
GALAHAD FILTRANE

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

FILTRANE is a package for solving the general smooth feasibility problem, that is the problem to find a “feasible”

vector x ∈ IRn such that

cl ≤ c(x)≤ cu,

and

xl ≤ x ≤ xu,

where c(x) is a smooth function from IRn into IRm and where inequalities are understood componentwise. The vectors

cl ≤ cu and xl ≤ xu are m- and n-dimensional, respectively, and may contain components equal to minus or plus

infinity. For a given i between 1 and m, it is assumed that the i-th component of either cl or cu is finite, while, for

j between 1 and n, the j-th components of both xl and xu are allowed to be infinite. In what follows, we will say

that variable j is bounded if the j-th component of either xl or xu is finite. Equalities may be specified by choosing

identical lower and upper bounds on either c or x. The above framework therefore covers all combinations of bounds

with linear/nonlinear equalities and/or inequalities.

If a feasible point cannot be found, it is desired to find a local minimizer of the Euclidean norm ‖ · ‖ of the

constraints violations, that is to find a local minimizer of the function

min
x

1
2‖θ(x)‖2, (1.1)

where we define

θ(x)
def
=

(

max([cl − c(x)]+, [c(x)− cu]+)
max([xl − x]+, [x− xu]+)

)

∈ IRp,

where, for a vector y, [y]+ = max[0,y], and where all maxima are taken componentwise.

FILTRANE also allows the partitioning the problems’s constraints and bounded variables into p (not necessarily

disjoint) sets or “groups”. In this case, each θ(x) has p components defined as

θℓ(x)
def
=

∥

∥

∥

∥

∥

max([cl
[ℓ]− c[ℓ](x)]+, [c[ℓ](x)− cu

[ℓ]]+)

max([xl
[ℓ]− x[ℓ]]+, [x[ℓ]]+)− xu

[ℓ]

∥

∥

∥

∥

∥

for ℓ= 1, . . . , p,

where the subscript [ℓ] indicates that only components belonging to the ℓ-th group are considered.

ATTRIBUTES — Versions: GALAHAD FILTRANE single, GALAHAD FILTRANE double.

Uses: GALAHAD NLPT, GALAHAD SPECFILE, GALAHAD GLTR, GALAHAD BAND, GALAHAD SYMBOLS, GALAHAD TOOLS,

*NRM2, *DOT, *SWAP.

Date: May 2003. Origin: Ph. L. Toint, The University of Namur, Belgium. Language: Fortran 95 + TR 15581

or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD FILTRANE single

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 1



FILTRANE GALAHAD

with the obvious substitution GALAHAD FILTRANE double, GALAHAD FILTRANE single 64 and GALAHAD FILTRANE double 64

for the other variants.

If it is required to use more than one of the modules at the same time, the derived types NLPT problem type,

FILTRANE control type, FILTRANE inform type and FILTRANE data type (Section 2.4) and the four subroutines

FILTRANE initialize, FILTRANE read specfile, FILTRANE solve, FILTRANE terminate, (Section 2.5) must be

renamed on one of the USE statements.

2.1 Matrix storage formats

The constraint Jacobian matrix J(x) must be stored in sparse co-ordinate format. In this format, only the nonzero

entries of the matrices are stored. For the l-th entry of J(x), its row index i, column index j and value Ji j are stored

in the l-th components of the integer arrays J row, J col and real array J val. The order is unimportant, but the total

number of entries J size is also required.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp ) and INTEGER(ip ), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The GALAHAD symbols

The following description make use of “symbols” that are publicly available in the GALAHAD SYMBOLS module.

These symbols are conventional names given to specific integer values, that allow a more natural specification of

the various options and parameters of the package. Each symbol provided in the SYMBOLS module is of the form

GALAHAD NAME, where NAME is the name of the symbol. For clarify and conciseness, we will represent such a symbol

by GALAHAD NAME (in sans-serif upper case font) in what follows. See Section 5 to see how symbols may be used in

the program unit that calls the FILTRANE subroutines.

2.4 The derived data types

In addition to the problem data type, three derived data types are accessible from the package.

2.4.1 The problem type

The derived data type NLPT problem type is used to hold the problem: we refer the reader to the documentation of the

GALAHAD NLPT module for a full description. We only consider here the components that are of interest in conjunction

with FILTRANE.

We first review the components of the problem data type which must be set on entry in FILTRANE solve.

n is a scalar variable of type INTEGER(ip ), that holds the number of problem variables, n.

m is a scalar variable of type INTEGER(ip ), that holds the number of problem constraints, m.

x is a rank-one allocatable array of dimension n and type REAL(rp ), that holds the values x of the problem

variables at the initial point.The j-th component of x, j = 1, . . . ,n, contains x j.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

x l is a rank-one allocatable array of dimension n and type REAL(rp ), that holds the vector of lower bounds xl

on the problem variables. The j-th component of x l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by

setting the corresponding components of x l to any value smaller than that -infinity.

x u is a rank-one allocatable array of dimension n and type REAL(rp ), that holds the vector of upper bounds xu

on the problem variables. The j-th component of x u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by

setting the corresponding components of x u to any value larger than that infinity.

c l is a rank-one allocatable array of dimension m and type REAL(rp ), that holds the vector of lower bounds cl on

the general constraints. The i-th component of c l, i = 1, . . . ,m, contains cl
i . Infinite bounds are allowed by

setting the corresponding components of c l to any value smaller than -infinity.

c u is a rank-one allocatable array of dimension m and type REAL(rp ), that holds the vector of upper bounds cl on

the general constraints. The i-th component of c u, i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed by

setting the corresponding components of c u to any value larger than infinity.

J size is a scalar variable of type INTEGER(ip ), which holds the number of nonzero entries of the constraints

Jacobian matrix.

J type is a scalar variable of type INTEGER(ip ), which specifies the format in which the constraints Jacobian is

stored. Only the value GALAHAD COORDINATE is allowed as this is the only storage scheme provided within

FILTRANE.

infinity is a scalar variable of type REAL(rp ), which holds the value such that real numbers with absolute value

less than infinity are finite, all others being considered infinite.

In addition, the following components must be allocated:

x status is a rank-one allocatable array of dimension n and type INTEGER(ip ),

c is a rank-one allocatable array of dimension m and type REAL(rp ),

y is a rank-one allocatable array of dimension m and type REAL(rp ),

g is a rank-one allocatable array of dimension n and type REAL(rp ),

equation is a rank-one allocatable array of dimension n and type default LOGICAL,

J val is a rank-one allocatable array of dimension J size + n and type REAL(rp ),

J row is a rank-one allocatable array of dimension J size + n and type INTEGER(ip ),

J col is a rank-one allocatable array of dimension J size + n and type INTEGER(ip ).

