
GALAHAD EXPO

USER DOCUMENTATION GALAHAD Optimization Library version 5.3

1 SUMMARY

This package uses an exponential-penalty function to find a (local) minimizer of a differentiable objective func-

tion f (x) of n variables x, subject to m general constraints cL ≤ c(x)≤ cU and simple bounds xL ≤ x ≤ xU on the

variables. Here, any of the components of the vectors of bounds cL, cU, xL and xU may be infinite. The method offers

the choice of direct and iterative solution of the key unconstrained-optimization subproblems, and is most suitable for

large problems. First derivatives are required, and if second derivatives can be calculated, they will be exploited—if

the product of second derivatives with a vector may be found but not the derivatives themselves, that may also be

exploited.

ATTRIBUTES — Versions: GALAHAD EXPO single, GALAHAD EXPO double. Uses: GALAHAD CLOCK, GALAHAD NLPT,

GALAHAD SYMBOLS, GALAHAD USERDATA, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD BSC, GALAHAD MOP, GALAHAD -

SSLS, GALAHAD TRU, GALAHAD GLTR, GALAHAD STRINGS, GALAHAD SPACE, GALAHAD NORMS, GALAHAD BLAS interface,

and GALAHAD LAPACK interface. Date: may 2025. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Lan-

guage: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available with single, double and (if available) quadruple precision reals, and either 32-bit or 64-bit

integers. Access to the 32-bit integer, single precision version requires the USE statement

USE GALAHAD EXPO single

with the obvious substitution GALAHAD EXPO double, GALAHAD EXPO quadruple, GALAHAD EXPO single 64, GALA-

HAD EXPO double 64 and GALAHAD EXPO quadruple 64 for the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, GALAHAD userdata -

type, EXPO time type, EXPO control type, EXPO inform type, EXPO data type and NLPT problem type, (Sec-

tion 2.4) and the subroutines EXPO initialize, EXPO solve, EXPO terminate, (Section 2.5) and EXPO read specfile

(Section 2.9) must be renamed on one of the USE statements.

2.1 Basic terminology

The exponential penalty function is defined to be

φ(x,w,µµµ,v,ννν) = f (x)+∑
i

µL

i w
L

i exp[(cL

i − ci(x))/µL

i]+∑
i

µU

i wU

i exp[(ci(x)− cU

i)/µU

i]

+∑
j

νL

jv
L

j exp[(xL

j − x j)/νL

j]+∑
j

νU

jv
U

j exp[(x j − xU

j)/νU

j],
(2.1)

where cL

i , cU

i and ci(x) are the i-th components of cL, cU and c(x), and cL

j, cU

j and x j are the j-th components of xL, xU

and x, respectively. Here the components of µµµL, µµµU, νννL and νννU are separate penalty parameters for each lower and

upper, general and simple-bound constraint, respectively, while those of wL, wU, vL, vU are likewise separate weights

for the same. The algorithm iterates by approximately minimizing φ(x,w,µµµ,v,ννν) for a fixed set of penalty parameters

and weights, and then adjusting these parameters and weights. The adjustments are designed so the sequence of

approximate minimizers of φ converge to that of the specified constrained optimization problem.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 1

EXPO GALAHAD

Key constructs are the gradient of the objective function

g(x)
def
= ∇x f (x), (2.2)

the Jacobian of the vector of constraints,

J(x)
def
= ∇xc(x), (2.3)

and the gradient and Hessian of the Lagrangian function

gL(x,y)
def
= g(x)− JT (x)y− z and HL(x,y)

def
= ∇xx

[

f (x)−∑
i

yi∇
2ci(x)

]

(2.4)

for given vectors y and z.

The required solution x necessarily satisfies the primal optimality conditions

cL ≤ c(x)≤ cU and xL ≤ x ≤ xU, (2.5)

the dual optimality conditions

g(x) = JT (x)y+ z (2.6)

where

y = yL − yU, z = zL − zU, and (yL,yU,zL,zU)≥ 0, (2.7)

and the complementary slackness conditions

(c(x)− cL)T yL = 0, (c(x)− cU)T yU = 0, (x− xL)T zL = 0 and (x− xU)T zU = 0, (2.8)

where the vectors y and z are known as the Lagrange multipliers for the general constraints, and the dual variables for

the simple bounds, respectively, and where the vector inequalities hold component-wise.

