
GALAHAD FDC

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given an under-determined set of linear equations/constraints aT
i

x = b
i
, i = 1, . . . ,m involving n ≥ m unknowns x, this

package determines whether the constraints are consistent, and if so how many of the constraints are dependent;

a list of dependent constraints, that is, those which may be removed without changing the solution set, will be found

and the remaining ai will be linearly independent. Full advantage is taken of any zero coefficients in the vectors ai.

ATTRIBUTES — Versions: GALAHAD FDC single, GALAHAD FDC double. Uses: GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD STRING, GALAHAD SMT, GALAHAD ROOTS, GALAHAD SLS, GALAHAD ULS, GALAHAD SPECFILE, GALAHAD-

SPACE. Date: August 2006. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR

15581 or Fortran 2003. Parallelism: Some options may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD FDC single

with the obvious substitution GALAHAD FDC double, GALAHAD FDC single 64 and GALAHAD FDC double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, FDC time type,

FDC control type, and FDC inform type (Section 2.3) and the subroutines FDC initialize, FDC find dependent,

FDC terminate (Section 2.4) and FDC read specfile (Section 2.6) must be renamed on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.2 Parallel usage

OpenMP may be used by the GALAHAD FDC package to provide parallelism for some solvers in shared memory envi-

ronments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP must

be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number of

threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDC (May 24, 2024) 1

FDC GALAHAD

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.3 The derived data types

Three derived data types are accessible from the package.

2.3.1 The derived data type for holding control parameters

The derived data type FDC control type is used to hold controlling data. Default values may be obtained by calling

FDC initialize (see Section 2.4.1), while components may also be changed by calling GALAHAD FDC read spec

(see Section 2.6.1). The components of FDC control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in FDC find dependent and FDC terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in FDC find dependent is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, basic statistics

of the performance of the package will be produced. If print level ≥ 2, this output will be increased to

provide details such as the size of each neglected pivot. The default is print level = 0.

max infeas is a scalar variable of type REAL(rp), that holds the largest permitted infeasibility for a dependent

constraint. Specifically, if x satisfies aT
i

x= c
i
for the constraints deemed to be linearly independent, it is required

that |aT
i

x− c
i
| ≤ max infeas for those classified as dependent. The default is max infeas = u

1/3, where u is

EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD FDC double).

pivot tol is a scalar variable of type default REAL(rp), that holds the relative pivot tolerance used by the matrix

factorization when attempting to detect linearly dependent constraints. See the documentation for the packages

SLS and ULS for details. The default is pivot tol = 0.5.

use sls is a scalar variable of type default LOGICAL, that should be set .TRUE. if the GALAHAD package SLS is

to be used to detect linearly dependent constraints, or .FALSE. if the GALAHAD package ULS is to be used

instead. The default is use sls = .FALSE..

scale is a scalar variable of type default LOGICAL, that must be set .TRUE. if the rows of A are to be scaled to have

unit (infinity) norm and .FALSE. otherwise. The default is scale = .FALSE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

symmetric linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any symmetric linear system that might arise. Current possible choices are ’sils’,

’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma97’, ssids, ’pardiso’ and ’wsmp’, although only ’sils’ and, for

OMP 4.0-compliant compilers, ’ssids’ are installed by default. See the documentation for the GALAHAD

package SLS for further details. The default is symmetric linear solver = ’sils’, but we recommend

’ma97’ if it available.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 FDC (May 24, 2024) GALAHAD

GALAHAD FDC

unsymmetric linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any unsymmetric linear system that might arise. Current possible choices are ’gls’,

’ma28’ and ’ma48’. See the documentation for the GALAHAD package ULS for further details. The default is

unsymmetric linear solver = ’gls’, but we recommend ’ma48’ if it available.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

SLS control is a scalar variable argument of type SLS control type that is used to pass control options to external

packages used to factorize relevant symmetric matrices that arise. See the documentation for the GALAHAD

package SLS for further details. In particular, default values are as for SLS, except that SLS control%rela-

tive pivot tolerance is reset to pivot tol.

ULS control is a scalar variable argument of type ULS control type that is used to pass control options to external

packages used to factorize relevant unsymmetric matrices that arise. See the documentation for the GALAHAD

package ULS for further details. In particular, default values are as for ULS, except that ULS control%rela-

tive pivot tolerance is reset to pivot tol.

