
GALAHAD GLTR

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given real n by n symmetric matrices H and M (with M positive definite), a real n vector c and scalars ∆ > 0 and

f0, this package finds an approximate minimizer of the quadratic objective function 1
2 xT Hx+ cT x+ f0, where

the vector x is required to satisfy the constraint ‖x‖M ≤ ∆, and where the M-norm of x is ‖x‖M =
√

xT Mx. This

problem commonly occurs as a trust-region subproblem in nonlinear optimization calculations. The method may

be suitable for large n as no factorization of H is required. Reverse communication is used to obtain matrix-vector

products of the form Hz and M−1z.

The package may also be used to solve the related problem in which x is instead required to satisfy the equality

constraint ‖x‖M = ∆.

ATTRIBUTES — Versions: GALAHAD GLTR single, GALAHAD GLTR double. Uses: GALAHAD SYMBOLS, GALAH-

AD SPACE, GALAHAD RAND, GALAHAD NORMS, GALAHAD ROOTS, GALAHAD SPECFILE, *TTRF. Date: April 1997. Origin:

N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD GLTR single

with the obvious substitution GALAHAD GLTR double, GALAHAD GLTR single 64 and GALAHAD GLTR double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived types GLTR control type, GL-

TR inform type, GLTR data type, (Section 2.2) and the subroutines GLTR initialize, GLTR solve, GLTR terminate

(Section 2.3) and GLTR read specfile (Section 2.7) must be renamed on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 The derived data types

Three derived data types are accessible from the package.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD GLTR (May 24, 2024) 1

GLTR GALAHAD

2.2.1 The derived data type for holding control parameters

The derived data type GLTR control type is used to hold controlling data. Default values may be obtained by calling

GLTR initialize (see Section 2.3.1). The components of GLTR control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in GLTR solve and GLTR terminate is suppressed if error≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in GLTR solve is suppressed if out< 0. The default is out = - 1.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level≤ 0. If print level = 1 a single line

of output will be produced for each iteration of the process. If print level ≥ 2 this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

itmax is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which will be allowed

in GLTR solve. If itmax is set to a negative number, it will be reset by GLTR solve to n. The default is itmax

= -1.

lanczos itmax is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations that may

be performed when the iterates encounter the boundary of the constraint. If lanczos itmax is set to a negative

number, it will be reset by GLTR solve to n. The default is lanczos itmax = -1.

unitm is a scalar variable of type default LOGICAL, that must be set .TRUE. if the matrix M is the identity matrix, and

.FALSE. otherwise. The default is unitm = .TRUE..

extra vectors is a scalar variable of type INTEGER(ip), that specifies the number of additional vectors of length n

that will be allocated to try to speed up the computation if the constraint boundary is encountered. The default

is extra vectors = 0.

steihaug toint is a scalar variable of type default LOGICAL, which must be set .TRUE. if the algorithm is required to

stop at the first point on the boundary of the constraint that is encountered, and .FALSE. if the constraint bound-

ary is to be investigated further. Setting steihaug toint to .TRUE. can reduce the amount of computation at

the expense of obtaining a poorer estimate of the solution. The default is steihaug toint = .FALSE..

boundary is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user believes that the solution

will occur on the constraint boundary, and .FALSE. otherwise. A correct setting of boundary may reduce the

amount of computation performed. The default is boundary = .FALSE..

equality problem is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user requires that the

solution occur on the constraint boundary (i.e., that the inequality constraint be replaced by ‖x‖M = ∆), and

.FALSE. otherwise. The default is equality problem = .FALSE..

space critical is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the package

to allocate as little internal storage as possible, and .FALSE. otherwise. The package may be more efficient if

space critical is set .FALSE.. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the

package to return to the user in the unlikely event that an internal array deallocation fails, and .FALSE. if the

package should be allowed to try to continue. The default is deallocate error fatal = .FALSE..

stop relative and stop absolute are scalar variables of type REAL(rp), that holds the relative and absolute con-

vergence tolerances (see Section 4). The computed solution x is accepted by GLTR solve if the computed value

of ‖Hx+λMx+ c‖M−1 is less than or equal to max(‖c‖M−1∗ stop relative, stop absolute), where λ is an

estimate of the Lagrange multiplier associated with the trust-region constraint. The defaults are stop relative