2.2 Matrix storage formats

The matrices J(x) and HL(x,y) (as required and when available) may be stored in a variety of input formats.

2.2.1 Dense storage format

The matrix J is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array J%val

will hold the value Ji, j for i = 1, . . . ,m, j = 1, . . . ,n. Since HL is symmetric, only the lower triangular part (that is the

part HLi j for 1 ≤ j ≤ i ≤ n) should be stored. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value HLi j (and, by symmetry, HL ji) for 1 ≤ j ≤ i ≤ n.

2.2.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of J, its row index i, column index j and value Ji j

are stored in the l-th components of the integer arrays J%row, J%col and real array J%val. The order is unimportant,

but the total number of entries J%ne is required. The same scheme is applicable to HL (thus requiring integer arrays

H%row, H%col, a real array H%val, and an integer value H%ne), except that only the entries in the lower triangle should

be stored.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

2.2.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of J, the i-th component of the integer array J%ptr holds the position of the first

entry in this row, while J%ptr (m+1) holds the total number of entries plus one. The column indices j and values Ji j

of the entries in the i-th row are stored in components l = J%ptr(i), . . . ,J%ptr (i+ 1)− 1 of the integer array J%col,

and real array J%val, respectively. The same scheme is applicable to HL (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle should be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.2.4 Diagonal storage format

If HL is diagonal (i.e., HLi j = 0 for all 1≤ i 6= j ≤ n) only the diagonal entries HLii for 1≤ i ≤ n need be stored, and the

first n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square

matrix J.

2.3 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions, DOUBLE PRECISION for the double precision cases

and quadruple-precision if 128-bit reals are available, and correspond to rp = real32, rp = real64 and rp =

real128 respectively as defined by the fortran iso fortran env module. The latter are default (32-bit) and long

(64-bit) integers, and correspond to ip = int32 and ip = int64, respectively, again from the iso fortran env

module.

2.4 The derived data types

Seven derived data types are accessible from the package.

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the Jacobian matrix J and Hessian matrix HL if these are available.

The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip), that holds the row dimension of the matrix.

n is a scalar component of type INTEGER(ip), that holds the column dimension of the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.4.2).

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of the symmetric matrix HL is represented as a single entry (see §2.2.1–

2.2.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.2.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.2.2–2.2.3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 3

EXPO GALAHAD

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.2.3).

2.4.2 The derived data type for holding the problem

The derived data type NLPT problem type is used to hold the problem. The relevant components of NLPT problem type

are:

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip), that holds the number of general constraints, m.

H is scalar variable of type SMT TYPE that holds the Hessian matrix of the Lagrangian, HL. The following compo-

nents are used here:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.2.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.2.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.2.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.2.4), the first eight components of H%type must contain the

string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if nlp is of derived type EXPO problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%H%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.2.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of the storage schemes discussed in Section 2.2.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.2.2). It need not be allocated for any of

the other three schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.2.2), or the sparse row-wise (see

Section 2.2.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.2.3). It need not be allocated when the other schemes are used.

G is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient g of the objective

function. The j-th component of G, j = 1, . . . ,n, contains g j.

f is a scalar variable of type REAL(rp), that holds the value of the objective function.

J is scalar variable of type SMT TYPE that holds the Jacobian matrix J(x) (if it is available). The following com-

ponents are used here:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

J%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.2.1) is used, the first five components of J%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.2.2), the first ten com-

ponents of J%type must contain the string COORDINATE, and for the sparse row-wise storage scheme (see

Section 2.2.3), the first fourteen components of J%type must contain the string SPARSE BY ROWS.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into J%type. For example, if nlp is of derived type EXPO problem type and involves a Jacobian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%J%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

J%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in J in the sparse co-ordinate

storage scheme (see Section 2.2.2). It need not be set for any of the other two schemes.

J%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian

matrix J in any of the storage schemes discussed in Section 2.2.

J%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of J in the sparse

co-ordinate storage scheme (see Section 2.2.2). It need not be allocated for any of the other two schemes.