However, they need not be assigned a value.

Additionally, the arrays x l, x u and x status need not be allocated if there is no bound on the problem’s variables.

Similarly, the arrays c, c l, c u, y, J val, J row and J col need not be allocated if there are no constraints (i.e. m

= 0), in which case the values of J ne and J type are also irrelevant. Furthermore, J val, J row and J col need not

be allocated if m> 0 and external Jacobian products are requested (see Section 2.4.2), in which case the values of J ne

and J type are again irrelevant.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 3



FILTRANE GALAHAD

2.4.2 The derived data type for holding control parameters

The derived data type FILTRANE control type is used to hold controlling data. Default values may be obtained

by calling FILTRANE initialize (see Section 2.5.1), while individual components may also be changed by calling

FILTRANE read specfile (see Section 2.8.1). The components of FILTRANE control type are:

c accuracy is a scalar variable of type REAL(rp ), that specifies an accuracy threshold such that the FILTRANE

iteration is successfully terminated if each constraint violation is under the threshold. The default is c accuracy

= 10−4 in single precision, and c accuracy = 10−6 in double precision.

g accuracy is a scalar variable of type REAL(rp ), that specifies an accuracy threshold such that the FILTRANE iter-

ation is successfully terminated if the (possibly preconditioned) Euclidean norm of ∇xθ is under the threshold.

The default is g accuracy = 10−4 in single precision, and c accuracy = 10−6 in double precision.

stop on prec g is a scalar variable of type default LOGICAL, that has the value .TRUE. iff the preconditioned gradient

must be used in the gradient termination test, and has the value .FALSE. iff the unpreconditioned gradient must

be used instead. The default is stop on prec g = .TRUE..

stop on g max is a scalar variable of type default LOGICAL, that has the value .TRUE. iff the maximum norm of the

gradient must be used in the gradient termination test, and has the value .FALSE. iff the Euclidean norm must

be used instead. Requiring the use of the maximum norm is only possible for prec used = GALAHAD NONE or

for prec used = GALAHAD BANDED with semi bandwdith = 0. It is reset to .FALSE. in all other cases. The

default is stop on g max = .FALSE..

max iterations is a scalar variable of type INTEGER(ip ), that determines the maximum number of iterations of

the filter-trust-region algorithm during a call to FILTRANE solve. If negative, no upper limit is imposed on the

number of iterations. The default is max iterations = 1000.

max cg iterations is a scalar variable of type INTEGER(ip ), such that max cg iterations times the number

of problem’s variables is the maximum number of Lanczos-conjugate-gradients iterations of the Generalized

Lanczos Trust-Region subproblems solver at each iteration of filter-trust-region algorithm during a call to

FILTRANE solve. The default is max cg iterations = 15.

grouping is a scalar variable of type INTEGER(ip ), that holds the type of equations/inequalities/bounds groups

required for the filter tests in the FILTRANE algorithm. Valid values are:

GALAHAD NONE: each equation is considered individually in the filter,

GALAHAD AUTOMATIC: the automatic constraints grouping strategy provided by the package is to be used,

GALAHAD USER DEFINED: the constraints groups are defined by the user and specified in group.

The default is grouping = GALAHAD NONE.

nbr groups is a scalar variable of type INTEGER(ip ), that specifies the number of constraints groups. If grouping is

set to GALAHAD AUTOMATIC, and nbr groups is positive, the smallest between this value and the problem’s num-

ber of variables is used as the number of groups. If grouping is set to GALAHAD AUTOMATIC, and nbr groups

is negative, the number of constraints groups is set to the number of constraints plus the number of bounded

variables divided by the absolute value of the nbr groups. If grouping is set to GALAHAD USER DEFINED,

nbr groups is the number of user-defined constraints groups specified in group. The parameter nbr groups is

not referenced if grouping is GALAHAD NONE.

group is a pointer to a vector of type INTEGER(ip ) of dimension equal to m plus the number of bounded variables.

It is only referenced if grouping is set to GALAHAD USER DEFINED. In this case, it must be allocated and

group(i), its i-th component, for i between 1 and m, specifies the group to which the i-th constraint belongs.

Its (m+ ℓ)-th component specifies the group to which the ℓ-th bounded variable belong (bounded variables are

numbered consecutively by increasing index, skipping unbounded variables). All its components must be lie

between 1 and nbr groups. It is nullified by FILTRANE if grouping is not set to GALAHAD USER DEFINED.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

balance group values is a scalar variable of type default LOGICAL, that has the value .TRUE. iff the constraints

values (at the initial point) must be sorted before they are distributed into groups. This has the effect of ap-

proximately balancing the constraint violations (at the initial point) between the groups. It is relevant only if

grouping is set to GALAHAD AUTOMATIC. The default is balance group values = .FALSE..

prec used is a scalar variable of type INTEGER(ip ), that indicates which preconditioning strategy must be used.

Valid values are:

GALAHAD NONE: no preconditioning,

GALAHAD BANDED: a band preconditioner must be used, where the band has semi-bandwidth semi bandwidth

and is extracted from the Hessian of θ(x) (and possibly modified to ensure positive-definiteness),

USER DEFINED: a user-defined preconditioner for the model’s Hessian must be used, which is applied outside

FILTRANE via the reverse communication interface (see Section 2.6).

The default is prec used = GALAHAD NONE.

semi bandwidth is a scalar variable of type INTEGER(ip ), that specifies the semi-bandwidth of the banded precon-

ditioner, in the case where prec used is set to GALAHAD BANDED. It must lie between 0 (diagonal precondtion-

ing) and n (full preconditioning). The default is semi bandwidth = 5.

external J products is a scalar variable of type default LOGICAL, that specifies whether (external J products =

.FALSE.) the Jacobian is passed as a matrix to FILTRANE, which then computes the products of this matrix or its

transpose times any vector internally, or if these products are to be computed outside the package via the reverse

communication interface (external J products = .TRUE., see Section 2.6), in which case the Jacobian is not

used at all inside FILTRANE.

out is a scalar variable of type INTEGER(ip ), that holds the unit number associated with the device used for normal

output. The default is out = 6.

errout is a scalar variable of type INTEGER(ip ), that holds the unit number associated with the device used for

error ouput. The default is errout = 6.

print level is a scalar variable of type INTEGER(ip ), that holds the level of printout requested by the user. See

Section 2.9. The default is print level = GALAHAD SILENT.

start print is a scalar variable of type INTEGER(ip ), that holds the index of the first FILTRANE iteration at which

printing must occur. The default is start print = 0 (print from initialization on).

stop print is a scalar variable of type INTEGER(ip ), that holds the index of the last FILTRANE iteration at which

printing must occur. If negative, printing does not stop once started. The default is stop print = -1 (always

print once started).

model type is a scalar variable of type INTEGER(ip ), that holds the type of model to be used by FILTRANE for the

objective function. Valid values are:

GALAHAD GAUSS NEWTON: the Gauss-Newton model must be used,

GALAHAD NEWTON: the full Newton model (including constraints curvatures) must be used,

GALAHAD AUTOMATIC: an adaptive choice is to be made by FILTRANE between the Gauss-newton and Newton

models, based on their respective past performance in terms or prediction or decrease.

