
GALAHAD ICFS

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given a symmetric matrix A, this package computes a symmetric, positive-definite approximation LLT using an

incomplete Cholesky factorization; the resulting matrix L is lower triangular. Subsequently, the solution x to the

either of the linear systems Lx = b and LT x = b may be found for a given vector b.

ATTRIBUTES — Versions: GALAHAD ICFS single, GALAHAD ICFS double. Uses: GALAHAD SYMBOLS, GALAH-

AD SPECFILE and GALAHAD SPACE. Date: May 1998/December 2022. Origin: C.-J, Lin and J. J. Moré, Argonne

National Laboratory, enhanced for modern fortran by N. I. M. Gould, Rutherford Appleton Laboratory. Language:

Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD ICFS single

with the obvious substitution GALAHAD ICFS double, GALAHAD ICFS single 64 and GALAHAD ICFS double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived types ICFS control type,

ICFS inform type, ICFS data type and NLPT userdata type, (Section 2.2) and the subroutines ICFS initialize,

ICFS factorize, ICFS solve, ICFS terminate, (Section 2.3) and ICFS read specfile (Section 2.5) must be re-

named on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 The derived data types

Four derived data types are accessible from the package.

2.2.1 The derived data type for holding control parameters

The derived data type ICFS control type is used to hold controlling data. Default values may be obtained by calling

ICFS initialize (see Section 2.3.1), while components may also be changed by calling GALAHAD ICFS read spec

(see Section 2.5.1). The components of ICFS control type are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ICFS (May 24, 2024) 1

ICFS GALAHAD

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in ICFS analyse, ICFS estimate and ICFS terminate is suppressed if error ≤ 0. The default is

error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in ICFS analyse and ICFS estimate is suppressed if out < 0. The default is out

= 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level > 01, details of

any data errors encountered will be reported. The default is print level = 0.

icfs vectors is a scalar variable of type INTEGER(ip), that holds the number of extra vectors of length n required

by the incomplete Cholesky preconditioner. Usually, the larger the number, the better the preconditioner, but the

more space and effort required to use it. Any negative value will be regarded as 0. The default is icfs vectors

= 10.

shift is a scalar variable of type REAL(rp), that holds an initial estimate of the shift α used so that the incomplete

factorization of A+D is positive definite, where D is a diagonal matrix whose entries are no larger than α. This

value α may subsequently be increased, as necessary, by the package, see inform%shift. The default is shift

- 0.0.

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

2.2.2 The derived data type for holding timing information

The derived data type ICFS time type is used to hold elapsed CPU and system clock times for the various parts of

the calculation. The components of ICFS time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent solving the resulting triangular systems.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent solving the

resulting triangular systems.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 ICFS (May 24, 2024) GALAHAD

GALAHAD ICFS

2.2.3 The derived data type for holding informational parameters

The derived data type ICFS inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of ICFS inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.4 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

shift is a scalar variable of type REAL(rp), that holds the final value of the shift α used so that the incomplete

factorization of A+D is positive definite, where D is a diagonal matrix whose entries are no larger than α.

time is a scalar variable of type ICFS time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.2.2).

2.2.4 The derived data type for holding problem data

The derived data type ICFS data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of ICFS procedures. This data should be preserved, untouched, from the initial

call to ICFS initialize to the final call to ICFS terminate.

2.3 Argument lists and calling sequences

There are four procedures for user calls (see Section 2.5 for further features):

1. The subroutine ICFS initialize is used to set default values, and initialize private data.

2. The subroutine ICFS factorize is called to form the incomplete Cholesky factor L from A.

3. The subroutine ICFS triangular solve is called to solve either of the triangular systems Lx = b or LT x = b

for given vectors b.

4. The subroutine ICFS terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by ICFS factorize, at the end of the solution process. It is important to do this if

the data object is re-used for another matrix with a different structure since ICFS initialize cannot test for

this situation, and any existing associated targets will subsequently become unreachable.

We note that in addition to the above calls, the user may also call the original fortran 77 subroutines DICFS and

DSTRSOL directly. For details of the necessary argument lists, see Section 6.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL ICFS initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type ICFS data type (see Section 2.2.4). It is used to hold data about

the matrix and its factors.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ICFS (May 24, 2024) 3

ICFS GALAHAD

control is a scalar INTENT(OUT) argument of type ICFS control type (see Section 2.2.1). On exit, control

contains default values for the components as described in Section 2.2.1. These values should only be changed

after calling ICFS initialize.

inform is a scalar INTENT(OUT) argument of type ICFS inform type (see Section 2.2.3). A successful call to

ICFS initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.4.