J%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of J in either

the sparse co-ordinate (see Section 2.2.2), or the sparse row-wise (see Section 2.2.3) storage scheme. It

need not be allocated when the dense scheme is used.

J%ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip), that holds the starting position

of each row of J, as well as the total number of entries plus one, in the sparse row-wise storage scheme

(see Section 2.2.3). It need not be allocated when the other schemes are used.

C is a rank-one allocatable array of dimension m and type REAL(rp), that holds the constraint function c(x). The

i-th component of C, j = 1, . . . ,m, contains c j(x).

C l is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of lower bounds cL on

the constraints. The i-th component of C l, i = 1, . . . ,m, contains cL

i . Infinite bounds are allowed by setting the

corresponding components of C l to any value smaller than -infinity, where infinity is a component of the

control array control (see Section 2.4.3).

C u is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of upper bounds cU on

the constraints. The i-th component of C u, i = 1, . . . ,m, contains cU

i . Infinite bounds are allowed by setting the

corresponding components of C u to any value larger than that infinity, where infinity is a component of

the control array control (see Section 2.4.3).

X l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xL on

the the variables. The j-th component of X l, j = 1, . . . ,n, contains xL

j. Infinite bounds are allowed by setting

the corresponding components of X l to any value smaller than -infinity, where infinity is a component of

the control array control (see Section 2.4.3).

X u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xU on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xU

j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity, where infinity is a component of

the control array control (see Section 2.4.3).

GL is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient gL of the Lagrangian

function. The j-th component of GL, j = 1, . . . ,n, contains gL j.

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 5

EXPO GALAHAD

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

Y is a rank-one allocatable array of dimension m and type REAL(rp), that holds the values y of the Lagrange

multipliers. The i-th component of Y, i = 1, . . . ,m, contains yi.

Z is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the dual variables.

The j-th component of Z, j = 1, . . . ,n, contains z j .

pname is a scalar variable of type default CHARACTER and length 10, which contains the “name” of the problem for

printing. The default “empty” string is provided.

VNAMES is a rank-one allocatable array of dimension n and type default CHARACTER and length 10, whose j-th entry

contains the “name” of the j-th variable for printing. This is only used if “debug”printingcontrol%print level

> 4) is requested, and will be ignored if the array is not allocated.

CNAMES is a rank-one allocatable array of dimension m and type default CHARACTER and length 10, whose i-th entry

contains the “name” of the i-th constraint for printing. This is only used if “debug”printingcontrol%print level

> 4) is requested, and will be ignored if the array is not allocated.

2.4.3 The derived data type for holding control parameters

The derived data type EXPO control type is used to hold controlling data. Default values may be obtained by calling

EXPO initialize (see Section 2.5.1), while components may also be changed by calling GALAHAD EXPO read spec

(see Section 2.9.1). The components of EXPO control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in EXPO solve and EXPO terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in EXPO solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

start print is a scalar variable of type INTEGER(ip), that specifies the first iteration for which printing will occur

in EXPO solve. If start print is negative, printing will occur from the outset. The default is start print =

-1.

stop print is a scalar variable of type INTEGER(ip), that specifies the last iteration for which printing will occur

in EXPO solve. If stop print is negative, printing will occur once it has been started by start print. The

default is stop print = -1.

print gap is a scalar variable of type INTEGER(ip). Once printing has been started, output will occur once every

print gap iterations. If print gap is no larger than 1, printing will be permitted on every iteration. The default

is print gap = 1.

max it is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which that will be

allowed in EXPO solve. The default is max it = 100.

max eval is a scalar variable of type INTEGER(ip), that holds the maximum number of function evaluations that

will be allowed in EXPO solve. The default is max eval = 10000.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

alive unit is a scalar variable of type INTEGER(ip). If alive unit > 0, a temporary file named alive file (see

below) will be created on stream number alive unit on initial entry to GALAHAD EXPO solve, and execution of

GALAHAD EXPO solve will continue so long as this file continues to exist. Thus, a user may terminate execution

simply by removing the temporary file from this unit. If alive unit ≤ 0, no temporary file will be created, and

execution cannot be terminated in this way. The default is alive unit = 60.

