
GALAHAD HASH

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package sets up a dictionary of words, allowing a user to insert new words, and search for and remove

existing words. It also allows the user to rebuild the dictionary if the maximum allowed word-size, or the total space

provided, proves too small. Provided sufficient room is allowed, the expected number of operations required for an

insertion, search or removal is O(1). The method is based on the chained scatter table insertion method of F. A.

Williams.

ATTRIBUTES — Versions: GALAHAD HASH single, GALAHAD HASH double. Uses: GALAHAD SYMBOLS, GALAHAD-

SPECFILE and GALAHAD SPACE. Date: July 2021. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Lan-

guage: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD HASH single

with the obvious substitution GALAHAD HASH double, GALAHAD HASH single 64 and GALAHAD HASH double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived types HASH time type, HASH control type,

HASH inform type, HASH data type and (Section 2.2) and the subroutines HASH initialize, HASH insert, HASH-

search, HASH remove, HASH rebuild HASH terminate, (Section 2.3) and HASH read specfile (Section 2.5) must

be renamed on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 The derived data types

Three derived data types are accessible from the package.

2.2.1 The derived data type for holding control parameters

The derived data type HASH control type is used to hold controlling data. Default values may be obtained by calling

HASH initialize (see Section 2.3.1), while components may also be changed by calling GALAHAD HASH read spec

(see Section 2.5.1). The components of HASH control type are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD HASH (May 24, 2024) 1

HASH GALAHAD

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in HASH solve and HASH terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in HASH solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

2.2.2 The derived data type for holding informational parameters

The derived data type HASH inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of HASH inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.4 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

2.2.3 The derived data type for holding problem data

The derived data type HASH data type is used to hold all the data associated with the dictionary built and maintained

between calls of HASH procedures. This data should be preserved, untouched from the initial call to HASH initialize

to the final call to HASH terminate.

2.3 Argument lists and calling sequences

All the words in the dictionary are entered into a so-called chained scatter table. Before the first word is entered,

the table must be initialized by a call to HASH initialize to set default values, and initialize private data. Words

are inserted in the table by calling HASH insert. The table may be searched for an existing word with a call to

HASH search; an existing word may be flagged as deleted from the table by calling HASH remove. Finally, the table

may be rebuilt to allow for an increase in the maximum allowed word-size or the total number of entries in the table

with a call to HASH rebuild. All internally allocated workspace may be removed by calling HASH terminate.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 HASH (May 24, 2024) GALAHAD

GALAHAD HASH

2.3.1 The initialization subroutine

Dictionary initialization and default control parameters are provided as follows:

CALL HASH initialize(nchar, length, data, control, inform)

ncharis a scalar INTENT(IN) argument of type INTEGER(ip) that should be sent to an upper bound on the number

of characters in each word that may be inserted into the dictionary.

length is a scalar INTENT(IN) argument of type INTEGER(ip) that should be sent to an upper bound on the number

of words that may be inserted into the dictionary.

data is a scalar INTENT(INOUT) argument of type HASH data type (see Section 2.2.3). It is used to hold data about

the dictionary.

control is a scalar INTENT(OUT) argument of type HASH control type (see Section 2.2.1). On exit, control

contains default values for the components as described in Section 2.2.1. These values should only be changed

after calling HASH initialize.

inform is a scalar INTENT(OUT) argument of type HASH inform type (see Section 2.2.2). A successful call to

HASH initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.4.

2.3.2 The insertion subroutine

A word may be inserted into the dictionary as follows:

CALL HASH insert(nchar, field, position, data, control, inform)

ncharis a scalar INTENT(IN) argument of type INTEGER(ip) that should be sent to an upper bound on the number

of characters in each word that may be inserted into the dictionary.

field is an array INTENT(IN) argument of length nchar and type default CHARACTER that contains the characters of

the word that is to be inserted into the dictionary. Component field(j) should be filled with the j-th character

of the word. If the word contains fewer than nchar characters, it should be padded with blanks.

position is a scalar INTENT(OUT) argument of type INTEGER(ip) that gives the index of the table that data for the

word occupies after insertion. If position=0 on exit, there is no more room in the dictionary, and it should be

rebuilt (see §2.3.5) with more space before trying the insertion again.

data is a scalar INTENT(INOUT) argument of type HASH data type (see Section 2.2.3). It is used to hold data about

the dictionary.

control is a scalar INTENT(IN) argument of type HASH control type (see Section 2.2.1). On exit, control con-

tains default values for the components as described in Section 2.2.1. These values should only be changed after

calling HASH initialize.

inform is a scalar INTENT(INOUT) argument of type HASH inform type (see Section 2.2.2). A successful call to

HASH initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.4.

