. R. Conn, N. I. M. Gould and Ph. L. Toint (2000). Trust Region Methods. SIAM, Philadelphia,

while the alternative incomplete Cholesky factorization is due to

C.-J. Lin and J. J. Moré (1999). Incomplete Cholesky factorizations with limited memory. SIAM Journal on Scientific

Computing 21 21-45,

and the alternative projection originally described in

J. J. Moré and G. Toraldo (1991) On the solution of large quadratic programming problems with bound constraints.

SIAM Journal on Optimization 1 93-113,

and given in the context used here by

C.-J. Lin and J. J. Moré (1999b). Newton’s method for large bound-constrained optimization problems, SIAM Journal

on Optimization 9 1100-1127.

5 EXAMPLE OF USE

We now consider the small example problem,

minimize f (x1,x2,x3) = x2
1 + x2 sin(x1 + x3)+ 3x4

2x4
3 + x2 + 2x2

1x2
2

subject to the general constraint

c(x1,x2,x3) = cos(x1 + 2x2− 1) = 0

and the bounds −1 ≤ x2 ≤ 1 and 1 ≤ x3 ≤ 2. There are a number of ways of casting this problem in the framework

required by LANCELOT solve. Here, we consider partitioning f into groups as

(x1)
2 + (x2 sin(x1 + x3)) + 3(x2x3)

4 + (x2) + 2(x1x2)
2

↑ ↑ ↑ ↑ ↑
group 1 group 2 group 3 group 4 group 5

Similarly, we write c as

cos(x1 + 2x2− 1).
↑

group 6

Notice the following:

1. Group 1 uses the non-trivial group function g1(α) = α2. The group contains a single linear element; the element

function is x1.

2. Group 2 uses the trivial group function g2(α) = α. The group contains a single nonlinear element; this element

function is e1(x1,x2,x3) = x2 sin(x1 + x3). The element function has three elemental variables, v1, v2 and v3,

say, (with v1 = x2, v2 = x1 and v3 = x3), but may be expressed in terms of two internal variables u1 and u2, say,

where u1 = v1 and u2 = v2 + v3.

3. Group 3 uses the non-trivial group function g3(α) = α4, weighted by the factor 3. Again, the group contains

a single nonlinear element; this element function is e2(x2,x3) = x2x3. The element function has two elemental

variables, v1 and v2, say, (with v1 = x2 and v2 = x3). This time, however, there is no useful transformation to

internal variables.

4. Group 4 again uses the trivial group function g4(α) = α. This time the group contains a single linear element

x2.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 31

LANCELOT B GALAHAD

5. Group 5 uses the group function g5(α) = α2, weighted by the factor 2. Notice that this is the same type as

occurred in group 1. The group contains a single nonlinear element, e3(x1,x2) = x1x2. But notice that this

element is of the same type (i.e., v1v2 for appropriate v1 and v2) as e2 featured in group 3 although it uses

different elemental variables (this time v1 = x1 and v2 = x2).

6. Finally, group 6 uses the non-trivial group function g6(α) = cos(α). The group contains a single linear element;

the element function is x1 + 2x2− 1.

Thus we see that we can consider our objective and constraint functions to be made up of six group functions; the

first, third, fifth and sixth are non-trivial so we need to provide function and derivative values for these when prompted

by LANCELOT solve. Of the four non-trivial groups, there are only three different types, since groups one and five are

structurally the same. There are three nonlinear elements, one each from groups two, three and five. Again this means

that we need to provide function and derivative values for these when required by LANCELOT solve, but there is a slight

simplification as elements two and three are of the same type. Finally, one of these elements, the first, has a useful

transformation from elemental to internal variables so the routine RANGE must be set to provide this transformation.

The problem involves three variables, six groups and three nonlinear elements so we set prob%n = 3, prob%ng

= 6 and prob%nel = 3. As the first, third, fifth and sixth group functions are non-trivial, we set prob%GXEQX as:

i 1 2 3 4 5 6

prob%GXEQX(i) .FALSE. .TRUE. .FALSE. .TRUE. .FALSE. .FALSE.