2.3.2 The derived data type for holding timing information

The derived data type FDC time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of FDC time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing the required matrices prior

to factorization.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing the

required matrices prior to factorization.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

2.3.3 The derived data type for holding informational parameters

The derived data type FDC inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of FDC inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.5 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDC (May 24, 2024) 3

FDC GALAHAD

factorization status is a scalar variable of type INTEGER(ip), that gives the return status from the matrix fac-

torization.

factorization integer is a scalar variable of type long INTEGER(ip), that gives the amount of integer storage

used for the matrix factorization.

factorization real is a scalar variable of type INTEGER(int64), that gives the amount of real storage used for the

matrix factorization.

non negligible pivot is a scalar variable of type REAL(rp), that holds the value of the smallest pivot larger than

control%zero pivot when searching for dependent linear constraints. If non negligible pivot is close

to control%zero pivot, this may indicate that there are further dependent constraints, and it may be worth

increasing control%zero pivot above non negligible pivot and solving again.

time is a scalar variable of type FDC time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.3.2).

SLS inform is a scalar variable argument of type SLS inform type that is used to pass information concerning the

progress of the external packages used to factorize relevant symmetric matrices that arise. See the documentation

for the GALAHAD package SLS for further details.

ULS inform is a scalar variable argument of type ULS inform type that is used to pass information concerning the

progress of the external packages used to factorize relevant symmetric matrices that arise. See the documentation

for the GALAHAD package ULS for further details.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.6 for further features):

1. The subroutine FDC initialize is used to set default values before attempting to identify dependent con-

straints.

2. The subroutine FDC find dependent is called to identify dependent constraints.

3. The subroutine FDC terminate is provided to allow the user to automatically deallocate workspace array com-

ponents, previously allocated by FDC find dependent, after use.

We use square brackets [] to indicate OPTIONALarguments.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL FDC initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type FDC data type that need not be set on entry and whose compo-

nents will be used as workspace.

control is a scalar INTENT(OUT) argument of type FDC control type (see Section 2.3.1). On exit, control con-

tains default values for the components as described in Section 2.3.1. These values should only be changed after

calling FDC initialize.

inform is a scalar INTENT(INOUT) argument of type FDC inform type (see Section 2.3.3). A successful call to

FDC find dependent is indicated when the component status has the value 0. For other return values of

status, see Section 2.5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 FDC (May 24, 2024) GALAHAD

GALAHAD FDC

2.4.2 The subroutine for finding dependent constraints

Dependent constraints are identified as follows:

CALL FDC find dependent(n, m, A val, A col, A ptr, B, &

n depen, DEPEN, data, control, inform)

m is a scalar INTENT(IN) argument of type INTEGER(ip), that holds the number of constraints, m. Restriction:

m ≥ 0.

n is a scalar INTENT(IN) argument of type INTEGER(ip), that holds the number of unknowns, n. Restriction:

n ≥ 0.

A val is an INTENT(IN) rank-one array of type REAL(rp), that holds the values of the entries (that is those compo-

nent whose values are nonzero) of the matrix A whose rows are the vectors aT
i

, i = 1, . . . ,m. The entries for row

i must directly precede those in row i, but the order within each row is unimportant.

A col is an INTENT(IN) rank-one array of type INTEGER(ip), that holds the (column) indices of the entries of A

corresponding to the values input in A val.

A ptr is an INTENT(IN) rank-one array of dimension m+1 and type INTEGER(ip), whose i-th entry holds the starting

position of row i of A for i = 1, . . . ,m. The m+ 1-st entry of A ptr must hold the total number of entries plus

one.

B is an INTENT(IN) rank-one array of dimension m and type REAL(rp), whose i-th component must be set to bi

for i = 1, . . . ,m.

n depen is a scalar INTENT(OUT) argument of type INTEGER(ip), that gives the number of dependent constraints.

DEPEN is a rank-one allocatable array of type INTEGER(ip), On exit, if n depen > 0, it will have been allocated to

be of length n depen and its components will be the indices of the dependent constraints. It will not be allocated

or set if n depen = 0.

data is a scalar INTENT(INOUT) argument of type FDC data type that need not be set on entry and whose compo-

nents will be used as workspace.

control is a scalar INTENT(IN) argument of type FDC control type (see Section 2.3.1). Default values may be

assigned by calling FDC initialize prior to the first call to FDC find dependent.

inform is a scalar INTENT(INOUT) argument of type FDC inform type (see Section 2.3.3). A successful call to

FDC find dependent is indicated when the component status has the value 0. For other return values of

status, see Section 2.5.

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL FDC terminate(data, control, inform[, C depen])

data is a scalar INTENT(INOUT) argument of type FDC data type whose array components will be deallocated on

exit.

control is a scalar INTENT(IN) argument of type FDC control type exactly as for FDC find dependent.

inform is a scalar INTENT(INOUT) argument of type FDC inform type exactly as for FDC find dependent. Only

the components status alloc status and bad alloc will be set on exit, and a successful call to FDC terminate

is indicated when this component status has the value 0. For other return values of status, see Section 2.5.