2.3.2 The incomplete factorization subroutine

The factorization phase, in which incomplete Cholesky factors L of A are determined, is performed as follows:

CALL ICFS factorize(n, PTR, ROW, DIAG, VAL, data, control, inform)

n is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that must be set to n the dimension of the matrix

A. Restrictions: n > 0.

PTR is a scalar INTENT(IN) rank-one array argument of type INTEGER(ip) and dimension n + 1, whose j-th

component gives the starting address for list of nonzero values and their corresponding row indices in column j

of the strict lower triangular part of A (The entry ai, j is in the strict lower triangular part of A if i > j). That

is, the nonzeros in column j of the strict lower triangle of A must be in positions PTR(j) . . . , PTR(j+1) - 1

for j = 1, . . .n. Note that PTR(n+1) points to the first position beyond that needed to store A.

ROW is a scalar INTENT(IN) rank-one array argument of type INTEGER(ip) and dimension at least PTR(n+1)-1,

that contains the row indices of the strict lower triangular part of A in the compressed column storage format

described above.

DIAG is a scalar INTENT(IN) rank-one array argument of type REAL(rp) and dimension n, whose j-th component

contains the value of the j-th diagonal of A.

VAL is a scalar INTENT(IN) rank-one array argument of type REAL(rp) and dimension at least PTR(n+1)-1, that

contains the values of the entries strict lower triangular part of A that correspond to the row indices described

above.

data is a scalar INTENT(INOUT) argument of type ICFS data type (see Section 2.2.4). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to ICFS initialize.

control is a scalar INTENT(IN) argument of type ICFS control type (see Section 2.2.1). Default values may be

assigned by calling ICFS initialize prior to the first call to ICFS analyse.

inform is a scalar INTENT(INOUT) argument of type ICFS inform type (see Section 2.2.3). A successful call to

ICFS analyse is indicated when the component status has the value 0. For other return values of status, see

Section 2.4.

2.3.3 The triangular solution subroutine

The solution phase, in which one of the triangular systems Lx = b or LT x = b for given vectors b, is performed as

follows:

CALL ICFS triangular solve(n, X, transpose, data, control, inform)

n, data, control and inform are exactly as described and input to ICFS factorize, and must not have been

changed in the interim.

X is a scalar INTENT(INOUT) rank-one array argument of type REAL(rp), and dimension n, that must be set

on input so that X(i) contains the component bi, i = 1, . . . , n of the vector b. On output, this will have been

overwritten by the desired vector x.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 ICFS (May 24, 2024) GALAHAD

GALAHAD ICFS

transpose is a scalar INTENT(IN) argument of type default LOGICAL, that must be set .FALSE. if the user wishes to

solve Lx = b and .TRUE. if instead the solution to LT x = b is sought.

2.3.4 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL ICFS terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type ICFS data type exactly as for ICFS factorize, which must not

have been altered by the user since the last call to ICFS initialize. On exit, array components will have

been deallocated.

control is a scalar INTENT(IN) argument of type ICFS control type exactly as for ICFS factorize.

inform is a scalar INTENT(OUT) argument of type ICFS inform type exactly as for ICFS factorize. Only the

component status will be set on exit, and a successful call to ICFS terminate is indicated when this compo-

nent status has the value 0. For other return values of status, see Section 2.4.

2.4 Warning and error messages

A negative value of inform%status on exit from ICFS factorize, ICFS triangular solve or ICFS terminate

indicates that an error has occurred. No further calls should be made until the error has been corrected. Possible values

are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. The restriction 0 < n has been violated.

2.5 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type ICFS control type (see Section 2.2.1), by reading an appropriate data specification file using the

subroutine ICFS read specfile. This facility is useful as it allows a user to change ICFS control parameters without

editing and recompiling programs that call ICFS.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by ICFS read specfile must start with a ”BEGIN ICFS” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ICFS (May 24, 2024) 5

ICFS GALAHAD

(.. lines ignored by ICFS_read_specfile ..)

BEGIN ICFS

keyword value

.......

keyword value

END

(.. lines ignored by ICFS_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN ICFS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN ICFS SPECIFICATION

and

END ICFS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN ICFS” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when ICFS read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by ICFS read specfile.