The default is model type = GALAHAD AUTOMATIC.

model inertia is a scalar variable of type INTEGER(ip ), that holds the number of past iterations to consider for

determining the actual model used. It must be at least 1 and is only relevant if model type is set to GALA-

HAD AUTOMATIC. The default is model inertia = 5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 5



FILTRANE GALAHAD

model criterion is a scalar variable of type INTEGER(ip ), that specifies the criterion to apply for the automatic

model selection. Valid values are:

GALAHAD BEST FIT: the model is preferred whose prediction of the objective function value is most accurate,

GALAHAD BEST REDUCTION: the model is preferred whose use leads to a larger objective function reduction.

The default is model criterion = GALAHAD BEST FIT.

inequality penalty type is a scalar variable of type INTEGER(ip ), that specifies the type of penalty function

used to measure constraint violations. Valid values are:

2: the ℓ2 penalty function is used,

3: the ℓ3 penalty function is used,

4: the ℓ4 penalty function is used.

The default is inequality penalty type = 2, which corresponds to the use of the Euclidean norm in (1.1).

subproblem accuracy is a scalar variable of type INTEGER(ip ), that specifies the type of accuracy requirement for

stopping the trust-region subproblem solution. Valid values are

GALAHAD ADAPTIVE: the (possibly preconditioned) norm of the residual for the model must be at most

min [ε1,‖r0‖
ε2 ] .‖r0‖ (2.1)

where ‖r0‖ is the (possibly preconditioned) norm of the residual at the current iterate;

GALAHAD FULL: the (possibly preconditioned) norm of the residual for the model must be at most square root

of the machine precision times the (possibly preconditioned) norm of the residual at the current iterate.

The default is subproblem accuracy = GALAHAD ADAPTIVE.

min gltr accuracy is a scalar variable of type REAL(rp ), that holds the minimum relative accuracy ε1 in the ac-

curacy requirement (2.1) for the subproblem solution. It is only relevant if subproblem accuracy is set to

GALAHAD ADAPTIVE, in which case it must be strictly between zero and one. The default is min gltr accuracy

= 0.01.

gltr accuracy power is a scalar variable of type REAL(rp ), that holds the power ε2 at which the current residual

norm is raised in the accuracy requirement (2.1) for the subproblem solution. It is only relevant if subproblem accuracy

is set to GALAHAD ADAPTIVE, in which case it must be positive. The default is gltr accuracy power = 1.0.

use filter is a scalar variable of type INTEGER(ip ), that specifies when the filter criterion must be used to accept

new trial points. Valid values are:

GALAHAD NEVER: the filter must not be used (resulting in a pure trust-region method),

GALAHAD INITIAL: the filter is used as long as trial points are accepted, but is no longer used after a first trial

point has been rejected.

GALAHAD ALWAYS: the filter must be used at every iteration.

The default is use filter = GALAHAD ALWAYS.

filter sign restriction is a scalar variable of type default LOGICAL, whose value is .TRUE. iff the filter must be

constructed by considering the absolute value of the constraints/bounds violations. The default is filter sign restriction

= .FALSE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

maximal filter size is a scalar variable of type default LOGICAL, that holds the maximum number of points that

the filter can hold. Once this maximum is attained, no further point can be acceptable for the filter and the

algorithm reduces to a pure trust-region scheme. If set to a negative value, no upper limit is set on the number

of filter entries. The default is maximal filter size = -1.

filter size increment is a scalar variable of type INTEGER(ip ), that holds the initial filter size (if used), and is

also used as an increment for the case where the filter capacity (in memory) must be extended. The default is

filter size increment = 50.

remove dominated is a scalar variable of type default LOGICAL, whose vale is .TRUE. iff FILTRANE is to remove the

dominated filter entries. Setting this parameter to .FALSE. marginally speeds up inclusion of new filter points,

at the expense of increased memory requirements and a (marginally) slower acceptance test. The default is

remove dominated = .TRUE..

margin type is a scalar variable of type INTEGER(ip ), that specifies the quantity that is used to determine the width

of the filter margin. Valid values are:

GALAHAD CURRENT: the norm of the violations at the current iterate is used,

GALAHAD FIXED: the norm of the violations at the filter point itself is used,

GALAHAD SMALLEST: the smallest of these two norms is used.

The default is margin type = GALAHAD CURRENT.

gamma f is a scalar variable of type REAL(rp ), that holds the value of the constant defining the filter margin. The

default is gamma f = 0.001.

itr relax is a scalar variable of type REAL(rp ), that holds the value of the initial trust-region relaxation factor, that

is the factor by which the trust-region constraint is relaxed during the initial sequence of unrestricted step. The

default is itr relax = 1020.

str relax is a scalar variable of type REAL(rp ), that holds the value of the secondary trust-region relaxation factor,

that is the factor by which the trust-region constraint is relaxed after a first restricted step has been encountered.

The default is str relax = 1000.

weak accept power is a scalar variable of type REAL(rp ), that holds the power α2 in the “weak acceptance crite-

rion” that accepts a trial point x+k if

θ(xk)−θ(x+k )≥ α1 min [1,θ(xk)
α2 ] . (2.2)

This test weakens the filter/trust-region criteria by also accepting steps that produces sufficient descent. If

weak accept power < 0, this test is not used. The default is weak accept power = 2.0.

min weak accept factor is a scalar variable of type REAL(rp ), that holds the parameter α1 in (2.2). It is only rele-

vant if weak accept power≥ 0, in which case it must be strictly positive. The default is min weak accept factor

= 0.1.

initial radius is a scalar variable of type REAL(rp ), that holds the initial trust-region radius. It si only relevant if

use filter is different from GALAHAD NEVER. The default is initial radius = 1.0.

eta 1 is a scalar variable of type REAL(rp ), that holds the minimum ratio of achieved to predicted reduction for

declaring a FILTRANE iteration successful. The default is eta 1 = 0.01.