Non-trivial groups 1 and 5 involve functions of the same type (we label this a “type 1” group; the actual label is

unimportant, so long as groups of different types have different labels), and these are different from those for groups

2 and 6 (which we call “types 2” and “3”)—by convention, trivial groups are of “type 0” . So we set prob%ITYPEG as:

i 1 2 3 4 5 6

prob%ITYPEG(i) 1 0 2 0 1 3

The first five groups are associated with the objective function while the sixth defines a constraint so we set prob%KNDOFG

as:

i 1 2 3 4 5 6

prob%KNDOFG(i) 1 1 1 1 1 2

The first nonlinear element occurs in group 2, the second in group 3 and the last in group 5; each element is

unweighted. We thus set prob%IELING, prob%ESCALE and prob%ISTADG as:

i 1 2 3

prob%IELING(i) 1 2 3

prob%ESCALE(i) 1.0 1.0 1.0

i 1 2 3 4 5 6 7

prob%ISTADG(i) 1 1 2 3 3 4 4

The first nonlinear element function is not a quadratic function of its internal variables so we set control%quadratic-

problem=.FALSE.. The second and third nonlinear element functions are of the same type (we number this a “type

2” element), while the first nonlinear element is different (a “type 1” element). So we set prob%ITYPEE as:

i 1 2 3

prob%ITYPEE(i) 1 2 2

Nonlinear element one, e1 assigns variables x2, x1 and x3 to its elemental variables, while the second and third non-

linear elements e2 and e3 assign variables x2 and x3, and x1 and x2 to their elemental variables, respectively. Hence

prob%IELVAR contains:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

32 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

i 1 2 3 4 5 6 7

prob%IELVAR(i) 2 1 3 2 3 1 2

←− e1 −→ ← e2 → ← e3 →

In this vector, we now locate the position of the first variable of each nonlinear element, and build the vector

prob%ISTAEV as follows:

i 1 2 3 4

prob%ISTAEV(i) 1 4 6 8

All three nonlinear elements have two internal variables — elements two and three using their elemental variables as

internals — so we set prob%INTVAR as follows:

i 1 2 3 4

prob%INTVAR(i) 2 2 2 -

As the first nonlinear element has a useful transformation between elemental and internal variables, while the other

two do not, prob%INTREP contains:

i 1 2 3

prob%INTREP(i) .TRUE. .FALSE. .FALSE.

Turning to the linear elements, groups one, four and six each have a linear element. Those from groups one and

four involve a single variable — x1 for group one and x2 for group four. That from group six involves the variables x1

and x3. All the coefficients, excepting the last, are one; the last is two. We thus set prob%ISTADA as:

i 1 2 3 4 5 6 7

prob%ISTADA(i) 1 2 2 2 3 3 5

and prob%ICNA and prob%A as

i 1 2 3 4

prob%ICNA(i) 1 2 1 2

prob%A(i) 1.0D+0 1.0D+0 1.0D+0 2.0D+0

Only the last group has a constant term so prob%B is set to:

i 1 2 3 4 5 6

prob%B(i) 0.0D+0 0.0D+0 0.0D+0 0.0D+0 0.0D+0 1.0D+0

The bounds for the problem are set in prob%BL and prob%BU. As the first variable is allowed to take any value, we

specify lower and upper bounds of ±1020. Thus we set

i 1 2 3

prob%BL(i) -1.0D+20 -1.0D+0 -1.0D+0

prob%BU(i) 1.0D+20 1.0D+0 2.0D+0

The 3rd group is scaled by 3.0, the fifth by 2.0, while the others are unscaled. Thus we set prob%GSCALE to:

i 1 2 3 4 5 6

prob%GSCALE(i) 1.0D+0 1.0D+0 3.0D+0 1.0D+0 2.0D+0 1.0D+0

It is unclear that the variables are badly scaled so we set prob%VSCALE to:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 33