2.3.3 The search subroutine

A word may be searched for in the dictionary as follows:

CALL HASH search(nchar, field, position, data, control, inform)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD HASH (May 24, 2024) 3

HASH GALAHAD

ncharis a scalar INTENT(IN) argument of type INTEGER(ip) that should be sent to an upper bound on the number

of characters in each word that may be inserted into the dictionary.

field is an array INTENT(IN) argument of length nchar and type default CHARACTER that contains the characters

of the word that is to be searched for in the dictionary. Component field(j) should be filled with the j-th

character of the word. If the word contains fewer than nchar characters, it should be padded with blanks.

position is a scalar INTENT(OUT) argument of type INTEGER(ip) that gives the index of the table that data for

the word occupies. If the word is not found, position will be 0, and if the word has been removed, it will be

negative (and - position was the index that it once occupied).

data is a scalar INTENT(INOUT) argument of type HASH data type (see Section 2.2.3). It is used to hold data about

the dictionary.

control is a scalar INTENT(IN) argument of type HASH control type (see Section 2.2.1). On exit, control con-

tains default values for the components as described in Section 2.2.1. These values should only be changed after

calling HASH initialize.

inform is a scalar INTENT(INOUT) argument of type HASH inform type (see Section 2.2.2). A successful call to

HASH initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.4.

2.3.4 The removal subroutine

A word may be removed from the dictionary as follows:

CALL HASH remove(nchar, field, position, data, control, inform)

ncharis a scalar INTENT(IN) argument of type INTEGER(ip) that should be sent to an upper bound on the number

of characters in each word that may be inserted into the dictionary.

field is an array INTENT(IN) argument of length nchar and type default CHARACTER that contains the characters of

the word that is to be inserted into the dictionary. Component field(j) should be filled with the j-th character

of the word. If the word contains fewer than nchar characters, it should be padded with blanks.

positionis a scalar INTENT(OUT) argument of type INTEGER(ip) that gives the index of the table that data for the word

occupies before it was removed. If the word is not found, position will be 0.

data is a scalar INTENT(INOUT) argument of type HASH data type (see Section 2.2.3). It is used to hold data about

the dictionary.

control is a scalar INTENT(IN) argument of type HASH control type (see Section 2.2.1). On exit, control con-

tains default values for the components as described in Section 2.2.1. These values should only be changed after

calling HASH initialize.

inform is a scalar INTENT(INOUT) argument of type HASH inform type (see Section 2.2.2). A successful call to

HASH initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.4.

2.3.5 The rebuilding subroutine

The dictionary may be rebuilt to increase in its length as follows:

CALL HASH rebuild(length, new length, moved to, data, control, inform)

length is a scalar INTENT(IN) argument of type INTEGER(ip) that should be the current length of the dictionary.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 HASH (May 24, 2024) GALAHAD

GALAHAD HASH

new length is a scalar INTENT(IN) argument of type INTEGER(ip) that should be the new length of the dictionary.

moved to is an array INTENT(OUT) argument of length length and type INTEGER(ip) that gives the position in the

new table that the old table entry has been moved to. Specifically, if moved to(i) is nonzero, entry i has moved

to position moved to(i) in the new dictionary, while if moved to(i)=0, entry i was not previously occupied.

data is a scalar INTENT(INOUT) argument of type HASH data type (see Section 2.2.3). It is used to hold data about

the dictionary.

control is a scalar INTENT(IN) argument of type HASH control type (see Section 2.2.1). On exit, control con-

tains default values for the components as described in Section 2.2.1. These values should only be changed after

calling HASH initialize.

inform is a scalar INTENT(INOUT) argument of type HASH inform type (see Section 2.2.2). A successful call to

HASH initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.4.

2.3.6 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL HASH terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type HASH data type exactly as for HASH solve, which must not have

been altered by the user since the last call to HASH initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type HASH control type exactly as for HASH solve.

inform is a scalar INTENT(OUT) argument of type HASH inform type exactly as for HASH solve. Only the com-

ponent status will be set on exit, and a successful call to HASH terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.4.

2.4 Warning and error messages

A negative value of inform%status on exit from HASH solve or HASH terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. A workspace allocation error occurred. A message indicating the offending array is written on unit control%error,

and the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A workspace deallocation error occurred. A message indicating the offending array is written on unit control%error

and the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-99. The current dictionary is full and should be rebuilt with more space (see §2.3.5).

2.5 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type HASH control type (see Section 2.2.1), by reading an appropriate data specification file using the

subroutine HASH read specfile. This facility is useful as it allows a user to change HASH control parameters without

editing and recompiling programs that call HASH.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD HASH (May 24, 2024) 5

HASH GALAHAD

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by HASH read specfile must start with a ”BEGIN HASH” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by HASH_read_specfile ..)