eta 2 is a scalar variable of type REAL(rp ), that holds the minimum ratio of achieved to predicted reduction for

declaring a FILTRANE iteration very successful. The default is eta 2 = 0.9.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 7



FILTRANE GALAHAD

gamma 0 is a scalar variable of type REAL(rp ), that holds the strongest factor by which the trust-region radius is

decreased when the ratio of achieved to predicted reduction is negative. The default is gamma 0 = 0.0625.

gamma 1 is a scalar variable of type REAL(rp ), that holds the factor by which the trust-region radius is decreased

when the FILTRANE iteration is unsuccessful. The default is gamma 1 = 0.25.

gamma 2 is a scalar variable of type REAL(rp ), that holds the factor by which the trust-region radius is increased

when the FILTRANE iteration is very successful. The default is gamma 2 = 2.0.

save best point is a scalar variable of type default LOGICAL, whose value is .TRUE. iff the best point found so far

must be saved to be returned as the final iterate. This is only relevant when use filter is different from GALA-

HAD NEVER and requires the storage of an additional vector of dimension n. The default is save best point =

.FALSE..

checkpoint freq is a scalar variable of type INTEGER(ip ), that holds the frequency (expressed in number of iter-

ations) at which the current values of the problem’s variables and the trust-region radius are saved on a check-

pointing file for a possible package restart. It must be non-negative. The default is checkpoint freq = 0 (no

checkpointing).

checkpoint file is a scalar variable of type default CHARACTERof length 30, that holds the name of the file use for

storing checkpointing information on disk. The default is checkpoint file = FILTRANE.sav.

checkpoint dev is a scalar variable of type INTEGER(ip ), that holds the number of the device that must be used for

input/output of checkpointing operations. The default is checkpoint dev = 55.

restart from checkpoint is a scalar variable of type default LOGICAL, whose value is .TRUE. iff the initial point

and constraints values must be read from the checkpointing file checkpoint file, overriding the input value of

problem%x. The default is restart from checkpoint = .FALSE..

2.4.3 The derived data type for holding informational parameters

The derived data type FILTRANE inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of FILTRANE inform type are:

status is a scalar variable of type INTEGER(ip ), that gives the exit status of the algorithm. See Sections 2.7 and 2.9

for details.

message is a character array of 3 lines of 80 characters each, containing a description of the exit condition on exit,

typically including more information than contained in status. It is printed out on device errout at the end of

execution unless print level is GALAHAD SILENT.

nbr iterations is a scalar variable of type INTEGER(ip ), that gives the the final number of FILTRANE iterations.

nbr cg iterations is a scalar variable of type INTEGER(ip ), that gives the the final number of iterations performed

by GALAHAD GLTR in solving the subproblems on all successive FILTRANE iterations.

nbr c evaluations is a scalar variable of type INTEGER(ip ), that gives the final number of evaluations of the

constraints values.

nbr J evaluations is a scalar variable of type INTEGER(ip ), that gives the final number of Jacobian evaluations.

2.4.4 The derived data type for holding problem data

The derived data type FILTRANE data type is used to hold all the data for a the current problem between calls of

FILTRANE procedures. This data should be preserved, untouched, from the initial call to FILTRANE initialize

to the final call to FILTRANE terminate, except for components that have to be set in the reverse communication

interface (see Section 2.6).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

2.5 Argument lists and calling sequences

There are four procedures for user calls (see Section 2.8 for further features):

1. The subroutine FILTRANE initialize is used to set default values, and initialize private data.

2. The routine FILTRANE read specfile is used to read the FILTRANE specfile in order to possibly modify the

algoritmic default parameters (see Section 2.8.1).

3. The subroutine FILTRANE solve is called to solve the problem by applying the FILTRANE algorithm.

4. The subroutine FILTRANE terminate is provided to allow the user to automatically deallocate array compo-

nents of the private data, allocated by FILTRANE, at the end of the solution process. It is important to do this if

the data object is re-used for another problem with a different structure since FILTRANE initialize cannot

test for this situation, and any existing associated targets will subsequently become unreachable.

2.5.1 The initialization subroutine

Default values for the control parameters are provided as follows:

CALL FILTRANE initialize( control, inform, data )

control is a scalar INTENT(OUT) argument of type FILTRANE control type (see Section 2.4.2). On exit, control

contains default values for the components as described in Section 2.4.2. These values should only be changed

after calling FILTRANE initialize.

inform is a scalar INTENT(OUT) argument of type FILTRANE inform type (see Section 2.4.3). A successful call to

the routine FILTRANE initialize is indicated when the component status has the value 0. For other return

values of status, see Sections 2.6 and 2.7.

data is a scalar INTENT(OUT) argument of type FILTRANE data type (see Section 2.4.4). It is used to hold data about

the problem being solved. It should never be altered by the user, except for returning values to FILTRANE solve

via the reverse communication interface (see Section 2.6).

2.5.2 The subroutine that applies the FILTRANE algorithm to the problem

The FILTRANE solver is called as follows:

CALL FILTRANE solve( problem, control, inform, data )

Such a call must always be preceded by a call to FILTRANE initialize.

problem is a scalar INTENT(OUT) argument of type NLPT problem type that contains the problem statement.

On input, its n, m, x, x l, x u, x status, c l, c u, J size, J type and infinity components must be set. In

addition, its c, y, g, equation, J val, J row and J col components must be allocated (see Section 2.4.1).

On successful output, the following components of the problem data type are of interest:

x now contains the values of the variables at the point where FILTRANE was terminated,

f contains the value of the objective function θ at the point x,

g contains the gradient of θ at the point x,

If problem%m > 0, then

c contains the values of the constraints at the point x,

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 9



FILTRANE GALAHAD

If, additionally, control%external Jacobian products is .FALSE., then

J val contains the values of the nonzero entries of the constraints Jacobian at x,

J row contains the row indices of the the nonzero entries of the constraints Jacobian at x,

J col contains the column indices of the the nonzero entries of the constraints Jacobian at x.

control is a scalar INTENT(IN) argument of type FILTRANE control type (see Section 2.4.2). Default values may

be assigned by calling FILTRANE initialize prior to the first call to FILTRANE solve.

info is a scalar INTENT(OUT) argument of type FILTRANE inform type (see Section 2.4.3). A successful call to the

routine FILTRANE solve is indicated when the component status has the value 0. For other return values of

status, see Section 2.7.

data is a scalar INTENT(INOUT) argument of type FILTRANE data type (see Section 2.4.4). It is used to hold

data about the problem being solved. It must never be altered by the user since the last call to any of the

FILTRANE routines, except for returning values to FILTRANE solve via the reverse communication interface

(see Section 2.6).