=
√

u and stop absolute = 0.0, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD GLTR double).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 GLTR (May 24, 2024) GALAHAD

GALAHAD GLTR

f min is a scalar variable of type default REAL(rp), that specifies the smallest value of the objective function that is

allowed without regarding the problem as being unbounded from below. The default is f min = -HUGE(1.0)/2.0

(-HUGE(1.0D0)/2.0D0 in GALAHAD GLTR double)

fraction opt is a scalar variable of type default REAL(rp), that specifies the fraction of the optimal value which

is to be considered acceptable by the algorithm. A negative value is considered to be zero, and a value of

larger than one is considered to be one. Reducing fraction opt below one will result in a reduction of the

computation performed at the expense of an inferior optimal value. The default is fraction opt = 1.0.

f 0 is a scalar variable of type default REAL(rp), that gives the value of the constant term f0 in the quadratic objective

function. This value has no effect on the computed minimizer x. The default is f 0 = 0.0.

rminvr zero is a scalar variable of type default REAL(rp), that gives the smallest value that the square of the

M-norm of the gradient of the objective function may be before it is considered to be zero. The default is

rminvr zero = 10 u, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD GLTR double).

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

2.2.2 The derived data type for holding informational parameters

The derived data type GLTR inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of GLTR inform type are:

status is a scalar variable of type INTEGER(ip), that gives the current status of the algorithm. See Sections 2.4 and

2.5 for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last internal array allocation or

deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

multiplier is a scalar variable of type default REAL(rp), that holds the value of the Lagrange multiplier associated

with the constraint.

mnormx is a scalar variable of type default REAL(rp), that holds the current value of ‖x‖M.

leftmost is a scalar variable of type default REAL(rp), that holds an estimate of the leftmost eigenvalue of the

matrix pencil (H,M).

iter is a scalar variable of type INTEGER(ip), that holds the current number of Lanczos vectors used.

iter pass2 is a scalar variable of type INTEGER(ip), that holds the current number of Lanczos vectors used in the

second pass.

negative curvature is a scalar variable of type default LOGICAL, that is set .TRUE. if H has been found to be

indefinite during the calculation and .FALSE. otherwise.

For backward compatibility with an earlier version of the package, there is an equivalent type GLTR info type, and

the two names may be used interchangeably.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD GLTR (May 24, 2024) 3

GLTR GALAHAD

2.2.3 The derived data type for holding problem data

The derived data type GLTR data type is used to hold all the data for a particular problem between calls of GLTR

procedures. This data should be preserved, untouched, from the initial call to GLTR initialize to the final call to

GLTR terminate.

2.3 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutine GLTR initialize is used to set default values, and initialize private data.

2. The subroutine GLTR solve is called repeatedly to solve the problem. On each exit, the user may be expected

to provide additional information and, if necessary, re-enter the subroutine.

3. The subroutine GLTR terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by GLTR solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem since GLTR initialize cannot test for this situation, and any existing

associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONAL arguments.

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL GLTR initialize(data, control, inform)

data is a scalar INTENT(INOUT)argument of type GLTR data type (see Section 2.2.3). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT)argument of type GLTR control type (see Section 2.2.1). On exit, control con-

tains default values for the components as described in Section 2.2.1. These values should only be changed after

calling GLTR initialize.

inform is a scalar INTENT(OUT) argument of type GLTR inform type (see Section 2.2.2). A successful call to GL-

TR initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

2.3.2 The optimization problem solution subroutine

The optimization problem solution algorithm is called as follows:

CALL GLTR solve(n, radius, f, X, R, VECTOR, data, control, inform)

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of unknowns, n. Re-

striction: n > 0.

radius is a scalar INTENT(IN) variable of type default REAL(rp), that must be set on initial entry to the value of

the radius of the quadratic constraint, ∆. Restriction: ∆ > 0.

f is a scalar INTENT(INOUT) variable of type default REAL(rp), that holds an estimate of the optimal value of

the quadratic objective function. On initial entry, f need not be set. It must not be changed between entries. On

exit, f contains the current best estimate of the optimal objective value.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 GLTR (May 24, 2024) GALAHAD

GALAHAD GLTR

X is an array INTENT(INOUT) argument of dimension n and type REAL(rp), that holds an estimate of the solution

x of the linear system. On initial entry, X need not be set. It must not be changed between entries. On exit, X

contains the current best estimate of the solution.