LANCELOT B GALAHAD

i 1 2 3

prob%VSCALE(i) 1.0D+0 1.0D+0 1.0D+0

Finally, we choose to allocate the names Obj 1 to Obj 5 to the four groups associated with the objective function

and call the constraint group Constraint. The variables are called x 1 to x 3. We thus set prob%GNAMES and

prob%VNAMES to:

i 1 2 3 4 5 6

prob%GNAMES(i) Obj 1 Obj 2 Obj 3 Obj 4 Obj 5 Constraint

and

i 1 2 3

prob%VNAMES(i) x 1 x 2 x 3

Notice that, in our example, neither the group nor nonlinear element functions depends upon parameters, so both

prob%EPVALU and prob%GPVALU are empty, and consequently all components of the parameter starting address arrays

prob%ISTEPA and prob%ISTGPA should be set to 0.

LANCELOT solve leaves the computation of function and derivative values of the group and nonlinear element

functions to the user—this may either be done internally (by providing suitable GROUP and ELFUN subroutines, or

externally via reverse communication. We need only to specify the group functions for the non-trivial groups, groups

1, 3 and 5. Also note that the function and gradient values are only evaluated if the component is specified in ICALCG.

A suitable GROUP subroutine might be the following:

SUBROUTINE GROUP (GVALUE, lgvalu, FVALUE, GPVALU, ncalcg, &
ITYPEG, ISTGPA, ICALCG, ltypeg, lstgpa, &
lcalcg, lfvalu, lgpvlu, derivs, igstat)

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision
INTEGER, INTENT(IN) :: lgvalu, ncalcg
INTEGER, INTENT(IN) :: ltypeg, lstgpa, lcalcg, lfvalu, lgpvlu
INTEGER, INTENT(OUT) :: igstat
LOGICAL, INTENT(IN) :: derivs
INTEGER, INTENT(IN), DIMENSION (ltypeg) :: ITYPEG
INTEGER, INTENT(IN), DIMENSION (lstgpa) :: ISTGPA
INTEGER, INTENT(IN), DIMENSION (lcalcg) :: ICALCG
REAL (KIND = wp), INTENT(IN), DIMENSION (lfvalu) :: FVALUE
REAL (KIND = wp), INTENT(IN), DIMENSION (lgpvlu) :: GPVALU
REAL (KIND = wp), INTENT(OUT), DIMENSION (lgvalu, 3) :: GVALUE
INTEGER :: igrtyp, igroup, ipstrt, jcalcg
REAL (KIND = wp) :: alpha, alpha2
igstat = 0
DO jcalcg = 1, ncalcg
igroup = ICALCG(jcalcg)
igrtyp = ITYPEG(igroup)
IF (igrtyp == 0) CYCLE ! skip if the group is trivial
ipstrt = ISTGPA(igroup) - 1
SELECT CASE (igrtyp)
CASE (1)

alpha = FVALUE(igroup)
IF (.NOT. derivs) THEN

GVALUE(igroup, 1) = alpha * alpha
ELSE

GVALUE(igroup, 2) = 2.0_wp * alpha
GVALUE(igroup, 3) = 2.0_wp

END IF
CASE (2)

alpha = FVALUE(igroup)
alpha2 = alpha * alpha

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

34 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

IF (.NOT. derivs) THEN
GVALUE(igroup, 1) = alpha2 * alpha2

ELSE
GVALUE(igroup, 2) = 4.0_wp * alpha2 * alpha
GVALUE(igroup, 3) = 12.0_wp * alpha2

END IF
CASE (3)

alpha = FVALUE(igroup)
IF (.NOT. derivs) THEN
GVALUE(igroup, 1) = COS(alpha)

ELSE
GVALUE(igroup, 2) = - SIN(alpha)
GVALUE(igroup, 3) = - COS(alpha)

END IF
END SELECT

END DO
RETURN
END SUBROUTINE GROUP

Here, the logical parameter derivs set .TRUE. specifies that the first and second derivatives are required; a .FALSE.

value will return the function values.