update multipliers itmin is a scalar variable of type INTEGER(ip), that holds the smallest iteration number

for which a Lagrange multipliers/dual variables update will be attempted. Up until this value, only penalty

parameter reductions will be allowed. The default is update multipliers itmin = 0.

update multipliers tol is a scalar variable of type REAL(rp), that is used to specify the minimum value the dual

infeasibility is allowed to be before Lagrange multipliers/dual variables updates will be attempted. The default

is update multipliers tol = 1019.

infinity is a scalar variable of type REAL(rp), that is used to specify which constraint bounds are infinite. Any

bound larger than infinity in modulus will be regarded as infinite. The default is infinity = 1019.

stop abs p and stop rel p are scalar variables of type REAL(rp), that hold the required absolute and relative

accuracy for the primal infeasibility (see Section 4). The absolute value of each component of the primal

infeasibility on exit is required to be smaller than the larger of stop abs p and stop rel p times a “typical

value” for this component. The defaults are stop abs p = stop rel p = u1/3, where u is EPSILON(1.0)

(EPSILON(1.0D0) in GALAHAD EXPO double).

stop abs d and stop rel d are scalar variables of type REAL(rp), that hold the required absolute and relative

accuracy for the dual infeasibility (see Section 4). The absolute value of each component of the dual infeasibility

on exit is required to be smaller than the larger of stop abs p and stop rel p times a “typical value” for this

component. The defaults are stop abs d = stop rel d = u1/3, where u is EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD EXPO double).

stop abs c and stop rel c are scalar variables of type REAL(rp), that hold the required absolute and relative

accuracy for the violation of complementary slackness (see Section 4). The absolute value of each component

of the complementary slackness on exit is required to be smaller than the larger of stop abs p and stop rel p

times a “typical value” for this component. The defaults are stop abs c = stop rel c = u1/3, where u is

EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD EXPO double).

stop s is a scalar variable of type REAL(rp), that is used to specify the minimum acceptable correction step s

relative to the current estimate of the solution x The algorithm will be deemed to have converged if |si| ≤ stop s

∗max(1, |xi|) for all i = 1, . . . ,n. The default is stop s = u, where u is EPSILON(1.0) (EPSILON(1.0D0) in

GALAHAD EXPO double).

stop subproblem rel is a scalar variable of type REAL(rp), that determines the required accuracy of the subprob-

lem solver GALAHAD TRU. The subproblem minimization will be stopped as soon as the relative decrease in the

subproblem gradient falls below stop subproblem rel. If stop subproblem rel is 1.0 or bigger or 0.0 or

smaller, this value will be ignored, and the choice of stopping rule delegated to control tru%stop g relative

(see below). The default is stop subproblem rel = -1.0.

initial mu is a scalar variable of type REAL(rp), that holds the required initial value of the penalty parameter. If

initial radius ≤ 0, the initial penalty parameter will be chosen automatically by GALAHAD EXPO solve The

default is initial radius = 0.1.

mu reduce is a scalar variable of type REAL(rp), that holds the amount by which the penalty parameter is reduced

at the end of an iteration. The default is mu reduce = 0.5.

obj unbounded is a scalar variable of type default REAL(rp), that specifies smallest value of the objective function

that will be tolerated before the problem is declared to be unbounded from below. The default is potential u-

nbounded = −u−2, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD EXPO double).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 7

EXPO GALAHAD

try advanced start is a scalar variable of type default REAL(rp), that specifies the largest value of the KKT

residuals before an advanced start will be attempted. The default is try advanced start = 10−2.

try sqp start is a scalar variable of type default REAL(rp), that specifies the largest value of the KKT residuals

before an advanced SQP start will be attempted. The default is try sqp start = 10−4.

stop advanced start is a scalar variable of type default REAL(rp), that specifies the smallest value of the KKT

residuals that an advanced start will be attempted. The default is stop advanced start = 10−8.

cpu time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted CPU time.