R is an array INTENT(INOUT) argument of dimension n and type REAL(rp), that is used to hold the gradient

Hx+ c of the objective function at the current estimate of the solution. On initial entry, R must contain the

vector c. If inform%status = 5 on exit, it must be reset to c; otherwise it must be left unchanged. On exit, R

contains the gradient of the objective function at the current best estimate of the solution.

VECTOR is an array INTENT(INOUT) argument of dimension n and type REAL(rp), that is used to pass information

from and to GLTR solve, as explained in Section 2.4. On initial entry, VECTOR need not be set. On exit, the

actual content of the array depends on the value of the parameter inform%status (see Section 2.4).

data is a scalar INTENT(INOUT)argument of type GLTR data type (see Section 2.2.3). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to GLTR initialize.

control is a scalar INTENT(IN) argument of type GLTR control type. (see Section 2.2.1). Default values may be

assigned by calling GLTR initialize prior to the first call to GLTR solve.

inform is a scalar INTENT(INOUT)argument of type GLTR inform type (see Section 2.2.2). On initial entry, the

component status must be set to 1. The remaining components need not be set. A successful call to GL-

TR solve is indicated when the component status has the value 0. For other return values of status, see

Sections 2.4 and 2.5.

2.3.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL GLTR terminate(data, control, inform)

data is a scalar INTENT(INOUT)argument of type GLTR data type exactly as for GLTR solve that must not have

been altered by the user since the last call to GLTR initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN)argument of type GLTR control type exactly as for GLTR solve.

inform is a scalar INTENT(OUT)argument of type GLTR inform type exactly as for GLTR solve. Only the compo-

nent status will be set on exit, and a successful call to GLTR terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.5.

2.4 Reverse communication

A positive value of inform%status on exit from GLTR solve indicates that the user needs to take appropriate action

before re-entering the subroutine. Possible values are:

2. The user must perform the preconditioning operation

y := M−1z,

and recall GLTR solve. The vector z is available in the array VECTOR, and the result y must be placed in VECTOR.

No argument except VECTOR should be altered before recalling GLTR solve. This return can only occur when

control%unitm is .FALSE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD GLTR (May 24, 2024) 5

GLTR GALAHAD

3. The user must perform the matrix-vector product

y := Hz

and recall GLTR solve. The vector z is available in the array VECTOR, and the result y must be placed in VECTOR.

No argument except VECTOR should be altered before recalling GLTR solve.

5. The user should reset R to c and recall GLTR solve. No argument except R should be altered before recalling

GLTR solve.

2.5 Warning and error messages

A negative value of inform%status on exit from GLTR solve or GLTR terminate indicates that an error might have

occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. (GLTR solve only) One of the restrictions n > 0 or radius > 0 has been violated.

-15. (GLTR solve only) The matrix M appears not to be positive definite.

-18. (GLTR solve only) More than control%itmax iterations have been performed without obtaining convergence.

-30. (GLTR solve only) The constraint boundary has been encountered when the input value of control%steihaug-

toint was set .TRUE.. The solution is unlikely to have achieved the accuracy required by control%stop rela-

tive and control%stop absolute.

-44 (GLTR solve only) An objective function value smaller than control%f min has been detected.

2.6 Re-entry with a new value of ∆

It commonly happens that, having solved the problem for a particular value of the radius ∆, a user now wishes to

solve the problem for a different value of ∆. Rather than restarting the calculation with inform%status = 1, a

useful approximation may be found resetting radius to the new required value and R to c, and recalling GLTR solve

with inform%status = 4 and the remaining arguments unchanged. This will determine the best solution within the

Krylov space investigated in the previous minimization (see Section 4).