To evaluate the values and derivatives of the nonlinear element functions, the following ELFUN subroutine would

be suitable:

SUBROUTINE ELFUN (FUVALS, XVALUE, EPVALU, ncalcf, ITYPEE, ISTAEV, &
IELVAR, INTVAR, ISTADH, ISTEPA, ICALCF, ltypee, &
lstaev, lelvar, lntvar, lstadh, lstepa, lcalcf, &
lfuval, lxvalu, lepvlu, ifflag, ifstat)

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision
INTEGER, INTENT(IN) :: ncalcf, ifflag, ltypee, lstaev, lelvar, lntvar
INTEGER, INTENT(IN) :: lstadh, lstepa, lcalcf, lfuval, lxvalu, lepvlu
INTEGER, INTENT(OUT) :: ifstat
INTEGER, INTENT(IN) :: ITYPEE(LTYPEE), ISTAEV(LSTAEV), IELVAR(LELVAR)
INTEGER, INTENT(IN) :: INTVAR(LNTVAR), ISTADH(LSTADH), ISTEPA(LSTEPA)
INTEGER, INTENT(IN) :: ICALCF(LCALCF)
REAL (KIND = wp), INTENT(IN) :: XVALUE(LXVALU)
REAL (KIND = wp), INTENT(IN) :: EPVALU(LEPVLU)
REAL (KIND = wp), INTENT(INOUT) :: FUVALS(LFUVAL)
INTEGER :: ielemn, ieltyp, ihstrt, ilstrt, igstrt, ipstrt, jcalcf
REAL (KIND = wp) :: v1, v2, u1, u2, u3, cs, sn
ifstat = 0
DO jcalcf = 1, ncalcf

ielemn = ICALCF(jcalcf)
ilstrt = ISTAEV(ielemn) - 1
igstrt = INTVAR(ielemn) - 1
ipstrt = ISTEPA(ielemn) - 1
IF (ifflag == 3) ihstrt = ISTADH(ielemn) - 1
ieltyp = ITYPEE(ielemn)
SELECT CASE (ieltyp)
CASE (1)

u1 = XVALUE(IELVAR(ilstrt + 1))
u2 = XVALUE(IELVAR(ilstrt + 2))
u3 = XVALUE(IELVAR(ilstrt + 3))
v1 = u1
v2 = u2 + u3
cs = COS(v2)
sn = SIN(v2)
IF (ifflag == 1) THEN
FUVALS(ielemn) = v1 * sn

ELSE
FUVALS(igstrt + 1) = sn
FUVALS(igstrt + 2) = v1 * cs

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 35

LANCELOT B GALAHAD

IF (ifflag == 3) THEN
FUVALS(ihstrt + 1) = 0.0_wp
FUVALS(ihstrt + 2) = cs
FUVALS(ihstrt + 3) = - v1 * sn

END IF
END IF

CASE (2)
u1 = XVALUE(IELVAR(ilstrt + 1))
u2 = XVALUE(IELVAR(ilstrt + 2))
IF (ifflag == 1) THEN

FUVALS(ielemn) = u1 * u2
ELSE

FUVALS(igstrt + 1) = u2
FUVALS(igstrt + 2) = u1
IF (ifflag == 3) THEN

FUVALS(ihstrt + 1) = 0.0_wp
FUVALS(ihstrt + 2) = 1.0_wp
FUVALS(ihstrt + 3) = 0.0_wp

END IF
END IF

END SELECT
END DO
RETURN
END SUBROUTINE ELFUN

The integer parameter ifflag specifies whether function values (ifflag = 1) or derivatives (ifflag > 1) are

required. When ifflag = 2, just first derivatives are required, while ifflag = 3 also requests second derivatives.

Notice that the derivatives are taken with respect to the internal variables. For the first nonlinear element function,

this means that we must transform from elemental to internal variables before evaluating the derivatives. Thus, as this

function may be written as f (v1,v2) = v1 sinv2, where v1 = u1 and v2 = u2 + u3, the gradient and Hessian matrix are

(

sinv2

v1 cosv2

)

and

(

0 cosv2

cosv2 −v1 sin v2

)

,

respectively. Notice that it is easy to specify the second derivatives for this example so we do so. Also note that the

function and gradient values are only evaluated if the component is specified in ICALCF.

