
GALAHAD FDH

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package computes a finite-difference approximation to the Hessian matrix H(x), for which (H(x))i, j =
∂ f 2/∂xi∂x j, 1 ≤ i, j ≤ n, using values of the gradient g(x) = ∇x f (x) of the function f (x) of n unknowns x =
(x1, . . . ,xn)

T . The method takes advantage of the entries in the Hessian that are known to be zero. The user must

specify the step sizes to be used in the finite difference calculation and either supply a routine to evaluate the gradient

or provide gradient values by reverse communication.

ATTRIBUTES — Versions: GALAHAD FDH single, GALAHAD FDH double. Uses: GALAHAD SYMBOLS, GALAHAD SP-

ECFILE, GALAHAD SPACE and GALAHAD NLPT. Date: July 2012. Origin: N. I. M. Gould, Rutherford Appleton Labo-

ratory, and Ph. L. Toint, The University of Namur, Belgium. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD FDH single

with the obvious substitution GALAHAD FDH double, GALAHAD FDH single 64 and GALAHAD FDH double 64 for the

other variants.

The user is strongly advised to use the double precision version unless single precision corresponds to 8-byte

arithmetic.

If it is required to use more than one of the modules at the same time, the derived types FDH control type, FDH inform type,

FDH data type and NLPT userdata type, (Section 2.2) and the subroutines FDH initialize, FDH analyse, FDH -

estimate, FDH terminate, (Section 2.3) and FDH read specfile (Section 2.6) must be renamed on one of the USE

statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 The derived data types

Four derived data types are accessible from the package.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDH (May 24, 2024) 1

FDH GALAHAD

2.2.1 The derived data type for holding control parameters

The derived data type FDH control type is used to hold controlling data. Default values may be obtained by calling

FDH initialize (see Section 2.3.1), while components may also be changed by calling GALAHAD FDH read spec

(see Section 2.6.1). The components of FDH control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in FDH analyse, FDH estimate and FDH terminate is suppressed if error ≤ 0. The default is

error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing of

informational messages in FDH analyse and FDH estimate is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level > 01, details of

any data errors encountered will be reported. The default is print level = 0.

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

2.2.2 The derived data type for holding informational parameters

The derived data type FDH inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of FDH inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Sections 2.4 and 2.5

for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

bad rowis a scalar variable of type INTEGER(ip), that holds the index of the first row in which inconsistent data

occurred (or 0 if the data is consistent).

products is a scalar variable of type INTEGER(ip), that gives the number of gradient evaluations (to be) used to

estimate the Hessian.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 FDH (May 24, 2024) GALAHAD

GALAHAD FDH

2.2.3 The derived data type for holding problem data

The derived data type FDH data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of FDH procedures. This data should be preserved, untouched (except as directed

on return from GALAHAD FDH analyse with positive values of inform%status, see Section 2.4), from the initial call

to FDH initialize to the final call to FDH terminate.

2.2.4 The derived data type for holding user data

The derived data type NLPT userdata type is available to allow the user to pass data to and from user-supplied sub-

routines for function and derivative calculations (see Section 2.3.5). Components of variables of type NLPT userdata -

type may be allocated as necessary. The following components are available:

integer is a rank-one allocatable array of type INTEGER(ip).

real is a rank-one allocatable array of type default REAL(rp)

complex is a rank-one allocatable array of type default COMPLEX (double precision complex in GALAHAD FDH double).

character is a rank-one allocatable array of type default CHARACTER.

logical is a rank-one allocatable array of type default LOGICAL.

integer pointer is a rank-one pointer array of type INTEGER(ip).

real pointer is a rank-one pointer array of type default REAL(rp)

complex pointer is a rank-one pointer array of type default COMPLEX (double precision complex in GALAHAD FDH -

double).

character pointer is a rank-one pointer array of type default CHARACTER.

logical pointer is a rank-one pointer array of type default LOGICAL.

2.3 Argument lists and calling sequences

There are four procedures for user calls (see Section 2.6 for further features):

1. The subroutine FDH initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine FDH analyse is called to analyze the sparsity pattern of the Hessian and to generate information

that will be used when estimating its values.