Any negative value indicates no limit will be imposed. The default is cpu time limit = - 1.0.

clock time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted elapsed

system clock time. Any negative value indicates no limit will be imposed. The default is clock time limit =

- 1.0.

hessian available is a scalar variable of type default LOGICAL, that should be set .TRUE. if the user will provide

second derivatives (either by providing an appropriate evaluation routine to the solver or by reverse commu-

nication, see Section 2.7), and .FALSE. if the second derivatives are not explicitly available. The default is

hessian available = .TRUE.. N.B. .FALSE. is not yet implemented.

subproblem direct is a scalar variable of type default LOGICAL, that should be set .TRUE. if a direct (factoriza-

tion) method is desired when solving for the step, and .FALSE. if an iterative method suffices. The default is

subproblem direct = .TRUE.. N.B. .FALSE. is not yet implemented.

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

alive file is a scalar variable of type default CHARACTER and length 30, that gives the name of the temporary file

whose removal from stream number alive unit terminates execution of GALAHAD EXPO solve. The default is

alive unit = ALIVE.d.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

BSC control is a scalar variable of type BSC control type whose components are used to control the formation of

the Hessian matrix of the penalty function, as performed by the package GALAHAD BSC. See the specification

sheet for the package GALAHAD BSC for details, and appropriate default values.

TRU control is a scalar variable of type TRU control type whose components are used to control the minimization

of the penalty function, performed by the package GALAHAD TRU. See the specification sheet for the package GA-

LAHAD TRU for details, and appropriate default values (but note that value for TRU control%hessian available,

will be overridden by GALAHAD EXPO solve).

SSLS control is a scalar variable of type SSLS control type whose components are used to control the linear

solve aspects of the calculation, as performed by the package GALAHAD SSLS. See the specification sheet for the

package GALAHAD SSLS for details, and appropriate default values.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

2.4.4 The derived data type for holding timing information

The derived data type EXPO time type is used to hold elapsed CPU and system clock times for the various parts of

the calculation. The components of EXPO time type are:

total is a scalar variable of type default REAL, that gives the CPU total time spent in the package.

preprocess is a scalar variable of type REAL(rp), that gives the CPU time spent reordering the problem to standard

form prior to solution.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing required matrices prior to

factorization.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent using the factors to solve relevant linear

equations.

clock total is a scalar variable of type default REAL, that gives the total elapsed system clock time spent in the

package.

clock preprocess is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent reordering

the problem to standard form prior to solution.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing

required matrices prior to factorization.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent using the factors

to solve relevant linear equations.

2.4.5 The derived data type for holding informational parameters

The derived data type EXPO inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of EXPO inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Sections 2.7 and 2.8

for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

n free is a scalar variable of type INTEGER(ip), that holds the number of variables that are free from their bounds.

iter is a scalar variable of type INTEGER(ip), that holds the number of iterations performed.

fc eval is a scalar variable of type INTEGER(ip), that gives the total number of objective function evaluations

performed.

gj eval is a scalar variable of type INTEGER(ip), that gives the total number of objective function gradient evalua-

tions performed.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 9

EXPO GALAHAD

hl eval is a scalar variable of type INTEGER(ip), that gives the total number of objective function Hessian evalua-

tions performed.

obj is a scalar variable of type REAL(rp), that holds the value of the objective function at the best estimate of the

solution found.

primal infeasibility is a scalar variable of type REAL(rp), that holds the norm of the violation of primal opti-

mality (see Section 2.4.4) at the best estimate of the solution found.

dual infeasibility is a scalar variable of type REAL(rp), that holds the norm of the violation of dual optimality

(see Section 2.4.4) at the best estimate of the solution found.

complementary slackness is a scalar variable of type REAL(rp), that holds the norm of the violation of comple-

mentary slackness (see Section 2.4.4) at the best estimate of the solution found.

time is a scalar variable of type EXPO time type whose components are used to hold elapsed elapsed CPU and

system clock times for the various parts of the calculation (see Section 2.4.4).

BSC inform is a scalar variable of type BSC inform type whose components give information about the formation

of the Hessian matrix of the penalty function, as performed by the package GALAHAD BSC. See the specification

sheet for the package GALAHAD BSC for details.

TRU inform is a scalar variable of type TRU inform type whose components give information about the progress

and needs of the algorithm used to minimize the penalty function, as performed by the package GALAHAD TRU.

See the specification sheet for the package GALAHAD TRU for details.