BEGIN HASH

keyword value

.......

keyword value

END

(.. lines ignored by HASH_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN HASH” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN HASH SPECIFICATION

and

END HASH SPECIFICATION

are acceptable. Furthermore, between the “BEGIN HASH” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when HASH read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by HASH read specfile.

2.5.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL HASH_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type HASH control type (see Section 2.2.1). Default values should

have already been set, perhaps by calling HASH initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.2.1) of control that each affects are given in Table 2.1 on the facing page.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 HASH (May 24, 2024) GALAHAD

GALAHAD HASH

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

Table 2.1: Specfile commands and associated components of control.

2.6 Information printed

If control%print level is positive, basic information about the progress of the algorithm will be printed on unit

control%out.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: HASH solve calls the GALAHAD packages GALAHAD SYMBOLS, GALAHAD SPECFILE

and GALAHAD SPACE.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: None.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

To insert a word in the table, the word is first mapped onto an integer value, the entry integer. This mapping is often

called hashing. As many words may be mapped to the same value (a collision), a chain of used locations starting

from the entry integer is searched until an empty location is found. The word is inserted in the table at this point and

the chain extended to the next unoccupied entry. The hashing routine is intended to reduce the number of collisions.

Words are located and flagged as deleted from the table in exactly the same way; the word is hashed and the resulting

chain searched until the word is matched or the end of the chain reached. Provided there is sufficient space in the table,

the expected number of operations needed to perform an insertion, search or removal is O(1).

References:

The chained scatter table search and insertion method is due to

F. A. Williams (1959), “Handling identifies as internal symbols in language processors”, Communications of the ACM

2(6) pp 21-24.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD HASH (May 24, 2024) 7

HASH GALAHAD

5 EXAMPLES OF USE

As a simple example, we read a set of words into a table and then test if a second set of words is present. Each set is

terminated by a blank. A maximum word length of 10 characters is specified. We may use the following code.

! THIS VERSION: GALAHAD 4.1 - 2022-11-25 AT 09:00 GMT.

PROGRAM GALAHAD_HASH_EXAMPLE

USE GALAHAD_HASH

IMPLICIT NONE

TYPE (HASH_data_type) :: data

TYPE (HASH_control_type) :: control

TYPE (HASH_inform_type) :: inform

INTEGER, PARAMETER :: nchar = 10

INTEGER, PARAMETER :: length = 100

INTEGER, PARAMETER :: new_length = 200

INTEGER, PARAMETER :: nkeys1 = 8

INTEGER, PARAMETER :: nkeys2 = 10

INTEGER, PARAMETER :: nkeys3 = 3

INTEGER, PARAMETER :: nkeys4 = 3

INTEGER, PARAMETER :: nkeys5 = 11

INTEGER :: i, position

INTEGER :: MOVED_TO(length)

CHARACTER (LEN = 10) :: FIELD1(nkeys1) = &

(/ ’ALPHA ’, ’BETA ’, ’GAMMA ’, ’DELTA ’, &

’X111111111’, ’X111111112’, ’X111111111’, ’X111111114’ /)

CHARACTER (LEN = 10) :: FIELD2(nkeys2) = &

(/ ’ALPHA ’, ’BETA ’, ’GAMMA ’, ’DELTA ’, &

’EPSILON ’, ’X11111112 ’, ’X111111113’, ’X111111114’, &

’X111111111’, ’OMEGA ’ /)

CHARACTER (LEN = 10) :: FIELD3(nkeys3) = &

(/ ’BETA ’, ’X111111112’, ’OMEGA ’ /)

CHARACTER (LEN = 10) :: FIELD4(nkeys4) = &

(/ ’OMEGA ’, ’A111111111’, ’P110111111’ /)

CHARACTER (LEN = 10) :: FIELD5(nkeys5) = &

(/ ’ALPHA ’, ’BETA ’, ’GAMMA ’, &

’DELTA ’, ’EPSILON ’, ’X111111112’, ’X111111113’, &

’X111111114’, ’X111111111’, ’OMEGA ’, ’X1111 1111’ /)

! set up the initial table

CALL HASH_initialize(nchar, length, data, control, inform)

! store a set of words in the table

WRITE(6, "(/, ’ initial insertion’, /)")

DO i = 1, nkeys1

CALL HASH_insert(nchar, FIELD1(i), position, data, control, inform)

IF (position > 0) THEN

WRITE(6, "(’ word ’, A10, ’ inserted in table position ’, I3)") &

FIELD1(i), position

ELSE

WRITE(6, "(’ word ’, A10, ’ already in table position ’, I3)") &

FIELD1(i), - position

END IF

END DO

! search the table for a second set of words

DO i = 1, nkeys2

CALL HASH_search(nchar, FIELD2(i), position, data, control, inform)