3. The subroutine FDH estimate is called repeatedly to estimate the Hessian by finite differences at one or more

given points.

4. The subroutine FDH terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by FDH solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem with a different structure since FDH initialize cannot test for this

situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONAL arguments.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDH (May 24, 2024) 3

FDH GALAHAD

2.3.1 The initialization subroutine

Default values are provided as follows:

CALL FDH initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type FDH data type (see Section 2.2.3). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type FDH control type (see Section 2.2.1). On exit, control con-

tains default values for the components as described in Section 2.2.1. These values should only be changed after

calling FDH initialize.

inform is a scalar INTENT(OUT) argument of type FDH inform type (see Section 2.2.2). A successful call to

FDH initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

2.3.2 The analysis subroutine

The analysis phase, in which the sparsity pattern of the Hessian is used to generate information that will be used when

estimating its values, is called as follows:

CALL FDH analyse(n, nz, ROW, DIAG, data, control, inform)

n is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that must be set to n the dimension of the

Hessian matrix, i.e. the number of variables in the function f . Restrictions: n > 0.

nz is a scalar INTENT(IN) scalar argument of type INTEGER(ip), that must be set to the number of nonzero entries

on and below the diagonal of the Hessian matrix. Restrictions: n ≤ nz ≤ n ∗ (n+1)/2.

ROW is a scalar INTENT(INOUT) rank-one array argument of type INTEGER(ip) and dimension nz, that is used to

describe the sparsity structure of the Hessian matrix. It must be set so that ROW(i), i = 1, . . . , nz contain the

row numbers of the successive nonzero elements of the lower triangular part (including the diagonal) of the

Hessian matrix when scanned column after column in the natural order. The diagonal entry must preceed the

other entries in each column. The remaining entries may appear in any order. On exit ROW will be as input, but

will have been altered in the interim. Restrictions: j ≤ ROW(j) ≤ n , j = 1, . . . , nz.

DIAG is a scalar INTENT(IN) rank-one array argument of type INTEGER(ip) and dimension n, that is used to describe

the sparsity structure of the Hessian matrix. It must be set so that DIAG(i) i, i = 1, . . . , n contain the position of

the ith diagonal of the matrix in the list held in ROW. Restrictions: ROW(DIAG(i= i, i = 1, . . . , n.

control is a scalar INTENT(IN) argument of type FDH control type (see Section 2.2.1). Default values may be

assigned by calling FDH initialize prior to the first call to FDH analyse.

inform is a scalar INTENT(INOUT) argument of type FDH inform type (see Section 2.2.2). A successful call to

FDH analyse is indicated when the component status has the value 0. For other return values of status, see

Section 2.5.

data is a scalar INTENT(INOUT) argument of type FDH data type (see Section 2.2.3). It is used to hold data about

the problem being solved. With the possible exceptions of the components eval status and U (see Section 2.4),

it must not have been altered by the user since the last call to FDH initialize.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 FDH (May 24, 2024) GALAHAD

GALAHAD FDH

2.3.3 The estimation subroutine

The estimation phase, in which the nonzero entries of the Hessian are estimated by finite differences, is called as

follows:

CALL FDH estimate(n, nz, ROW, DIAG, X, G, STEPSIZE, H, &

data, control, inform, userdata, eval G)

n, nz, ROW and DIAG are INTENT(IN) arguments exactly as described and input to FDH analyse, and must not have

been changed in the interim.

X is a scalar INTENT(IN) rank-one array argument of type REAL(rp), and dimension n, that must be set so that

X(i) contains the component xi, i = 1, . . . , n of the point x at which the user wishes to estimate H(x).

G is a scalar INTENT(IN) rank-one array argument of type REAL(rp), and dimension n, that must be set so that

G(i) contains the component gi(x), i = 1, . . . , n of the gradient g(x) of f at the point x input in X.