2.5.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL ICFS_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type ICFS control type (see Section 2.2.1). Default values should

have already been set, perhaps by calling ICFS initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.2.1) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.6 Information printed

If control%print level is positive, information about errors encountered will be printed on unit control%out.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 ICFS (May 24, 2024) GALAHAD

GALAHAD ICFS

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

number-of-icfs-vectors icfs vectors integer

initial-shift shift real

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: The module uses the GALAHAD packages GALAHAD SYMBOLS, GALAHAD SPECFILE

and GALAHAD SPACE.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: n > 0 .

Portability: ISO Fortran 2003. The package is thread-safe.

4 METHOD

The package computes incomplete Cholesky factors L of A so that

A+D = LL+E.

The pattern of entries in L match those in A with additional “fill-ins” controlled by the extra storage provided. The

shifted diagonal D whose values do not exceed a scalar shift α allows for indefinite A, and also guarantees stable

factors L. Increasing the extra storage provided generally decreases the size of the error matrix E, but increases the

cost of the algorithm.

Reference:

The method is described in detail in

C.J. Lin and J. J. Moreé. “Incomplete Cholesky factorizations with limited memory”. SIAM J. Sci. Computing. 21

(1999) 24–45.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ICFS (May 24, 2024) 7

ICFS GALAHAD

5 EXAMPLES OF USE

Suppose that

A =













2 1

1 5 1 1

1 1 1

1 7

1 2













and b =













3

8

3

8

3













,

where the missing entries in A are structural zeros. Then we may find suitable incomplete factors L, and subsequently
solve Ly = b and LT x = y using the following code; notice that we initialize b in x, overwrite this with y in the first
triangular solve, and finally recover x from y in the second solve:

PROGRAM ICFS_EXAMPLE ! GALAHAD 4.1 - 2022-12-04 AT 09:30 GMT.

USE GALAHAD_ICFS_double

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

TYPE (ICFS_data_type) :: data

TYPE (ICFS_control_type) control

TYPE (ICFS_inform_type) :: inform

INTEGER, PARAMETER :: n = 5

INTEGER, PARAMETER :: ne = 5

INTEGER, ALLOCATABLE, DIMENSION(:) :: PTR, ROW

REAL (KIND = wp), ALLOCATABLE, DIMENSION(:) :: DIAG, VAL

REAL (KIND = wp) :: X(n)

! allocate and set lower triangle of matrix in sparse by column form

ALLOCATE(PTR(n + 1), DIAG(n), VAL(ne), ROW(ne))

PTR = (/ 1, 2, 4, 5, 5, 5 /)

ROW = (/ 2, 3, 5, 4 /)

DIAG = (/ 2.0_wp, 5.0_wp, 1.0_wp, 7.0_wp, 2.0_wp /)

VAL = (/ 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /)

! problem setup complete

CALL ICFS_initialize(data, control, inform)

control%icfs_vectors = 1

! form and factorize the preconditioner, P = L LˆT

CALL ICFS_factorize(n, PTR, ROW, DIAG, VAL, data, control, inform)

IF (inform%status < 0) THEN

WRITE(6, ’(A, I0)’) &

’ Failure of ICFS_factorize with status = ’, inform%status

STOP

END IF

! use the factors to solve L LˆT x = b, with b input in x

X(: n) = (/ 3.0_wp, 8.0_wp, 3.0_wp, 8.0_wp, 3.0_wp /)

CALL ICFS_triangular_solve(n, X, .FALSE., data, control, inform)

CALL ICFS_triangular_solve(n, X, .TRUE., data, control, inform)

IF (inform%status == 0) THEN

WRITE(6, "(’ ICFS - Preconditioned solution is ’, 5F6.2)") X

ELSE

WRITE(6, "(’ ICFS - exit status = ’, I0)") inform%status

END IF

! clean up

CALL ICFS_terminate(data, control, inform)

DEALLOCATE(DIAG, VAL, ROW, PTR)

STOP

END PROGRAM ICFS_EXAMPLE

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 ICFS (May 24, 2024) GALAHAD

GALAHAD ICFS

The code produces the following output:

ICFS - Preconditioned solution is 1.00 1.00 1.00 1.00 1.00

6 APPENDIX

The original subroutine calls DICFS and DSTRSOL, as encoded in ICFS factorize and ICFS triangular solve,

may also be called as part of the package. To quote from the package source,

! Subroutine dicfs

!