C depen is an OPTIONAL rank-one allocatable array of type default INTEGER(ip), that will be deallocated on exit if

PRESENT.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDC (May 24, 2024) 5

FDC GALAHAD

2.5 Warning and error messages

A negative value of inform%status on exit from FDC find dependent or FDC terminate indicates that an error has

occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively. status is given by the value inform%alloc status.

-3. One of the restrictions n ≥ 0 or m ≥ 0 has been violated.

-5 The constraints appear to be inconsistent.

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factorization status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

torization status.

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type FDC control type (see Section 2.3.1), by reading an appropriate data specification file using the

subroutine FDC read specfile. This facility is useful as it allows a user to change FDC control parameters without

editing and recompiling programs that call FDC.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by FDC read specfile must start with a ”BEGIN FDC” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by FDC_read_specfile ..)

BEGIN FDC

keyword value

.......

keyword value

END

(.. lines ignored by FDC_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN FDC” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN FDC SPECIFICATION

and

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 FDC (May 24, 2024) GALAHAD

GALAHAD FDC

END FDC SPECIFICATION

are acceptable. Furthermore, between the “BEGIN FDC” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when FDC read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

FDC read specfile.

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL FDC_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type FDC control type (see Section 2.3.1). Default values should

have already been set, perhaps by calling FDC initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.1) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-permitted-infeasibility %max infeas real

pivot-tolerance-used-for-dependencies %pivot tol real

use-sls %use sls logical

scale-A %scale logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

symmetric-linear-equation-solver %symmetric linear solver character

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, basic statistics of the performance of the package will be produced. If control-

%print level ≥ 2 this output will be increased to provide details such as the size of each neglected pivot.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDC (May 24, 2024) 7

FDC GALAHAD

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: FDC find dependent calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD STRING, GALAHAD SMT, GALAHAD ROOTS, GALAHAD SLS, GALAHAD ULS, GALAHAD SPECFILE and

GALAHAD SPACE.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: n ≥ 0, m ≥ 0.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

A choice of two methods is available. In the first, the matrix

K =

(

αI AT

A 0

)

is formed and factorized for some small α > 0 using the GALAHAD package SLS—the factors K = PLDLT PT are

used to determine whether A has dependent rows. In particular, in exact arithmetic dependencies in A will correspond

to zero pivots in the block diagonal matrix D.

The second choice of method finds factors A = PLUQ of the rectangular matrix A using the GALAHAD package

ULS. In this case, dependencies in A will be reflected in zero diagonal entries in U in exact arithmetic.

The factorization in either case may also be used to determine whether the system is consistent.

5 EXAMPLE OF USE

Suppose we wish to find whether the linear constraints x1 +2x2+3x3+4x4 = 5,2x1−4x2+6x3−8x4 = 10 and 5x2+

10x4 = 0 are consistent but redundant. Then we may use the following code.

! THIS VERSION: GALAHAD 4.0 - 20/01/2022 AT 09:30 GMT.

PROGRAM GALAHAD_FDC_example

USE GALAHAD_FDC_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

INTEGER, PARAMETER :: n = 4, m = 3, a_ne = 10

INTEGER :: A_ptr(m + 1), A_col(a_ne)

REAL (KIND = wp) :: A_val(a_ne), B(m)

INTEGER, ALLOCATABLE :: DEPEN(:)

INTEGER :: n_depen

TYPE (FDC_data_type) :: data

TYPE (FDC_control_type) :: control

TYPE (FDC_inform_type) :: inform

A_val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp, 2.0_wp, -4.0_wp, 6.0_wp, &

-8.0_wp, 5.0_wp, 10.0_wp /)

A_col = (/ 1, 2, 3, 4, 1, 2, 3, 4, 2, 4 /)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 FDC (May 24, 2024) GALAHAD

GALAHAD FDC

A_ptr = (/ 1, 5, 9, 11 /)

B = (/ 5.0_wp, 10.0_wp, 0.0_wp /)

CALL FDC_initialize(data, control, inform) ! Initialize control parameters

control%use_sls = .TRUE.

control%symmetric_linear_solver = ’sytr’

CALL FDC_find_dependent(n, m, A_val, A_col, A_ptr, B, n_depen, DEPEN, &

data, control, inform) ! Check for dependencies

IF (inform%status == 0) THEN ! Successful return

IF (n_depen == 0) THEN

WRITE(6, "(’ FDC_find_dependent - no dependencies ’)")

ELSE

WRITE(6, "(’ FDC_find_dependent - dependent constraint(s):’, 3I3)") &

DEPEN

END IF

ELSE ! Error returns

WRITE(6, "(’ FDC_find_dependent exit status = ’, I6) ") inform%status

END IF

CALL FDC_terminate(data, control, inform, DEPEN) ! Delete workspace

END PROGRAM GALAHAD_FDC_example

This produces the following output:

FDC_find_dependent - dependent constraint(s): 1

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD FDC (May 24, 2024) 9