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type GLTR control type (see Section 2.2.1), by reading an appropriate data specification file using the

subroutine GLTR read specfile. This facility is useful as it allows a user to change GLTR control parameters without

editing and recompiling programs that call GLTR.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 GLTR (May 24, 2024) GALAHAD

GALAHAD GLTR

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by GLTR read specfile must start with a ”BEGIN GLTR” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by GLTR_read_specfile ..)

BEGIN GLTR

keyword value

.......

keyword value

END

(.. lines ignored by GLTR_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN GLTR” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN GLTR SPECIFICATION

and

END GLTR SPECIFICATION

are acceptable. Furthermore, between the “BEGIN GLTR” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when GLTR read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by GLTR read specfile.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL GLTR_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type GLTR control type (see Section 2.2.1). Default values should

have already been set, perhaps by calling GLTR initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.2.1) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD GLTR (May 24, 2024) 7

GLTR GALAHAD

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-number-of-iterations %itmax integer

maximum-number-of-Lanczos-iterations %lanczos itmax integer

number-extra-n-vectors-used %extra vectors integer

relative-accuracy-required %stop relative real

absolute-accuracy-required %stop absolute real

small-f-stop %f min real

fraction-optimality-required %fraction opt real

constant-term-in-objective %f 0 real

zero-gradient-tolerance %rminvr zero real

two-norm-trust-region %unitm logical

stop-as-soon-as-boundary-encountered %steihaug toint logical

solution-is-likely-on-boundary %boundary logical

equality-problem %equality problem logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

Table 2.1: Specfile commands and associated components of control.

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. So

long as the current estimate lies within the constraint boundary, this will include the iteration number, the value of the

objective function, the norm of the gradient, the step taken, the two-norm of the latest search direction, the norm ‖x‖M,

and the curvature of H observed along the current search direction (see Section 4). A further message will be printed

if the constraint boundary is encountered during the current iteration. Thereafter, the one-line summary will record the

iteration number, the value of the objective function, the norm of the gradient of the Lagrangian, ‖Hx+λMx+c‖M−1,

the value of the Lagrange multiplier, the number of iterations taken to solve the “tridiagonal” subproblem and the exit

status from this calculation (once again, see Section 4). If control%print level ≥ 2, this output will be increased to

provide significant detail of each iteration. This extra output includes a complete history of the inner iteration required

to solve the “tridiagonal” subproblem, and records the leftmost eigenvalue of Tk (if needed), along with the estimates

of the Lagrange multipliers and the norm ‖x‖M generated during the inner iteration.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: GLTR solve calls the LAPACK subroutine *PTTRF, where * is S for the default real

version and D for the double precision version.

Other modules used directly: GLTR solve calls the GALAHAD packages GALAHAD SYMBOLS, GALAHAD SPACE, GA-

LAHAD RAND, GALAHAD NORMS, GALAHAD ROOTS and GALAHAD SPECFILE.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 GLTR (May 24, 2024) GALAHAD

GALAHAD GLTR

Restrictions: n > 0, ∆ > 0.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x necessarily satisfies the optimality condition Hx+λMx+ c = 0, where λ ≥ 0 is a Lagrange

multiplier corresponding to the constraint ‖x‖M ≤ ∆. In addition, the matrix H+λM will be positive definite.

The method is iterative. Starting with the vector M−1c, a matrix of Lanczos vectors is built one column at a time so

that the k-th column is generated during iteration k. These columns span a so-called Krylov space. The resulting n by

k matrix Qk has the property that QT
k HQk = Tk, where Tk is tridiagonal. An approximation to the required solution

may then be expressed formally as

xk+1 = Qkyk

where yk solves the “tridiagonal” subproblem of minimizing

1
2 yT Tky+ ‖c‖M−1eT

1 y subject to the constraint ‖y‖2 ≤ ∆, (4.1)

and where e1 is the first unit vector.

