
GALAHAD IR

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given a sparse symmetric matrix A = {ai j}n×n and the factorization of A found by the GALAHAD package GALAH-

AD SLS, this package solves the system of linear equations Ax = b using iterative refinement.

ATTRIBUTES — Versions: GALAHAD IR single, GALAHAD IR double. Uses: GALAHAD SYMBOLS, GALAHAD -

SPACE, GALAHAD SMT, GALAHAD QPT, GALAHAD SLS, GALAHAD SPECFILE. Date: October 2008. Origin: N. I. M.

Gould, Rutherford Appleton Laboratory Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD IR single

with the obvious substitution GALAHAD IR double, GALAHAD IR single 64 and GALAHAD IR double 64 for the other

variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, IR control type,

IR inform type, IR data type, SLS factors, (Section 2.3) and the subroutinesIR initialize, IR solve, IR terminate

(Section 2.4) and IR read specfile (Section 2.6) must be renamed on one of the USE statements.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data types

Five derived data types are accessible from the package.

2.3.1 The derived data type for holding the matrix

The derived data type SMT type is used to hold the matrix A. The components of SMT type are:

n is a scalar variable of type INTEGER(ip), that holds the order n of the matrix A. Restriction: n ≥ 1.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries. Restriction: ne ≥ 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD IR (May 24, 2024) 1

IR GALAHAD

VAL is a rank-one allocatable array of type REAL(rp), and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries ai j = a ji is represented as a single entry. Duplicated entries are summed.

ROW is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that holds the row indices of

the entries.

COL is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that holds the column indices

of the entries.

2.3.2 The derived data type for holding control parameters

The derived data type IR control type is used to hold controlling data. Default values may be obtained by calling

IR initialize (see Section 2.4.1). The components of IR control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in IR solve and IR terminate is suppressed if error≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in IR solve is suppressed if out< 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level≤ 0. If print level = 1 a single line

of output will be produced for each iteration of the process. If print level ≥ 2 this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

itref max is a scalar variable of type INTEGER(ip), that holds the maximum number of iterative refinements which

will be allowed. The default is itref max = 1.

acceptable residual relative and acceptable residual absolute are scalar variables of type REAL(rp),

that specify an acceptable level for the residual Ax−b. In particular, iterative refinement will cease as soon

as ‖Ax−b‖∞ falls below max(‖b‖∞∗ acceptable residual relative, acceptable residual absolute).
The defaults are acceptable residual relative =acceptable residual absolute = 10u, where u is

EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD IR double).

required residual relative is a scalar variables of type REAL(rp), that specify the level for the residual Ax−b.

In particular, iterative refinement will be deemed to have failed if ‖Ax−b‖∞ > ‖b‖∞∗ required residual relative.

The defaults is required residual relative = u0.2, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALA-

HAD IR double).

space critical is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the package

to allocate as little internal storage as possible, and .FALSE. otherwise. The package may be more efficient if

space critical is set .FALSE.. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the

package to return to the user in the unlikely event that an internal array deallocation fails, and .FALSE. if the

package should be allowed to try to continue. The default is deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 IR (May 24, 2024) GALAHAD

GALAHAD IR

2.3.3 The derived data type for holding informational parameters

The derived data type IR inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of IR inform type are:

status is a scalar variable of type INTEGER(ip), that gives the current status of the algorithm. See Section 2.5 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last internal array allocation or

deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

2.3.4 The derived data type for holding problem data

The derived data type IR data type is used to hold all the data for a particular problem between calls of IR procedures.

This data should be preserved, untouched, from the initial call to IR initialize to the final call to IR terminate.

2.3.5 The derived data type for holding factors of a matrix

The derived data type SLS FACTORS is used to hold the factors and related data for a matrix. All components are

private.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.6 for further features):

1. The subroutine IR initialize is used to set default values, and initialize private data.

2. The subroutine IR solve is called to solve Ax = b; this must have been preceded by a call to SLS factorize

to obtain the factors of A.