SSLS inform is a scalar variable of type SSLS inform type whose components give information about the progress

and needs of the linear-solve stages of the algorithm performed by the package GALAHAD SSLS. See the specifi-

cation sheet for the package GALAHAD SSLS for details.

2.4.6 The derived data type for holding problem data

The derived data type EXPO data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of EXPO procedures. This data should be preserved, untouched (except as

directed on return from GALAHAD EXPO solve with positive values of inform%status, see Section 2.7), from the

initial call to EXPO initialize to the final call to EXPO terminate.

2.4.7 The derived data type for holding user data

The derived data type GALAHAD userdata type is available from the package GALAHAD userdata to allow the user to

pass data to and from user-supplied subroutines for function and derivative calculations (see Section 2.6). Components

of variables of type GALAHAD userdata type may be allocated as necessary. The following components are available:

integer is a rank-one allocatable array of type INTEGER(ip).

real is a rank-one allocatable array of type default REAL(rp)

complex is a rank-one allocatable array of type default COMPLEX (double precision complex in GALAHAD EXPO -

double).

character is a rank-one allocatable array of type default CHARACTER.

logical is a rank-one allocatable array of type default LOGICAL.

integer pointer is a rank-one pointer array of type INTEGER(ip).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

real pointer is a rank-one pointer array of type default REAL(rp)

complex pointer is a rank-one pointer array of type default COMPLEX (double precision complex in GALAHAD EXPO -

double).

character pointer is a rank-one pointer array of type default CHARACTER.

logical pointer is a rank-one pointer array of type default LOGICAL.

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.9 for further features):

1. The subroutine EXPO initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine EXPO solve is called to solve the problem.

3. The subroutine EXPO terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by EXPO solve, at the end of the solution process. It is important to do this if the data

object is re-used for another problem with a different structure since EXPO initialize cannot test for this

situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONAL arguments.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL EXPO initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type EXPO data type (see Section 2.4.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type EXPO control type (see Section 2.4.3). On exit, control

contains default values for the components as described in Section 2.4.3. These values should only be changed

after calling EXPO initialize.

inform is a scalar INTENT(OUT) argument of type EXPO inform type (see Section 2.4.5). A successful call to

EXPO initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.8.

2.5.2 The minimization subroutine

The minimization algorithm is called as follows:

CALL EXPO solve(nlp, control, inform, data, userdata[, eval FC, eval GJ, &

eval HL, eval HLPROD])

nlp is a scalar INTENT(INOUT) argument of type NLPT problem type (see Section 2.4.2). It is used to hold data

about the problem being solved. For a new problem, the user must allocate all the array components, and set

values for nlp%n and the required integer components of nlp%H if second derivatives will be used. Users are free

to choose whichever of the matrix formats described in Section 2.2 is appropriate for H for their application.

The component nlp%X must be set to an initial estimate, x0, of the minimization variables. A good choice will

increase the speed of the package, but the underlying method is designed to converge (at least to a local solution)

from an arbitrary initial guess.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 11

EXPO GALAHAD

On exit, the component nlp%X will contain the best estimates of the minimization variables x, while nlp%G will

contain the best estimates of the dual variables z.

Restrictions: nlp%n > 0 and nlp%H%type ∈ {’DENSE’,’COORDINATE’,’SPARSE BY ROWS’,’DIAGONAL’}.

control is a scalar INTENT(IN) argument of type EXPO control type (see Section 2.4.3). Default values may be

assigned by calling EXPO initialize prior to the first call to EXPO solve. Note that value for TRU control%-

hessian available, will be overridden by GALAHAD EXPO solve.

inform is a scalar INTENT(INOUT) argument of type EXPO inform type (see Section 2.4.5). On initial entry, the

component status must be set to the value 1. Other entries need note be set. A successful call to EXPO solve

is indicated when the component status has the value 0. For other return values of status, see Sections 2.7

and 2.8.

data is a scalar INTENT(INOUT) argument of type EXPO data type (see Section 2.4.6). It is used to hold data about

the problem being solved. With the possible exceptions of the components eval status and U (see Section 2.7),

it must not have been altered by the user since the last call to EXPO initialize.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the OPTIONAL subroutines eval FC, eval GJ, eval HL and

eval HLPROD (see Section 2.4.7).