STEPSIZE is a scalar INTENT(IN) rank-one array argument of type REAL(rp), and dimension n, that must be set

to the stepsizes to be used in the finite difference scheme. One can roughly say that STEPSIZE(i) is the step

used to evaluate the ith column of the Hessian—recommended values are between 10−7 and 10−3 times the

corresponding component of X.

H is a scalar INTENT(INOUT) rank-one array argument of type REAL(rp), and dimension nz, that needs not be

set on input, but that will be set to the non-zeros of the Hessian H(x) in the order defined by the list stored in

ROW.

control is a scalar INTENT(IN) argument of type FDH control type (see Section 2.2.1). Default values may be

assigned by calling FDH initialize prior to the first call to FDH analyse.

inform is a scalar INTENT(INOUT) argument of type FDH inform type (see Section 2.2.2). A successful call to

FDH analyse is indicated when the component status has the value 0. For other return values of status, see

Sections 2.4 and 2.5.

data is a scalar INTENT(INOUT) argument of type FDH data type (see Section 2.2.3). It is used to hold data about

the problem being solved. With the possible exceptions of the components eval status and U (see Section 2.4),

it must not have been altered by the user since the last call to FDH initialize.

userdata is a scalar INTENT(INOUT) argument of type NLPT userdata type whose components may be used to

communicate user-supplied data to and from the OPTIONAL subroutine eval G, (see Section 2.2.4).

eval G is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the gradient of the objective

function g(x)=∇x f (x) at a given vector x. See Section 2.3.5 for details. If eval G is present, it must be declared

EXTERNAL in the calling program. If eval G is absent, GALAHAD FDH analyse will use reverse communication

to obtain gradient values (see Section 2.4).

2.3.4 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL FDH terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type FDH data type exactly as for FDH solve, which must not have

been altered by the user since the last call to FDH initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type FDH control type exactly as for FDH solve.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDH (May 24, 2024) 5

FDH GALAHAD

inform is a scalar INTENT(OUT) argument of type FDH inform type exactly as for FDH solve. Only the component

status will be set on exit, and a successful call to FDH terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.5.

2.3.5 Gradient values via internal evaluation

If the argument eval G is present when calling GALAHAD FDH analyse, the user is expected to provide a subroutine of

that name to evaluate the value of the gradient the objective function g(x) = ∇x f (x). The routine must be specified as

SUBROUTINE eval_G(status, X, userdata, G)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the gradient of the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type NLPT userdata type whose components may be used to

communicate user-supplied data to and from the subroutine eval G (see Section 2.2.4).

G is a rank-one INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

gradient of the objective function g(x) = ∇x f (x) evaluated at the vector x input in X.

2.4 Reverse Communication Information

A positive value of inform%status on exit from FDH estimate indicates that GALAHAD FDH analyse is seeking fur-

ther information—this will happen if the user has chosen not to evaluate gradient values internally (see Section 2.3.5).

The user should compute the required information and re-enter GALAHAD FDH analyse with inform%status and all

other arguments (except those specifically mentioned below) unchanged.

Possible values of inform%status and the information required are

1. The user should compute the gradient of the objective function g(x) = ∇x f (x) at the point x indicated in

data%X. The value of the i-th component of the gradient should be set in data%G(i), for i = 1, . . . ,n and

data%eval status should be set to 0. If the user is unable to evaluate a component of g(x)—for instance, if a

component of the gradient is undefined at x—the user need not set data%G, but should then set data%eval status

to a non-zero value.

2.5 Warning and error messages

A negative value of inform%status on exit from FDH analyse, FDH estimate or FDH terminate indicates that an

error has occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. One or more of the restriction 0 < n ≤ nz ≤ n ∗ (n+1)/2 has been violated.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 FDH (May 24, 2024) GALAHAD

GALAHAD FDH

-23. One or more of the restrictions ROW(DIAG(i))= i, i = 1, . . . , n, or j ≤ ROW(j) ≤ n , j = 1, . . . , nz, has been

violated. See inform%bad row for the index of the row involved.

-31. FDH estimate has been called before FDH analyse.