2.5.3 The termination subroutine

All previously allocated workspace arrays for FILTRANE are deallocated as follows:

CALL FILTRANE terminate( control, info, data )

control is a scalar INTENT(IN) argument of type FILTRANE control type exactly as for FILTRANE initialize.

info is a scalar INTENT(OUT) argument of type FILTRANE inform type exactly as for FILTRANE initialize. A

successful call to FILTRANE terminate is indicated when the component status has the value 0. For other

return values of status, see Section 2.7.

data is a scalar INTENT(INOUT) argument of type FILTRANE data type exactly as for FILTRANE solve, which must

not have been altered by the user since the last call to FILTRANE initialize, except for returning values to

FILTRANE solve via the reverse communication interface (see Section 2.6). On exit, array components will

have been deallocated.

Note that a call to this routine is mandatory before FILTRANE solve is called for a new problem whose structure

differs from the current one.

2.6 Reverse communication

A positive value of info%status on exit from FILTRANE solve indicates that the user needs to take appropriate

action before re-entering the subroutine. Possible values are:

1. The user must compute, at the point given in the problem%x,

• the values of the constraints,

and place the result in problem%c(1:problem%m),

• the values of the nonzero entries of the constraints Jacobian,

and place the result in problem%J val(1:problem%J size),

• the row indices of the nonzero entries of the constraints Jacobian,

and place the result in problem%J row(1:problem%J size),

• the column indices of the nonzero entries of the constraints Jacobian,

and place the result in problem%J col(1:problem%J size).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

No other argument of FILTRANE solve may be modified before FILTRANE solve is called again. This is only

used at the initial (starting) point.

2. The user must compute, at the point given in the problem%x,

• the values of the constraints,

and place the result in problem%c(1:problem%m),

• the values of the nonzero entries of the constraints Jacobian,

and place the result in problem%J val(1:problem%J size).

No other argument of FILTRANE solve may be modified before FILTRANE solve is called again. This is only

possibly used at the exit of FILTRANE when control%save best point is .TRUE..

3, 4 and 5. The user must compute the values of the constraints at the point given in the problem%x, and place

the result in problem%c(1:problem%m). No other argument of FILTRANE solve may be modified before

FILTRANE solve is called again.

6. The user must compute the values of the nonzero entries of the constraints Jacobian at the point given in the

problem%x, and place the result in problem%J val(1:problem%J size). No other argument of FILTRANE solve

may be modified before FILTRANE solve is called again.

7. The user must compute the product J(x)v, where v is given by data%RC v(1:problem%n) and place the result

in the vector data%RC Mv(1:problem%m). No other argument of FILTRANE solve may be modified before

FILTRANE solve is called again. This only occurs if control%external J products is .TRUE. (see Sec-

tion 2.4.2).

8, 9, 10 and 11. The user must compute the product J(x)T v, where v is given by data%RC v(1:problem%m)

and place the result in the vector data%RC Mv(1:problem%n). No other argument of FILTRANE solve may

be modified before FILTRANE solve is called again. This only occurs if control%external J products is

.TRUE. (see Section 2.4.2).

12, 13 and 14. The user must apply a preconditioner for the model’s Hessian to data%RC Pv(1:problem%n) and

place the result in the same vector. The model’s Hessian is given by

α(α− 1)

2

{

J(x)diag
(

[θc(x)]
α−2
i

)

J(x)T + diag
(

[θx(x)]
α−2
i

)

}

+
α

2

m

∑
i=1

[θc(x)]
α−1
i ∇2

xxci(x),

where θc(x) contains the first m components of θ(x) (the constraints’s violations) and θx(x) the last n (the

bounds’ violations), where α is the exponent of the inequality penalty function used (by default: α = 2 for the

Euclidean norm, see the information on control%inequality penalty type in Section 2.4.2), and where the

last term is only present if the full Newton model is used at the current iteration. This last condition can be

checked by verifying that the value of data%model used is equal to NEWTON. If data%model used is equal to

GAUSS NEWTON instead, then the last term does not appear in the expression of the Hessian. No other argument

of FILTRANE solve than data%RC Pv may be modified before FILTRANE solve is called again. This only

occurs if control%prec used is USER DEFINED (see Section 2.4.2).

15 and 16. The user must compute the product

m

∑
i=1

yi∇xxci(x)v,

where

• y is given by problem%y(1:problem%m),

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 11



FILTRANE GALAHAD

• x is given by problem%x(1:problem%n),

• v is given by data%RC v(1:problem%n),

and place the result in the vector data%RC Mv(1:problem%n). No other argument of FILTRANE solve may be

modified before FILTRANE solve is called again. The user may use the fact that data%RC newx is .TRUE.

iff the current product request is the first that involves the same vector problem%x. This only occurs if

control%model type is NEWTON or ADAPTIVE (see Section 2.4.2).

2.7 Warning and error messages

A negative value of info%status on exit from FILTRANE initialize, FILTRANE read specfile, FILTRANE apply,

FILTRANE restore, or FILTRANE terminate indicates that an error has occurred. No further calls should be made

to the four three of these routines until the error has been corrected. Possible values are:

-1. The memory allocation failed.

-2. A file intended for saving checkpointing information could not be opened.

-3. An IO error occurred while saving checkpointing information on the relevant disk file.

-5. Further progress of the algorithms appears to be impossible, although successful termination is not recognized.

This may happen if the problem is extremely ill-conditioned, if the current preconditioner is inefficient, or if

there are errors in the calculation of the constraints Jacobian. In the first case, it may happen that the current

iterate gives a reasonable approximation of the solution (the components of the problem data type can then be

interpreted as for successful termination).

-6. The maximum number of iterations has been reached and computation terminated.

-8. The number of variables is non-positive.

-9. The number of constraints is negative.

-21. The information contained in the checkpointing file could not be read or does not correspond to the problem

being solved.

-22. The step could not be computed by the GALAHAD GLTR procedure.

-23. The dimension of the gradient problem%G is not equal to the number of variables in the problem problem%n.

-24. One of the vectors problem%x, problem%x l, problem%x u, problem%c, problem%c l, problem%c u, problem%y,

problem%g, problem%J val, problem%J col, problem%J row, problem%equation or problem%x status is

not allocated on input, although it should be.

-25. The user-supplied number of groups is either negative or exceeds the number of constraints plus the number of

bounded variables.

-26. The vector control%group is not associated although user-defined groups are requested.

-27. The dimension of the vector control%group is different from the sum of the number of constraints and the

number of bounded variables.

-28. The user-supplied group index (for a constraint or a bound) is either negative, or exceeds control%nbr groups.

-29. FILTRANE was re-entered (in the reverse communication protocol) with an invalid value for inform%status.