eval FC is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the objective function

f (x) and constraints c(x) at a given vector x. See Section 2.6.1 for details. If eval FC is present, it must

be declared EXTERNAL in the calling program. If eval FC is absent, GALAHAD EXPO solve will use reverse

communication to obtain function values (see Section 2.7).

eval GJ is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the gradient of the objec-

tive function g(x) in (2.2) and the Jacobian of the constraints J(x) in (2.3) at a given vector x. See Section 2.6.2

for details. If eval GJ is present, it must be declared EXTERNAL in the calling program. If eval GJ is absent,

GALAHAD EXPO solve will use reverse communication to obtain gradient values (see Section 2.7).

eval HL is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the Hessian of the La-

grangian function HL(x,y) in (2.4) at a given vectors x and y. See Section 2.6.3 for details. If eval H is present,

it must be declared EXTERNAL in the calling program. If eval H is absent, GALAHAD EXPO solve will use reverse

communication to obtain Hessian values (see Section 2.7).

eval HLPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product HL(x,y)v
of the Hessian of the Lagrangian function with a given vector v. See Section 2.6.4 for details. If eval HLPROD is

present, it must be declared EXTERNAL in the calling program. If eval HLPROD is absent, GALAHAD EXPO solve

will use reverse communication to obtain Hessian-vector products (see Section 2.7).

2.5.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL EXPO terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type EXPO data type exactly as for EXPO solve, which must not have

been altered by the user since the last call to EXPO initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type EXPO control type exactly as for EXPO solve.

inform is a scalar INTENT(OUT) argument of type EXPO inform type exactly as for EXPO solve. Only the com-

ponent status will be set on exit, and a successful call to EXPO terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.8.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

2.6 Function and derivative values

2.6.1 objective function and constraint values via internal evaluation

If the argument eval FC is present when calling GALAHAD EXPO solve, the user is expected to provide a subroutine

of that name to evaluate the values of the objective function f (x) and/or the constraints c(x).

The routine must be specified as

SUBROUTINE eval_FC(status, X, userdata[, f, C])

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the objective function and constraints as required, and to a non-zero value if the evaluation has not

been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval FC, eval GJ, eval HL and eval HLPROD

(see Section 2.4.7).

f is an OPTIONAL scalar INTENT(OUT) argument of type REAL(rp), that should be set to the value of the objective

function f (x) evaluated at the vector x input in X if f is PRESENT.

C is an OPTIONAL rank-one INTENT(OUT) argument of type REAL(rp), whose components should be set to the values

of the constraints c(x) evaluated at the vector x input in X if C is PRESENT.

2.6.2 Gradient and Jacobian values via internal evaluation

If the argument eval GJ is present when calling GALAHAD EXPO solve, the user is expected to provide a subroutine

of that name to evaluate the value of the gradient the objective function ∇x f (x). The routine must be specified as

SUBROUTINE eval_GJ(status, X, userdata[, G, J_val])

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the gradient and Jacobian if required, and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval FC, eval GJ, eval HL and eval HLPROD

(see Section 2.4.7).

G is an OPTIONAL rank-one INTENT(OUT) argument of type REAL(rp), whose components should be set to the values

of the gradient of the objective function ∇x f (x) evaluated at the vector x input in X if G is PRESENT.

J val is an OPTIONAL scalar INTENT(OUT) argument of type REAL(rp), whose components should be set to the

values of the Jacobian J(x) evaluated at the vector x input in X if J val is PRESENT. The values should be input

in the same order as that in which the array indices were given in nlp%J.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 13

EXPO GALAHAD

2.6.3 Hessian values via internal evaluation

If the argument eval HL is present when calling GALAHAD EXPO solve, the user is expected to provide a subroutine of

that name to evaluate the values of the Hessian of the Lagrangian function HL(x,y). The routine must be specified as

SUBROUTINE eval_HL(status, X, Y, userdata, H_val)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been

able to evaluate the Hessian of the Lagrangian function, and to a non-zero value if the evaluation has not been

possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

Y is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector y.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval FC, eval GJ, eval HL and eval HLPROD

(see Section 2.4.7).