We must also specify the routine RANGE for our example. As we have observed, only the first element has a useful

transformation. The transformation matrix is
(

1 0 0

0 1 1

)

(see Section 2.4.3). As a consequence, the following routine RANGE is appropriate:

SUBROUTINE RANGE(ielemn, transp, W1, W2, nelvar, ninvar, ieltyp, lw1, lw2)
INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision
INTEGER, INTENT(IN) :: ielemn, nelvar, ninvar, ieltyp, lw1, lw2
LOGICAL, INTENT(IN) :: transp
REAL (KIND = wp), INTENT(IN), DIMENSION (lw1) :: W1
REAL (KIND = wp), INTENT(OUT), DIMENSION (lw2) :: W2
SELECT CASE (ieltyp)
CASE (1) ! Element type 1 has a non-trivial transformation
IF (transp) THEN

W2(1) = W1(1)
W2(2) = W1(2)
W2(3) = W1(2)

ELSE
W2(1) = W1(1)
W2(2) = W1(2) + W1(3)

END IF
CASE DEFAULT ! Element 2 has a trivial transformation - no action required

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

36 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

END SELECT
RETURN
END SUBROUTINE RANGE

This completes the supply of information to LANCELOT solve. The problem may now be solved using the fol-

lowing program. We choose to solve the model subproblem using a preconditioned conjugate gradient scheme, using

diagonal preconditioning, a “box” shaped trust-region, calculating an exact Cauchy point at each iteration but not

obtaining an accurate minimizer of the model within the box. Furthermore, we start from the initial estimate x1 = 0.0,

x2 = 0.0 and x3 = 1.5. As we have no idea of a good estimate for the Lagrange multiplier associated with the constraint

(group 6), we set y6 = 0. We observe that the objective function is bounded below by -2.0 within the feasible box and

terminate when the norms of the reduced gradient of the Lagrangian function and constraints are smaller than 10−5.

PROGRAM LANCELOT_example
USE LANCELOT_double ! double precision version
IMPLICIT NONE
INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision
REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20
TYPE (LANCELOT_control_type) :: control
TYPE (LANCELOT_inform_type) :: info
TYPE (LANCELOT_data_type) :: data
TYPE (LANCELOT_problem_type) :: prob
INTEGER :: i, lfuval
INTEGER, PARAMETER :: n = 3, ng = 6, nel = 3, nnza = 4, nvrels = 7
INTEGER, PARAMETER :: ntotel = 3, ngpvlu = 0, nepvlu = 0
INTEGER :: IVAR(n), ICALCF(nel), ICALCG(ng)
REAL (KIND = wp) :: Q(n), XT(n), DGRAD(n), FVALUE(ng)
REAL (KIND = wp) :: GVALUE(ng, 3)
REAL (KIND = wp), ALLOCATABLE, DIMENSION(:) :: FUVALS
EXTERNAL RANGE, ELFUN, GROUP

! make space for problem data
prob%n = n ; prob%ng = ng ; prob%nel = nel
ALLOCATE(prob%ISTADG(prob%ng + 1), prob%ISTGPA(prob%ng + 1))
ALLOCATE(prob%ISTADA(prob%ng + 1), prob%ISTAEV(prob%nel + 1))
ALLOCATE(prob%ISTEPA(prob%nel + 1), prob%ITYPEG(prob%ng))
ALLOCATE(prob%KNDOFG(prob%ng), prob%ITYPEE(prob%nel))
ALLOCATE(prob%INTVAR(prob%nel + 1))
ALLOCATE(prob%IELING(ntotel), prob%IELVAR(nvrels), prob%ICNA(nnza))
ALLOCATE(prob%ISTADH(prob%nel + 1), prob%A(nnza))
ALLOCATE(prob%B(prob%ng), prob%BL(prob%n), prob%BU(prob%n))
ALLOCATE(prob%X(prob%n), prob%Y(prob%ng), prob%C(prob%ng))
ALLOCATE(prob%GPVALU(ngpvlu), prob%EPVALU(nepvlu))
ALLOCATE(prob%ESCALE(ntotel), prob%GSCALE(prob%ng))
ALLOCATE(prob%VSCALE(prob%n))
ALLOCATE(prob%INTREP(prob%nel), prob%GXEQX(prob%ng))
ALLOCATE(prob%GNAMES(prob%ng), prob%VNAMES(prob%n))