-100. This should not happen! (If it does anyway, please report (with problem data and specfile) to Ph. Toint. Thanks

in advance.)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

2.8 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type FILTRANE control type (see Section 2.4.2), by reading an appropriate data specification file using

the subroutine FILTRANE read specfile. This facility is useful as it allows a user to change FILTRANE control

parameters without editing and recompiling programs that call FILTRANE.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by FILTRANE read specfile must start with a ”BEGIN FILTRANE”

command and end with an ”END” command. The syntax of the specfile is thus defined as follows:

( .. lines ignored by FILTRANE_read_specfile .. )

BEGIN FILTRANE

keyword value

....... .....

keyword value

END

( .. lines ignored by FILTRANE_read_specfile .. )

where keyword and value are two strings separated by (at least) one blank. The “BEGIN FILTRANE” and “END”

delimiter command lines may contain additional (trailing) strings so long as such strings are separated by one or more

blanks, so that lines such as

BEGIN FILTRANE SPECIFICATION

and

END FILTRANE SPECIFICATION

are acceptable. Furthermore, between the “BEGIN FILTRANE” and “END” delimiters, specification commands may

occur in any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line

after a ! or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment

off” some specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of five different types, namely integer, logical, real, string or symbol.

Integer and real values may be expressed in any relevant Fortran integer and floating-point formats (respectively).

Permitted values for logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”,

”.FALSE.” and ”F”. Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

String are specified as a sequence of characters. A symbolic value is a special string obtained from one of the

predefined symbols of the SYMBOLS module by deleting the leading GALAHAD characters in its name. Thus, the

specification command

print-level SILENT

implies that the value GALAHAD SILENT is assigned to control%print level. This technique is intended to help

expressing an (integer) control parameter for an algorithm in a ”language” that is close to natural (see Section 2.3).

The specification file must be open for input when FILTRANE read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by FILTRANE read specfile.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 13



FILTRANE GALAHAD

2.8.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL FILTRANE_read_specfile( device, control, inform )

device is a scalar INTENT(IN)argument of type INTEGER(ip ), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

control is a scalar INTENT(INOUT)argument of type FILTRANE control type (see Section 2.4.2). Default values

should have already been set, perhaps by calling FILTRANE initialize. On exit, individual components of

control may have been changed according to the commands found in the specfile. Specfile commands and the

component (see Section 2.4.2) of control that each affects are given in Tables 2.1–2.2.

inform is a scalar INTENT(OUT) argument of type FILTRANE inform type (see Section 2.4.3).

command component of control value type/

symbolic value

printout-device %out integer

error-printout-device %errout integer

print-level %print level SILENT,

TRACE,

ACTION,

DETAILS,

DEBUG,

CRAZY

start-printing-at-iteration %start print integer

stop-printing-at-iteration %stop print integer

residual-accuracy %c accuracy real

gradient-accuracy %g accuracy real

stop-on-preconditioned-gradient-norm %stop on prec g logical

stop-on-maximum-gradient-norm %stop on g max logical

maximum-number-of-iterations %max iterations logical

Table 2.1: Specfile commands and associated components of control (part 1).

2.9 Information printed

The meaning of the various control%print level values is defined as follows:

GALAHAD SILENT: no printout is produced,

GALAHAD TRACE: only reports a one line summary of each iteration. This summary includes the current values of

the objective function, the (possibly preconditioned) norm of its gradient, the ratio ρ of achieved to predicted

reduction, the norm of the step and the trust-region radius. It also reports the cumulative number of GLT

iterations, the iteration type and the number of entries currently in the filter.

The iteration type is a four character string whose interpretation requires some detailed knowledge of the algo-

rithm (see Section 4 and the references therein). The first character describes the model type used at the current

iteration:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

command component of control value type/

symbolic value

model-type %model type GAUSS NEWTON,

NEWTON,

ADAPTIVE,

automatic-model-inertia %model inertia integer

automatic-model-criterion %model criterion BEST FIT

BEST REDUCTION

maximum-number-of-cg-iterations %max cg iterations logical

subproblem-accuracy %subproblem accuracy ADAPTIVE

FULL

relative-subproblem-accuracy-power %gltr accuracy power real

minimum-relative-subproblem-accuracy %min gltr accuracy real

preconditioner-used %prec used NONE

BANDED

semi-bandwidth-for-band-preconditioner %semi bandwidth integer

external Jacobian products external J products logical

equations-grouping %grouping NONE

AUTOMATIC

USER DEFINED

number-of-groups %nbr groups integer

balance-initial-group-values %balance group values logical

use-filter %use filter NEVER

INITIAL

ALWAYS

maximum-filter-size %maximal filter size integer

filter-size-increment %filter size increment integer

filter-margin-type %filter margin type CURRENT

FIXED

SMALLEST

filter-margin-factor %gamma f real

remove-dominated-entries %remove dominated logical

weak-acceptance-power %weak accept power real

minimum-weak-acceptance-factor %min weak accept factor real

initial-radius %initial radius real

initial-TR-relaxation-factor %itr relax real

secondary-TR-relaxation-factor %str relax real

minimum-rho-for-successful-iteration %eta 1 real

minimum-rho-for-very-successful-iteration %eta 2 real

radius-increase-factor %gamma 2 real

radius-reduction-factor %gamma 1 real

worst-case-radius-reduction-factor %gamma 0 real

save-best-point %save best point logical

checkpointing-frequency %checkpoint freq integer

checkpointing-device %checkpoint dev integer

checkpointing-file %checkpoint file character( 30 )

restart-from-checkpoint %restart from checkpoint logical

Table 2.2: Specfile commands and associated components of control (part 2).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 15



FILTRANE GALAHAD

G : the Gauss-Newton model was used,

N : the full Newton model was used.

The second character describes the type of step that was allowed:

R : the current step was restricted to lie in the trust region,

U : the current step was not restricted to lie in the trust region.

The third character described the manner in which the GALAHAD GLTR procedure has been terminated for the

step computation:

I : the stopping criterion was met for a step internal to the trust-region,

B : the stopping criterion was met for a step lying on the trust-region boundary,

E : the stopping criterion was met for a step exterior to the trust region,

M : the maximum number of iterations allowed for GALAHAD GLTR has been reached.

The fourth character describes the result of applying the various acceptance tests to the trial point:

W : the trial point was acceptable for the weak acceptance test (2.2),

F : the trial point was acceptable for the filter, but its violation was not included in the filter,

f : the trial point was acceptable for the filter, and its violation was included in the filter,

S : the trial point was accepted as very successful by the trust-region tests,

s : the trial point was accepted as successful by the trust-region tests,

u : the trial point was rejected as unsuccessful by the trust-region tests,

U : the trial point was rejected as very unsuccessful by the trust-region tests.