3. The subroutine IR terminate is provided to allow the user to automatically deallocate array components of the

private data, allocated by IR solve, at the end of the solution process.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL IR initialize(data, control, inform)

data is a scalar INTENT(INOUT)argument of type IR data type (see Section 2.3.4). It is used to hold data about the

problem being solved.

control is a scalar INTENT(OUT)argument of type IR control type (see Section 2.3.2). On exit, control contains

default values for the components as described in Section 2.3.2. These values should only be changed after

calling IR initialize.

inform is a scalar INTENT(OUT) argument of type IR inform type (see Section 2.3.3). A successful call to IR initialize

is indicated when the component status has the value 0. For other return values of status, see Section 2.5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD IR (May 24, 2024) 3

IR GALAHAD

2.4.2 The iterative refinement subroutine

The iterative refinement algorithm is called as follows:

CALL IR solve(A, X, data, SLS data, control, SLS control, inform, SLS inform)

A is scalar, of INTENT(IN) and of type SMT TYPE that holds the matrix A. All components must be unaltered since

the call to SLS factorize.

X is an array INTENT(INOUT) argument of dimension A%n and type REAL(rp), that must be set on input to contain

the vector b. On exit, X holds an estimate of the solution x

data is a scalar INTENT(INOUT)argument of type IR data type (see Section 2.3.4). It is used to hold data about the

problem being solved. It must not have been altered by the user since the last call to IR initialize.

SLS data is scalar, of INTENT(INOUT) and of type SLS data type that holds the factors of A and related data. All

components must be unaltered since the call to SLS factorize.

control is a scalar INTENT(IN) argument of type IR control type. (see Section 2.3.2). Default values may be

assigned by calling IR initialize prior to the first call to IR solve.

SLS control is a scalar INTENT(IN) argument of type SLS control type that is used to control various aspects

of the external packages used to solve the symmetric linear systems that arise. See the documentation for the

GALAHAD package SLS for further details. All components must be unaltered since the call to SLS factorize.

inform is a scalar INTENT(INOUT)argument of type IR inform type (see Section 2.3.3). A successful call to

IR solve is indicated when the component status has the value 0. For other return values of status, see

Section 2.5.

SLS inform is a scalar INTENT(INOUT)argument of type SLS inform type that is used to pass information con-

cerning the progress of the external packages used to solve the symmetric linear systems that arise. See the

documentation for the GALAHAD package SLS for further details.

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL IR terminate(data, control, inform)

data is a scalar INTENT(INOUT)argument of type IR data type exactly as for IR solve that must not have been

altered by the user since the last call to IR initialize. On exit, array components will have been deallocated.

control is a scalar INTENT(IN)argument of type IR control type exactly as for IR solve.

inform is a scalar INTENT(OUT)argument of type IR inform type exactly as for IR solve. Only the component

status will be set on exit, and a successful call to IR terminate is indicated when this component status has

the value 0. For other return values of status, see Section 2.5.

2.5 Warning and error messages

A negative value of inform%status on exit from IR solve or IR terminate indicates that an error might have

occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 IR (May 24, 2024) GALAHAD

GALAHAD IR

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-11. Iterative refinement has not reduced the relative residual by more than control%required residual relative.

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type IR control type (see Section 2.3.2), by reading an appropriate data specification file using the

subroutine IR read specfile. This facility is useful as it allows a user to change IR control parameters without

editing and recompiling programs that call IR.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by IR read specfile must start with a ”BEGIN IR” command and end

with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by IR_read_specfile ..)

BEGIN IR

keyword value

.......

keyword value

END

(.. lines ignored by IR_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN IR” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN IR SPECIFICATION

and

END IR SPECIFICATION

are acceptable. Furthermore, between the “BEGIN IR” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when IR read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

IR read specfile.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD IR (May 24, 2024) 5

IR GALAHAD

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL IR_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type IR control type (see Section 2.3.2). Default values should

have already been set, perhaps by calling IR initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.2) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-refinements %itref max integer

acceptable-residual-relative %acceptable residual relative real

acceptable-residual-absolute %acceptable residual absolute real

required-residual-relative %required residual relative real

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, the final value of the norm of the residual will be given. If control%print level

> 1, the norm of the residual at each iteration will be printed.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: IR solve calls the GALAHAD packages GALAHAD SYMBOLS, GALAHAD SPACE, GALA-

HAD SMT, GALAHAD QPT, GALAHAD SLS, and GALAHAD SPECFILE.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: None.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 IR (May 24, 2024) GALAHAD

GALAHAD IR

4 METHOD

Iterative refinement proceeds as follows. First obtain the floating-point solution to Ax = b using the factors of A.