! Given a symmetric matrix A in compressed column storage, this

! subroutine computes an incomplete Cholesky factor of A + alpha*D,

! where alpha is a shift and D is the diagonal matrix with entries

! set to the l2 norms of the columns of A.

!

! The subroutine statement is

!

! subroutine dicfs(n,nnz,a,adiag,acol_ptr,arow_ind,l,ldiag,lcol_ptr,

! lrow_ind,p,alpha,iwa,wa1,wa2)

!

! where

!

! n is an integer variable.

! On entry n is the order of A.

! On exit n is unchanged.

!

! nnz is an integer variable.

! On entry nnz is the number of nonzeros in the strict lower

! triangular part of A.

! On exit nnz is unchanged.

!

! a is a real array of dimension nnz.

! On entry a must contain the strict lower triangular part

! of A in compressed column storage.

! On exit a is unchanged.

!

! adiag is a real array of dimension n.

! On entry adiag must contain the diagonal elements of A.

! On exit adiag is unchanged.

!

! acol_ptr is an integer array of dimension n + 1.

! On entry acol_ptr must contain pointers to the columns of A.

! The nonzeros in column j of A must be in positions

! acol_ptr(j), ... , acol_ptr(j+1) - 1.

! On exit acol_ptr is unchanged.

!

! arow_ind is an integer array of dimension nnz.

! On entry arow_ind must contain row indices for the strict

! lower triangular part of A in compressed column storage.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ICFS (May 24, 2024) 9

ICFS GALAHAD

! On exit arow_ind is unchanged.

!

! l is a real array of dimension nnz+n*p.

! On entry l need not be specified.

! On exit l contains the strict lower triangular part

! of L in compressed column storage.

!

! ldiag is a real array of dimension n.

! On entry ldiag need not be specified.

! On exit ldiag contains the diagonal elements of L.

!

! lcol_ptr is an integer array of dimension n + 1.

! On entry lcol_ptr need not be specified.

! On exit lcol_ptr contains pointers to the columns of L.

! The nonzeros in column j of L are in the

! lcol_ptr(j), ... , lcol_ptr(j+1) - 1 positions of l.

!

! lrow_ind is an integer array of dimension nnz+n*p.

! On entry lrow_ind need not be specified.

! On exit lrow_ind contains row indices for the strict lower

! triangular part of L in compressed column storage.

!

! p is an integer variable.

! On entry p specifes the amount of memory available for the

! incomplete Cholesky factorization.

! On exit p is unchanged.

!

! alpha is a real variable.

! On entry alpha is the initial guess of the shift.

! On exit alpha is final shift

!

! iwa is an integer work array of dimension 3*n.

!

! wa1 is a real work array of dimension n.

!

! wa2 is a real work array of dimension n.

!

! Subroutine dstrsol

!

! This subroutine solves the triangular systems L*x = r or L’*x = r.

!

! The subroutine statement is

!

! subroutine dstrsol(n,l,ldiag,jptr,indr,r,task)

!

! where

!

! n is an integer variable.

! On entry n is the order of L.

! On exit n is unchanged.

!

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 ICFS (May 24, 2024) GALAHAD

GALAHAD ICFS

! l is a real array of dimension *.

! On entry l must contain the nonzeros in the strict lower

! triangular part of L in compressed column storage.

! On exit l is unchanged.

!

! ldiag is a real array of dimension n.

! On entry ldiag must contain the diagonal elements of L.

! On exit ldiag is unchanged.

!

! jptr is an integer array of dimension n + 1.

! On entry jptr must contain pointers to the columns of A.

! The nonzeros in column j of A must be in positions

! jptr(j), ... , jptr(j+1) - 1.

! On exit jptr is unchanged.

!

! indr is an integer array of dimension *.

! On entry indr must contain row indices for the strict

! lower triangular part of L in compressed column storage.

! On exit indr is unchanged.

!

! r is a real array of dimension n.

! On entry r must contain the vector r.

! On exit r contains the solution vector x.

!

! task is a character variable of length 60.

! On entry

! task(1:1) = ’N’ if we need to solve L*x = r

! task(1:1) = ’T’ if we need to solve L’*x = r

! On exit task is unchanged.

!

! MINPACK-2 Project. October 1998.

! Argonne National Laboratory.

! Chih-Jen Lin and Jorge J. More’.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD ICFS (May 24, 2024) 11