GALAHAD ACTION: additionally reports the mains steps of each iteration,

GALAHAD DETAILS: additionally reports the values of variables, constraints, Jacobian entries, gradient and step com-

ponents at each iteration,

GALAHAD DEBUG: additionally reports LOTS of information, including details of subprocesses within each iteration,

GALAHAD CRAZY: reports a completely silly amount of information.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: FILTRANE solve calls the BLAS functions *NRM2, *DOT and *SWAP, where * is S for

the default real version and D for the double precision version.

Other modules used directly: FILTRANE calls the GALAHAD modules NLPT, GLTR, BAND, SYMBOLS, SORT, TOOLS and

SPECFILE.

Input/output: Output is under control of the arguments control%errout, control%out and control%print level.

Restrictions: problem%n > 0, problem%m ≥ 0.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

4 METHOD

The method used by FILTRANE is iterative and combines multidimensional filter and trust-region techniques. Trust-

region methods build a local (in the case of FILTRANE, quadratic) approximation of θ(x) and then compute a step that

decreases the value of that model in a “trust region”, where the model is deemed to approximate the true function well

enough. The new trial point is then compared to previous iterates. If it provides reduction in the violation of at least

one of the (groups of) constraints, it is accepted as the new iterate, according to the multidimensional filter acceptance

criterion, or if it provides sufficient reduction in the objective function. If the trial point is rejected, the trust-region

radius is reduced and another step computed in the smaller region, until a trial point can be accepted.

The calculation of the step is performed using the Generalized Lanczos Trust Region Method of Gould, Lucidi and

Toint, as implemented in the GALAHAD GLTR module.

The package has a full reverse-communication interface.

The use of FILTRANE for the solution of a problem follows one on the two sequences:

initialize →

[

solve → terminate

]

or

initialize →

[

read specfile →

[

solve → terminate

] ]

where the procedure’s control parameter may be modified by reading the specfile (see Section 2.8). Each of the

“boxed” steps in these sequences corresponds to calling a specific routine of the package (see Section 2.5). In the

above diagrams, brackated subsequence of steps means that they can be repeated.

References:

The algorithm is described in more detail in

N. Gould, S. Leyffer and Ph. L. Toint (2003), A Multidimensional Filter Algorithm for Nonlinear Equations and

Nonlinear Least-Squares, Technical report 03/01, The University of Namur, Belgium.

N. Gould and Ph. L. Toint (2003). FILTRANE, a Fortran 95 + TR 15581 or Fortran 2003 filter-trust-region package for

solving nonlinear feasibility problems, Technical report 03/??, The University of Namur, Belgium.

5 EXAMPLE OF USE

Suppose that we wish to apply FILTRANE to solve the nonlinear feasibility problem for the constraints

3x2
1 + 2x3

2+ x1x2 = 0,

x1 + x2 = 0,

−2 ≤ x1 ≤ 2 and − 2 ≤ x2 ≤ 2,

starting from the initial point xT = (11). We thus have that n = 2, m = 2. Computing the constraints Jacobian, we

verify that it is given by

J(x) =

(

6x1 + x2 x1 + 6x2
2

1 1

)

.

We may then use the following code:

! THIS VERSION: GALAHAD 2.1 - 13/02/2008 AT 09:40 GMT.

PROGRAM GALAHAD_FILTRANE_EXAMPLE

USE GALAHAD_NLPT_double ! the problem type

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 17



FILTRANE GALAHAD

USE GALAHAD_FILTRANE_double ! the FILTRANE solver

USE GALAHAD_SYMBOLS

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND( 1.0D+0 )

INTEGER, PARAMETER :: ispec = 55 ! SPECfile device number

INTEGER, PARAMETER :: iout = 6 ! stdout and stderr

REAL( KIND = wp ), PARAMETER :: INFINITY = (10.0_wp)**19

TYPE( NLPT_problem_type ) :: problem

TYPE( FILTRANE_control_type ) :: FILTRANE_control

TYPE( FILTRANE_inform_type ) :: FILTRANE_inform

TYPE( FILTRANE_data_type ) :: FILTRANE_data

INTEGER :: J_size

REAL( KIND = wp ), DIMENSION( 3 ) :: H1

! Set the problem up.

problem%n = 2

ALLOCATE( problem%x( problem%n ) , problem%x_status( problem%n ), &

problem%x_l( problem%n ), problem%x_u( problem%n ), &

problem%g( problem%n ) , problem%z( problem%n ) )

problem%m = 2

ALLOCATE( problem%equation( problem%m ), &

problem%c( problem%m ) , problem%c_l( problem%m ), &

problem%c_u( problem%m), problem%y( problem%m ) )

problem%J_ne = 4

J_size = problem%J_ne + problem%n

ALLOCATE( problem%J_val( J_size), problem%J_row( J_size ), &

problem%J_col( J_size ) )

problem%J_type = GALAHAD_COORDINATE

problem%infinity = INFINITY

problem%x = (/ 1.0D0, 1.0D0 /)

problem%x_l = (/ -2.0D0, -2.0D0 /)

problem%x_u = (/ 2.0D0, 2.0D0 /)

problem%c_l = (/ 0.0D0, 0.0D0 /)

problem%c_u = (/ 0.0D0, 0.0D0 /)

problem%equation = (/ .TRUE., .TRUE. /)

! Initialize FILTRANE.

CALL FILTRANE_initialize( FILTRANE_control, FILTRANE_inform, FILTRANE_data )

! Read the FILTRANE spec file (not necessary in this example, as the default

! settings are mostly suitable).

! OPEN( ispec, file = ’FILTRANE.SPC’, form = ’FORMATTED’, status = ’OLD’ )

! CALL FILTRANE_read_specfile( ispec, FILTRANE_control, FILTRANE_inform )

! CLOSE( ispec )

! Nevertheless... ask for some output:

FILTRANE_control%print_level = GALAHAD_TRACE

! Now apply the solver in the reverse communication loop.