Then iterate until either the desired residual accuracy (or the iteration limit is reached) as follows: evaluate the residual

r = b−Ax, find the floating-point solution δx to Aδx = r, and replace x by x+ δx.

5 EXAMPLE OF USE

Suppose we wish to solve the set of equations













2 3

3 4 6

4 1 5

5

6 1













x =













8

45

31

15

17













Then we may use the following code

PROGRAM GALAHAD_IR_EXAMPLE ! GALAHAD 2.3 - 16/10/2008 AT 11:30 GMT.

USE GALAHAD_IR_double ! double precision version

USE GALAHAD_SMT_double

USE GALAHAD_SLS_double

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (SMT_type) :: matrix

TYPE (SLS_data_type) :: SLS_data

TYPE (SLS_control_type) SLS_control

TYPE (SLS_inform_type) :: SLS_inform

TYPE (IR_data_type) :: data

TYPE (IR_control_type) :: control

TYPE (IR_inform_type) :: inform

INTEGER, PARAMETER :: n = 5

INTEGER, PARAMETER :: ne = 7

REAL (KIND = wp) :: B(n), X(n)

INTEGER :: i, s

! Read matrix order and number of entries

matrix%n = n

matrix%ne = ne

! Allocate and set matrix

ALLOCATE(matrix%val(ne), matrix%row(ne), matrix%col(ne))

matrix%row(: ne) = (/ 1, 1, 2, 2, 3, 3, 5 /)

matrix%col(: ne) = (/ 1, 2, 3, 5, 3, 4, 5 /)

matrix%val(: ne) = (/ 2.0_wp, 3.0_wp, 4.0_wp, 6.0_wp, 1.0_wp, &

5.0_wp, 1.0_wp /)

CALL SMT_put(matrix%type, ’COORDINATE’, s) ! Specify co-ordinate

! Set right-hand side

B(: n) = (/ 8.0_wp, 45.0_wp, 31.0_wp, 15.0_wp, 17.0_wp /)

! Specify the solver (in this case sils)

CALL SLS_initialize(’sils’, SLS_data, SLS_control, SLS_inform)

! Analyse

CALL SLS_analyse(matrix, SLS_data, SLS_control, SLS_inform)

IF (SLS_inform%status < 0) THEN

WRITE(6, ’(A, I0)’) &

’ Failure of SLS_analyse with status = ’, SLS_inform%status

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD IR (May 24, 2024) 7

IR GALAHAD

STOP

END IF

! Factorize

CALL SLS_factorize(matrix, SLS_data, SLS_control, SLS_inform)

IF (SLS_inform%status < 0) THEN

WRITE(6, ’(A, I0)’) &

’ Failure of SLS_factorize with status = ’, SLS_inform%status

STOP

END IF

! solve using iterative refinement

CALL IR_initialize(data, control, inform) ! initialize IR structures

control%itref_max = 2 ! perform 2 iterations

control%acceptable_residual_relative = 0.1 * EPSILON(1.0D0) ! high accuracy

X = B

CALL IR_SOLVE(matrix, X, data, SLS_data, control, SLS_control, inform, &

SLS_inform)

IF (inform%status == 0) THEN ! check for errors

WRITE(6, ’(A, /, (5F10.6))’) ’ Solution after refinement is’, X

ELSE

WRITE(6,’(A, I2)’) ’ Failure of IR_solve with status = ’, inform%status

END IF

CALL IR_terminate(data, control, inform) ! delete internal workspace

CALL SLS_terminate(SLS_data, SLS_control, SLS_inform)

DEALLOCATE(matrix%type, matrix%val, matrix%row, matrix%col)

STOP

END PROGRAM GALAHAD_IR_EXAMPLE

with the following data

5 7

1 1 2.0

1 2 3.0

2 3 4.0

2 5 6.0

3 3 1.0

3 4 5.0

5 5 1.0

8. 45. 31. 15. 17.

This produces the following output:

Solution after refinement is

1.000000 2.000000 3.000000 4.000000 5.000000

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 IR (May 24, 2024) GALAHAD