! set problem data
prob%ISTADG = (/ 1, 1, 2, 3, 3, 4, 4 /)
prob%IELVAR = (/ 2, 1, 3, 2, 3, 1, 2 /)
prob%ISTAEV = (/ 1, 4, 6, 8 /) ; prob%INTVAR(: nel) = (/ 2, 2, 2 /)
prob%IELING = (/ 1, 2, 3 /) ; prob%ICNA = (/ 1, 2, 1, 2 /)
prob%ISTADA = (/ 1, 2, 2, 2, 3, 3, 5 /)
prob%KNDOFG = (/ 1, 1, 1, 1, 1, 2 /)
prob%ITYPEG = (/ 1, 0, 2, 0, 1, 3 /) ; prob%ITYPEE = (/ 1, 2, 2 /)
prob%ISTGPA = (/ 0, 0, 0, 0, 0, 0 /) ; prob%ISTEPA = (/ 0, 0, 0 /)
prob%A = (/ 1.0_wp, 1.0_wp, 1.0_wp, 2.0_wp /)
prob%B = (/ 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 1.0_wp /)
prob%BL = (/ - infinity, -1.0_wp, 1.0_wp /)
prob%BU = (/ infinity, 1.0_wp, 2.0_wp /)
prob%GSCALE = (/ 1.0_wp, 1.0_wp, 3.0_wp, 1.0_wp, 2.0_wp, 1.0_wp /)
prob%ESCALE = (/ 1.0_wp, 1.0_wp, 1.0_wp /)
prob%VSCALE = (/ 1.0_wp, 1.0_wp, 1.0_wp /)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 37

LANCELOT B GALAHAD

prob%X = (/ 0.0_wp, 0.0_wp, 1.5_wp /) ; prob%Y(6) = 0.0_wp
prob%INTREP = (/ .TRUE., .FALSE., .FALSE. /)
prob%GXEQX = (/ .FALSE., .TRUE., .FALSE., .TRUE., .FALSE., .FALSE. /)
prob%GNAMES = (/ ’Obj 1 ’, ’Obj 2 ’, ’Obj 3 ’, ’Obj 4 ’, &

’Obj 5 ’, ’Constraint’ /)
prob%VNAMES = (/ ’x 1’, ’x 2’, ’x 3’ /)

! allocate space for FUVALS
lfuval = prob%nel + 2 * prob%n
DO i = 1, prob%nel
lfuval = lfuval + (prob%INTVAR(i) * (prob%INTVAR(i) + 3)) / 2

END DO
ALLOCATE(FUVALS(lfuval))

! problem data complete
CALL LANCELOT_initialize(data, control) ! Initialize control parameters
control%maxit = 100 ; control%out = 6 ! ; control%print_level = 1
control%stopg = 0.00001_wp ; control%stopc = 0.00001_wp
control%linear_solver = 1
control%exact_gcp = .FALSE.
info%status = 0

! solve the problem
CALL LANCELOT_solve(&

prob, RANGE, GVALUE, FVALUE, XT, FUVALS, lfuval, ICALCF, ICALCG, &
IVAR, Q, DGRAD, control, info, data, ELFUN = ELFUN , GROUP = GROUP)

! act on return status
IF (info%status == 0) THEN ! Successful return
WRITE(6, "(I6, ’ iterations. Optimal objective value =’, &
& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &
info%iter, info%obj, prob%X

ELSE ! Error returns
WRITE(6, "(’ LANCELOT_solve exit status = ’, I6) ") info%status