IF (position > 0) THEN

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 HASH (May 24, 2024) GALAHAD

GALAHAD HASH

WRITE(6, "(’ word ’, A10, ’ found in table position ’, I3)") &

FIELD2(i), position

ELSE

WRITE(6, "(’ word ’, A10,’ absent from table’)") FIELD2(i)

END IF

END DO

! remove a third set of words from the table

WRITE(6, "(/, ’ word removal’, /)")

DO i = 1, nkeys3

CALL HASH_remove(nchar, FIELD3(i), position, data, control, inform)

IF (position > 0) THEN

WRITE(6, "(’ word ’, A10,’ removed from table position ’, I3)") &

FIELD3(i), position

ELSE

WRITE(6, "(’ word ’, A10,’ absent from table’)") FIELD3(i)

END IF

END DO

! re-search the table for the second set of words

DO i = 1, nkeys2

CALL HASH_search(nchar, FIELD2(i), position, data, control, inform)

IF (position > 0) THEN

WRITE(6, "(’ word ’, A10, ’ found in table position ’, I3)") &

FIELD2(i), position

ELSE

WRITE(6, "(’ word ’, A10,’ absent from table’)") FIELD2(i)

END IF

END DO

! increase the table size

WRITE(6, "(/, ’ increase table size’, /) ")

CALL HASH_rebuild(length, new_length, MOVED_TO, data, control, inform)

DO i = 1, length

IF (MOVED_TO(i) > 0) WRITE(6, "(’ table entry in position ’, &

& I3, ’ moved to position ’, I3)") i, MOVED_TO(i)

END DO

! store a fourth set of words in the table

WRITE(6, "(/, ’ further insertion’, /)")

DO i = 1, nkeys4

CALL HASH_insert(nchar, FIELD4(i), position, data, control, inform)

IF (position > 0) THEN

WRITE(6, "(’ word ’, A12, ’ inserted in table position ’, I3)") &

FIELD4(i), position

ELSE

WRITE(6, "(’ word ’, A12, ’ already in table position ’, I3)") &

FIELD4(i), - position

END IF

END DO

! re-search the table for the second set of words augmented with a further word

DO i = 1, nkeys5

CALL HASH_search(nchar, FIELD5(i), position, data, control, inform)

IF (position > 0) THEN

WRITE(6, "(’ word ’, A12, ’ found in table position ’, I3)") &

FIELD5(i), position

ELSE

WRITE(6, "(’ word ’, A12, ’ absent from table’)") FIELD5(i)

END IF

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD HASH (May 24, 2024) 9

HASH GALAHAD

END DO

! deallocate internal arrays

CALL HASH_terminate(data, control, inform)

STOP

END PROGRAM GALAHAD_HASH_EXAMPLE

The code produces the following output:

initial insertion

word ALPHA inserted in table position 42

word BETA inserted in table position 65

word GAMMA inserted in table position 60

word DELTA inserted in table position 56

word X111111111 inserted in table position 68

word X111111112 inserted in table position 32

word X111111111 already in table position 68

word X111111114 inserted in table position 57

word ALPHA found in table position 42

word BETA found in table position 65

word GAMMA found in table position 60

word DELTA found in table position 56

word EPSILON absent from table

word X11111112 absent from table

word X111111113 absent from table

word X111111114 found in table position 57

word X111111111 found in table position 68

word OMEGA absent from table

word removal

word BETA removed from table position 65

word X111111112 removed from table position 32

word OMEGA absent from table

word ALPHA found in table position 42

word BETA absent from table

word GAMMA found in table position 60

word DELTA found in table position 56

word EPSILON absent from table

word X11111112 absent from table

word X111111113 absent from table

word X111111114 found in table position 57

word X111111111 found in table position 68

word OMEGA absent from table

increase table size

table entry in position 42 moved to position 157

table entry in position 56 moved to position 130

table entry in position 57 moved to position 86

table entry in position 60 moved to position 43

table entry in position 68 moved to position 90

further insertion

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 HASH (May 24, 2024) GALAHAD

GALAHAD HASH

word OMEGA inserted in table position 57

word A111111111 inserted in table position 7

word P110111111 inserted in table position 194

word ALPHA found in table position 157

word BETA absent from table

word GAMMA found in table position 43

word DELTA found in table position 130

word EPSILON absent from table

word X111111112 absent from table

word X111111113 absent from table

word X111111114 found in table position 86

word X111111111 found in table position 90

word OMEGA found in table position 57

word X1111 1111 absent from table

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD HASH (May 24, 2024) 11