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type FDH control type (see Section 2.2.1), by reading an appropriate data specification file using the

subroutine FDH read specfile. This facility is useful as it allows a user to change FDH control parameters without

editing and recompiling programs that call FDH.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by FDH read specfile must start with a ”BEGIN FDH” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by FDH_read_specfile ..)

BEGIN FDH

keyword value

.......

keyword value

END

(.. lines ignored by FDH_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN FDH” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN FDH SPECIFICATION

and

END FDH SPECIFICATION

are acceptable. Furthermore, between the “BEGIN FDH” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when FDH read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

FDH read specfile.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDH (May 24, 2024) 7

FDH GALAHAD

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL FDH_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type FDH control type (see Section 2.2.1). Default values should

have already been set, perhaps by calling FDH initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.2.1) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level is positive, information about errors encountered will be printed on unit control%out.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: FDH solve calls the GALAHAD packages GALAHAD SYMBOLS, GALAHAD SPECFILE,

GALAHAD SPACE and GALAHAD NLPT.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: 0 < n ≤ nz ≤ n ∗ (n+1)/2, ROW(DIAG(i))= i, i = 1, . . . , n, or j ≤ ROW(j) ≤ n , j = 1, . . . , nz.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The routines use a “Lower triangular substitution algorithm”. It assumes that no diagonal values are constrained by

the sparsity requirements. The analysis phase uses the sparsity pattern of the matrix to decide how many differences in

gradient are needed for estimation and along what directions. For this purpose, it defines a symmetric permutation of

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 FDH (May 24, 2024) GALAHAD

GALAHAD FDH

the matrix. The evaluation phase computes the differences in gradients that are required and then solves a consequent

linear system by a substitution to obtain the entries of the approximate Hessian.

Once the pattern analysis is performed, one can approximate the Hessian of f at several different points. This

is done by a single call to FDH analyse followed by several calls to FDH estimate for different values of x with

corresponding g(x).

Reference:

The method is described in detail in

M. J. D. Powell and Ph. L. Toint. “On the estimation of sparse Hessian matrices”. SIAM J. Numer. Anal. 16 (1979)

1060-1074.

5 EXAMPLES OF USE

Suppose we wish to estimate the Hessian matrix of the objective function

f (x1, . . . ,x5) = (x1 + p)3 + x3
2 + x3

3 + x3
4 + x3

5 + x1x4 + x2x3 + x3x4 + x4x5,

that depends on the parameter p, whose gradient is

g(x) =













3(x1 + p)2 + x4

3x2
2 + x3

3x2
3 + x2 + x4

3x2
4 + x1 + x3 + x5

3x2
5 + x4













and thus whose Hessian has the sparsity pattern













∗ 0 0 · 0

0 ∗ · 0 0

0 ∗ ∗ · 0

∗ 0 ∗ ∗ ·

0 0 0 ∗ ∗













(the entries ∗ in the lower triangle are the ones that will be estimated).

Choosing uniform step lengths of size 10−6, we may estimate the Hessian at x = (1,1,1,1,1)T and (1,2,3,4,5)T

for p = 4 using the following code - we use an explicit call to evaluate the gradient at the first point and the reverse-

communication method at the second:

! THIS VERSION: GALAHAD 4.1 - 2022-12-19 AT 14:50 GMT.

PROGRAM GALAHAD_FDH_EXAMPLE

USE GALAHAD_FDH_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (FDH_data_type) :: data

TYPE (FDH_control_type) :: control

TYPE (FDH_inform_type) :: inform

INTEGER, PARAMETER :: n = 5, nz = 9

REAL (KIND = wp), PARAMETER :: p = 4.0_wp

INTEGER :: i, status

INTEGER :: DIAG(n), ROW(nz)

REAL (KIND = wp) :: X1(n), X2(n), STEPSIZE(n), G(n)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDH (May 24, 2024) 9

FDH GALAHAD

REAL (KIND = wp) :: H(nz)

TYPE (GALAHAD_userdata_type) :: userdata

INTERFACE

SUBROUTINE GRAD(status, X, userdata, G)