END IF
CALL LANCELOT_terminate(data, control, info) ! delete internal workspace
DEALLOCATE(prob%GNAMES, prob%VNAMES) ! delete problem space
DEALLOCATE(prob%VSCALE, prob%ESCALE, prob%GSCALE, prob%INTREP)
DEALLOCATE(prob%GPVALU, prob%EPVALU, prob%ITYPEG, prob%GXEQX)
DEALLOCATE(prob%X, prob%Y, prob%C, prob%A, prob%B, prob%BL, prob%BU)
DEALLOCATE(prob%ISTADH, prob%IELING, prob%IELVAR, prob%ICNA)
DEALLOCATE(prob%INTVAR, prob%KNDOFG, prob%ITYPEE, prob%ISTEPA)
DEALLOCATE(prob%ISTADA, prob%ISTAEV, prob%ISTADG, prob%ISTGPA)
DEALLOCATE(FUVALS)
END PROGRAM LANCELOT_example

This produces the following output.

14 iterations. Optimal objective value = -6.3129E-01
Optimal solution = 2.4402E-01 -4.0741E-01 1.0000E+00

The same effect may be achieved by returning to the user to evaluate element and group values/derivatives. Simply

replace the above call to LANCELOT solve by the following do-loop:

DO
CALL LANCELOT_solve(&

prob, RANGE, GVALUE, FVALUE, XT, FUVALS, lfuval, ICALCF, ICALCG, &
IVAR, Q, DGRAD , control, info, data)

IF (info%status >= 0) EXIT
IF (info%status == - 1 .OR. info%status == - 3 .OR. info%status == - 7) &

THEN
CALL ELFUN (FUVALS, XT, prob%EPVALU, info%ncalcf, prob%ITYPEE, &

prob%ISTAEV, prob%IELVAR, prob%INTVAR, prob%ISTADH, prob%ISTEPA, &
ICALCF, prob%nel, prob%nel + 1, prob%ISTAEV(prob%nel + 1) - 1, &
prob%nel + 1, prob%nel + 1, prob%nel + 1, prob%nel, lfuval, prob%n, &

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

38 LANCELOT B (May 24, 2024) GALAHAD

GALAHAD LANCELOT B

prob%ISTEPA(prob%nel + 1) - 1, 1, i)
IF (i /= 0) THEN ; info%status = - 11 ; CYCLE ; END IF

END IF
IF (info%status == - 1 .OR. info%status == - 5 .OR. info%status == - 6) &

THEN
CALL ELFUN (FUVALS, XT, prob%EPVALU, info%ncalcf, prob%ITYPEE, &

prob%ISTAEV, prob%IELVAR, prob%INTVAR, prob%ISTADH, prob%ISTEPA, &
ICALCF, prob%nel, prob%nel + 1, prob%ISTAEV(prob%nel + 1) - 1, &
prob%nel + 1, prob%nel + 1, prob%nel + 1, prob%nel, lfuval, prob%n, &
prob%ISTEPA(prob%nel + 1) - 1, 3, i)

IF (i /= 0) THEN ; info%status = - 11 ; CYCLE ; END IF
END IF
IF (info%status == - 2 .OR. info%status == - 4) THEN

CALL GROUP (GVALUE, prob%ng, FVALUE, prob%GPVALU, info%ncalcg, &
prob%ITYPEG, prob%ISTGPA, ICALCG, prob%ng, prob%ng + 1, prob%ng, &
prob%ng, prob%ISTGPA(prob%ng + 1) - 1, .FALSE., i)

IF (i /= 0) THEN ; info%status = - 11 ; CYCLE ; END IF
END IF
IF (info%status == - 2 .OR. info%status == - 5) THEN

CALL GROUP(GVALUE, prob%ng, FVALUE, prob%GPVALU, info%ncalcg, &
prob%ITYPEG, prob%ISTGPA, ICALCG, prob%ng, prob%ng + 1, prob%ng, &
prob%ng, prob%ISTGPA(prob%ng + 1) - 1, .TRUE., i)