If the solution to (4.1) lies interior to the constraint, the required solution xk+1 may simply be found as the k-th

(preconditioned) conjugate-gradient iterate. This solution can be obtained without the need to access the whole matrix

Qk. These conjugate-gradient iterates increase in M-norm, and thus once one of them exceeds ∆ in M-norm, the

solution must occur on the constraint boundary. Thereafter, the solution to (4.1) is less easy to obtain, but an efficient

inner iteration to solve (4.1) is nonetheless achievable because Tk is tridiagonal. It is possible to observe the optimality

measure ‖Hx+λMx+c‖M−1 without computing xk+1, and thus without needing Qk. Once this measure is sufficiently

small, a second pass is required to obtain the estimate xk+1 from yk. As this second pass is an additional expense, a

record is kept of the optimal objective function values for each value of k, and the second pass is only performed so

far as to ensure a given fraction of the final optimal objective value. Large savings may be made in the second pass by

choosing the required fraction to be significantly smaller than one.

A cheaper alternative is to use the Steihuag-Toint strategy, which is simply to stop at the first boundary point

encountered along the piecewise linear path generated by the conjugate-gradient iterates. Note that if H is significantly

indefinite, this strategy often produces a far from optimal point, but is effective when H is positive definite or almost

so.

Reference: The method is described in detail in

N. I. M. Gould, S. Lucidi, M. Roma and Ph. L. Toint, Solving the trust-region subproblem using the Lanczos method.

SIAM Journal on Optimization 9:2 (1999), 504-525.

5 EXAMPLE OF USE

Suppose we wish to solve a problem in 10,000 unknowns, whose data is

H =

−2 1

1 −2 .

. . .

. −2 1

1 −2

, M =

2

2

.

2

2

and c =

1

1

.

1

1

,

with a radius ∆ = 10. Then we may use the following code

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD GLTR (May 24, 2024) 9

GLTR GALAHAD

PROGRAM GALAHAD_GLTR_EXAMPLE ! GALAHAD 4.3 - 2022-11-26 AT 09:50 GMT.

USE GALAHAD_GLTR_DOUBLE ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: one = 1.0_wp, two = 2.0_wp

INTEGER, PARAMETER :: n = 10000 ! problem dimension

INTEGER :: i

REAL (KIND = wp) :: f, radius = 10.0_wp ! radius of ten

REAL (KIND = wp), DIMENSION(n) :: X, R, VECTOR, H_vector

TYPE (GLTR_data_type) :: data

TYPE (GLTR_control_type) :: control

TYPE (GLTR_inform_type) :: inform

CALL GLTR_initialize(data, control, inform) ! Initialize control parameters

! control%print_level = 1

control%unitm = .FALSE. ! M is not the identity matrix

R = one ! The linear term is a vector of ones

inform%status = 1

DO ! Iteration to find the minimizer

CALL GLTR_solve(n, radius, f, X, R, VECTOR, data, control, inform)

SELECT CASE(inform%status) ! Branch as a result of inform%status

CASE(2) ! Form the preconditioned gradient

VECTOR = VECTOR / two ! Preconditioner is two times identity

CASE (3) ! Form the matrix-vector product

H_vector(1) = - two * VECTOR(1) + VECTOR(2)

DO i = 2, n - 1

H_vector(i) = VECTOR(i - 1) - two * VECTOR(i) + VECTOR(i + 1)

END DO

H_vector(n) = VECTOR(n - 1) - two * VECTOR(n)

VECTOR = H_vector

CASE (5) ! Restart

R = one

CASE (- 30, 0) ! Successful return

WRITE(6, "(I6, ’ iterations. Solution and Lagrange multiplier = ’, &

& 2ES12.4)") inform%iter + inform%iter_pass2, f, inform%multiplier

CALL GLTR_terminate(data, control, inform) ! delete internal workspace

EXIT

CASE DEFAULT ! Error returns

WRITE(6, "(’ GLTR_solve exit status = ’, I6) ") inform%status

CALL GLTR_terminate(data, control, inform) ! delete internal workspace

EXIT

END SELECT

END DO

END PROGRAM GALAHAD_GLTR_EXAMPLE

This produces the following output:

11 iterations. Solution and Lagrange multiplier = -7.0711E+02 7.0712E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 GLTR (May 24, 2024) GALAHAD