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: G

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

END SUBROUTINE GRAD

END INTERFACE

! start problem data

ROW = (/ 1, 4, 2, 3, 3, 4, 4, 5, 5 /) ! Record the sparsity pattern of

DIAG = (/ 1, 3, 5, 7, 9 /) ! the Hessian (lower triangle)

ALLOCATE(userdata%real(1)) ! Allocate space for the parameter

userdata%real(1) = p ! Record the parameter, p

STEPSIZE = (/ 0.000001_wp, 0.000001_wp, 0.000001_wp, &

0.000001_wp, 0.000001_wp /) ! Set difference stepsizes

! estimate the Hessian at X1 by internal evaluation

X1 = (/ 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /)

CALL FDH_initialize(data, control, inform)

CALL FDH_analyse(n, nz, ROW, DIAG, data, control, inform)

IF (inform%status /= 0) THEN ! Failure

WRITE(6, "(’ return with nonzero status ’, I0, ’ from FDH_analyse’)") &

inform%status ; STOP

END IF

CALL GRAD(status, X1(: n), userdata, G(: n))

CALL FDH_estimate(n, nz, ROW, DIAG, X1, G, STEPSIZE, H, &

data, control, inform, userdata, eval_G = GRAD)

IF (inform%status == 0) THEN ! Success

WRITE(6, "(’ At 1st point, nonzeros in Hessian matrix are ’, /, &

& (5ES12.4))") (H(i), i = 1, nz)

ELSE ! Failure

WRITE(6, "(’ return with nonzero status ’, I0, ’ from FDH_estimate’)")&

inform%status ; STOP

END IF

! estimate the Hessian at X2 by reverse communication

X2 = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp, 5.0_wp /)

CALL GRAD(status, X2(: n), userdata, G(: n))

10 CONTINUE

CALL FDH_estimate(n, nz, ROW, DIAG, X2, G, STEPSIZE, H, &

data, control, inform, userdata)

IF (inform%status == 0) THEN ! Success

WRITE(6, "(/, ’ At 2nd point, nonzeros in Hessian matrix are ’, /, &

& (5ES12.4))") (H(i), i = 1, nz)

ELSE IF (inform%status > 0) THEN ! Reverse communication required

CALL GRAD(data%eval_status, data%X(: n), userdata, data%G(: n))

GO TO 10

ELSE ! Failure

WRITE(6, "(’ return with nonzero status ’, I0, ’ from FDH_estimate’)")&

inform%status ; STOP

END IF

CALL FDH_terminate(data, control, inform) ! Delete internal workspace

END PROGRAM GALAHAD_FDH_EXAMPLE

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 FDH (May 24, 2024) GALAHAD

GALAHAD FDH

! internal subroutine to evaluate the gradient of the objective

SUBROUTINE GRAD(status, X, userdata, G)

USE GALAHAD_USERDATA_double, ONLY: GALAHAD_userdata_type

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: G

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

G(1) = 3.0_wp * (X(1) + userdata%real(1)) ** 2 + X(4)

G(2) = 3.0_wp * X(2) ** 2 + X(3)

G(3) = 3.0_wp * X(3) ** 2 + X(2) + X(4)

G(4) = 3.0_wp * X(4) ** 2 + X(1) + X(3) + X(5)

G(5) = 3.0_wp * X(5) ** 2 + X(4)

status = 0

END SUBROUTINE GRAD

Notice how the parameter p is passed to the function evaluation routines via the real component of the derived type
userdata. The code produces the following output:

At 1st point, nonzeros in Hessian matrix are

3.0000E+01 1.0000E+00 6.0000E+00 1.0000E+00 6.0000E+00

1.0000E+00 6.0000E+00 1.0000E+00 6.0000E+00

At 2nd point, nonzeros in Hessian matrix are

3.0000E+01 1.0000E+00 1.2000E+01 1.0000E+00 1.8000E+01

1.0000E+00 2.4000E+01 1.0000E+00 3.0000E+01

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDH (May 24, 2024) 11