IF (i /= 0) THEN ; info%status = - 11 ; CYCLE ; END IF
END IF

END DO

If the user (for whatever reason) wishes to be more flexible with the derivatives used, the optional argument ELDERS

must be included and filled appropriately. For example, suppose that we do not want to provide second derivatives for

any elements of type 2 (but to use the PSB approximation instead) and no derivatives at all for those of type 1 (but

finite-difference gradients and DFP approximate second derivatives). Then (refering back to ITYPEE, we shoud set

ELDERS as

i 1 2 3

ELDERS(1,i) 1 0 0

ELDERS(2,i) 2 3 3

In this case, ELFUN should also be replaced by a subroutine ELFUN flexible of the following form:

SUBROUTINE ELFUN_flexible(FUVALS, XVALUE, EPVALU, ncalcf, ITYPEE, ISTAEV, &
IELVAR, INTVAR, ISTADH, ISTEPA, ICALCF, ltypee, &
lstaev, lelvar, lntvar, lstadh, lstepa, lcalcf, &
lfuval, lxvalu, lepvlu, llders, ifflag, ELDERS, &
ifstat)

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision
INTEGER, INTENT(IN) :: ncalcf, ifflag, ltypee, lstaev, lelvar, lntvar
INTEGER, INTENT(IN) :: lstadh, lstepa, lcalcf, lfuval, lxvalu, lepvlu
INTEGER, INTENT(IN) :: llders
INTEGER, INTENT(OUT) :: ifstat
INTEGER, INTENT(IN) :: ITYPEE(LTYPEE), ISTAEV(LSTAEV), IELVAR(LELVAR)
INTEGER, INTENT(IN) :: INTVAR(LNTVAR), ISTADH(LSTADH), ISTEPA(LSTEPA)
INTEGER, INTENT(IN) :: ICALCF(LCALCF), ELDERS(2, llders)
REAL (KIND = wp), INTENT(IN) :: XVALUE(LXVALU)
REAL (KIND = wp), INTENT(IN) :: EPVALU(LEPVLU)
REAL (KIND = wp), INTENT(INOUT) :: FUVALS(LFUVAL)
INTEGER :: ielemn, ieltyp, ihstrt, ilstrt, igstrt, ipstrt, jcalcf
REAL (KIND = wp) :: v1, v2, u1, u2, u3, cs, sn
ifstat = 0
DO jcalcf = 1, ncalcf

ielemn = ICALCF(jcalcf)
ilstrt = ISTAEV(ielemn) - 1
igstrt = INTVAR(ielemn) - 1

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD LANCELOT B (May 24, 2024) 39

LANCELOT B GALAHAD

ipstrt = ISTEPA(ielemn) - 1
IF (ELDERS(2, ielemn) <= 0) ihstrt = ISTADH(ielemn) - 1
ieltyp = ITYPEE(ielemn)
SELECT CASE (ieltyp)
CASE (1)

u1 = XVALUE(IELVAR(ilstrt + 1))
u2 = XVALUE(IELVAR(ilstrt + 2))
u3 = XVALUE(IELVAR(ilstrt + 3))
v1 = u1
v2 = u2 + u3
cs = COS(v2)
sn = SIN(v2)
IF (ifflag == 1) THEN

FUVALS(ielemn) = v1 * sn
ELSE

! no first or second derivatives for element of type 1
END IF

CASE (2)
u1 = XVALUE(IELVAR(ilstrt + 1))
u2 = XVALUE(IELVAR(ilstrt + 2))
IF (ifflag == 1) THEN

FUVALS(ielemn) = u1 * u2
ELSE

IF (ELDERS(1, ielemn) <= 0) THEN
FUVALS(igstrt + 1) = u2
FUVALS(igstrt + 2) = u1

! no second derivatives for element of type 2
END IF

END IF
END SELECT

END DO
RETURN
END SUBROUTINE ELFUN_flexible

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

40 LANCELOT B (May 24, 2024) GALAHAD