DO

CALL FILTRANE_solve( problem, FILTRANE_control, FILTRANE_inform, &

FILTRANE_data )

SELECT CASE ( FILTRANE_inform%status )

CASE ( 1, 2 ) ! constraints values and Jacobian

problem%c( 1 ) = 3.0D0 * problem%x( 1 ) ** 2 + &

2.0D0 * problem%x( 2 ) ** 3 + &

problem%x( 1 ) * problem%x( 2 )

problem%c( 2 ) = problem%x( 1 ) + problem%x( 2 )

problem%J_val( 1 ) = 6.0D0 * problem%x( 1 ) + problem%x( 2 )

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

problem%J_val( 2 ) = 1.0D0

problem%J_val( 3 ) = 6.0D0 * problem%x( 2 ) ** 2 + problem%x( 1 )

problem%J_val( 4 ) = 1.0D0

problem%J_row( 1 : 4 ) = (/ 1, 2, 1, 2 /)

problem%J_col( 1 : 4 ) = (/ 1, 1, 2, 2 /)

CASE ( 3 : 5 ) ! constraints values only

problem%c( 1 ) = 3.0D0 * problem%x( 1 ) ** 2 + &

2.0D0 * problem%x( 2 ) ** 3 + &

problem%x( 1 ) * problem%x( 2 )

problem%c( 2 ) = problem%x( 1 ) + problem%x( 2 )

CASE ( 6 ) ! Jacobian only

problem%J_val( 1 ) = 6.0D0 * problem%x( 1 ) + problem%x( 2 )

problem%J_val( 2 ) = 1.0D0

problem%J_val( 3 ) = 6.0D0 * problem%x( 2 ) ** 2 + problem%x( 1 )

problem%J_val( 4 ) = 1.0D0

CASE ( 15, 16 ) ! product times the Hessian of the Lagrangian

! Note that H2, the Hessian of C2 is identically zero, since this

! constraint is linear. Hence the terms in y(2)*H2 disappear.

IF ( FILTRANE_data%RC_newx ) THEN

H1( 1 ) = 6.0D0

H1( 2 ) = 1.0D0

H1( 3 ) = 12.0D0 * problem%x( 2 )

END IF

FILTRANE_data%RC_Mv( 1 ) = &

problem%y( 1 ) * H1( 1 ) * FILTRANE_data%RC_v( 1 ) + &

problem%y( 1 ) * H1( 2 ) * FILTRANE_data%RC_v( 2 )

FILTRANE_data%RC_Mv( 2 ) = &

problem%y( 1 ) * H1( 2 ) * FILTRANE_data%RC_v( 1 ) + &

problem%y( 1 ) * H1( 3 ) * FILTRANE_data%RC_v( 2 )

CASE DEFAULT

EXIT

END SELECT

END DO ! end of the reverse communication loop

! Terminate FILTRANE.

FILTRANE_control%print_level = GALAHAD_SILENT

CALL FILTRANE_terminate( FILTRANE_control, FILTRANE_inform, FILTRANE_data )

! Output results.

WRITE( iout, 1000 )

WRITE( iout, 1001 )

WRITE( iout, 1000 )

WRITE( iout, 1002 ) problem%x( 1 )

WRITE( iout, 1003 ) problem%x( 2 )

WRITE( iout, 1000 )

WRITE( iout, 1004 ) problem%c( 1 )

WRITE( iout, 1005 ) problem%c( 2 )

WRITE( iout, 1000 )

WRITE( iout, 1006 ) FILTRANE_inform%status

WRITE( iout, 1007 ) problem%f

WRITE( iout, 1008 ) FILTRANE_inform%nbr_iterations, &

FILTRANE_inform%nbr_cg_iterations

WRITE( iout, 1009 ) FILTRANE_inform%nbr_c_evaluations

WRITE( iout, 1010 ) FILTRANE_inform%nbr_J_evaluations

! Cleanup the problem.

CALL NLPT_cleanup( problem )

STOP

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 19



FILTRANE GALAHAD

! Formats

1000 FORMAT(/)

1001 FORMAT(’ Problem : GALEXAMPLE’)

1002 FORMAT(’ X1 = ’,1PE20.12)

1003 FORMAT(’ X2 = ’,1PE20.12)

1004 FORMAT(’ C1 = ’,1PE20.12)

1005 FORMAT(’ C2 = ’,1PE20.12)

1006 FORMAT(’ Exit condition number = ’,i10)

1007 FORMAT(’ Objective function value =’,1PE20.12)

1008 FORMAT(’ Number of iterations = ’,i10,/, &

’ Number of CG iterations = ’,i10)

1009 FORMAT(’ Number of constraints evaluations =’,i6)

1010 FORMAT(’ Number of Jacobian evaluations =’,i6)

END PROGRAM GALAHAD_FILTRANE_EXAMPLE

This produces the following output:

**************************************************

* *

* FILTRANE *

* *

* GALAHAD filter trust-region algorithm *

* *

* for the nonlinear feasibility problem *

* *

**************************************************

Iter f(x) ||g(x)|| rho ||s|| Delta #CGits Type F

0 2.000E+01 6.223E+01 1.000E+00 0 0

1 1.916E+00 8.965E+00 9.341E-01 6.223E-01 1.000E+00 1 GUIF 0

2 6.430E-01 1.538E+01 6.644E-01 2.033E+00 1.245E+00 3 GUEf 1

3 7.325E-03 4.115E-01 9.986E-01 8.279E-02 1.245E+00 4 GUIF 1

4 2.932E-03 6.961E-01 5.997E-01 3.929E-01 1.245E+00 6 GUIF 1

5 6.746E-05 3.180E-03 9.999E-01 8.230E-03 1.245E+00 7 GUIF 1

6 8.208E-07 1.103E-02 9.878E-01 4.878E-02 1.245E+00 9 GUIF 1

7 2.099E-08 4.705E-05 1.000E+00 1.450E-04 1.245E+00 10 GUIF 1

8 9.619E-14 3.773E-06 1.000E+00 8.922E-04 1.245E+00 12 GUIF 1

Problem successfully solved: constraints violations are small.

Problem : GALEXAMPLE

X1 = 1.000000219305E+00

X2 = -1.000000219305E+00

C1 = -4.386100604936E-07

C2 = 0.000000000000E+00

Exit condition number = 0

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 FILTRANE (May 24, 2024) GALAHAD



GALAHAD FILTRANE

Objective function value = 9.618939258311E-14

Number of iterations = 8

Number of CG iterations = 12

Number of constraints evaluations = 9

Number of Jacobian evaluations = 9

We could also make use of the FILTRANE read specfile routine to set the printing level, in which case the lines

! Nevertheless... ask for some output:

FILTRANE_control%print_level = GALAHAD_TRACE

are replaced by

! open specfile

OPEN( 57, FILE = FILTRANE.SPC’, STATUS = ’OLD’ )

! read its content (asking for some output)

CALL FILTRANE_read_specfile( 57, control, inform )

! close it

CLOSE( 57 )

where we assume that the file FILTRANE.SPC exists in the current directory and contains the lines

BEGIN FILTRANE SPECIFICATION

print-level TRACE

END FILTRANE SPECIFICATION

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FILTRANE (May 24, 2024) 21