H val is a scalar INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

Hessian of the Lagrangian function HL(x,y) in (2.4) evaluated at the vectors x and y input in X and Y. The

Hessian values should be input in the same order as that in which the array indices were given in nlp%H.

2.6.4 Hessian-vector products via internal evaluation

N.B. not yet implemented. If the argument eval HLPROD is present when calling GALAHAD EXPO solve, the user is

expected to provide a subroutine of that name to evaluate the sum u+HL(x,y)v involving the product of the Hessian

of the Lagrangian function HL(x,y) with a given vector v. The routine must be specified as

SUBROUTINE eval_HLPROD(status, X, Y, userdata, U, V, got_h)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the sum u+HL(x,y)v, and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

Y is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector y.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the subroutines eval FC, eval GJ, eval HL and eval HLPROD

(see Section 2.4.7).

U is a rank-one INTENT(INOUT) array argument of type REAL(rp) whose components on input contain the vector

u and on output the sum u+∇xx f (x)v.

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

got h is an OPTIONAL scalar INTENT(IN) argument of type default LOGICAL. If the Hessian has already been evaluated

at the current and y, got h will be PRESENT and set .TRUE.; if this is the first time the Hessian is to be accessed

at x, either got h will be absent or PRESENT and set .FALSE.. This gives the user the opportunity to reuse

“start-up” computations required for the first instance of x to speed up subsequent products.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

2.7 Reverse Communication Information

N.B. not yet implemented. A positive value of inform%status on exit from EXPO solve indicates that GALAH-

AD EXPO solve is seeking further information—this will happen if the user has chosen not to evaluate function or

derivative values internally (see Section 2.6). The user should compute the required information and re-enter GALAH-

AD EXPO solve with inform%status and all other arguments (except those specifically mentioned below) unchanged.

Possible values of inform%status and the information required are

2. The user should compute the objective function value f (x) and the constraint values c(x) at the point x indicated

in nlp%X. The required values should be set in nlp%f and nlp%c, and data%eval status should be set to 0. If

the user is unable to evaluate f (x) or c(x)—for instance, if the function is undefined at x—the user need not set

nlp%f or c(x), but should then set data%eval status to a non-zero value.

3. The user should compute the gradient g(x) of the objective function and the Jacobian J(x) of the constraints

at the point x indicated in nlp%X. The value of the i-th component of the gradient should be set in nlp%G(i),

for i = 1, . . . ,n and those for the Jacobian should be set in nlp%J%val (in the same order as that in which the

array indices were given in nlp%J, and data%eval status should be set to 0. If the user is unable to evaluate

a component of g(x) or J(x)—for instance, if a component of the gradient is undefined at x—the user need not

set nlp%G and nlp%J%val, but should then set data%eval status to a non-zero value.

4. The user should compute the Hessian HL(x,y) of the Lagrangian function at the point x and y indicated in

nlp%X and nlp%Y, respectively. The value l-th component of the Hessian stored according to the scheme input

in the remainder of nlp%H (see Section 2.4.2) should be set in nlp%H%val(l), for l = 1, . . . , nlp%H%ne, and

data%eval status should be set to 0. If the user is unable to evaluate a component of HL(x,y)—for instance,

if a component of the Hessian is undefined at x and y—the user need not set nlp%H%val, but should then set

data%eval status to a non-zero value.

5. The user should compute the product HL(x,y)v of the Hessian of the Lagrangian function HL(x,y) at the point

x and y indicated in nlp%X and nlp%Y with the vector v and add the result to the vector u. The vectors u and

v are given in data%U and data%V respectively, the resulting vector u+HL(x,y)v should be set in data%U and

data%eval status should be set to 0. If the user is unable to evaluate the product—for instance, if a component

of the Hessian is undefined at x and y—the user need not set nlp%H%val, but should then set data%eval status

to a non-zero value.

2.8 Warning and error messages

A negative value of inform%status on exit from EXPO solve or EXPO terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. The restriction nlp%n > 0 or requirement that nlp%H type contains its relevant string ’DENSE’, ’COORDINATE’,

’SPARSE BY ROWS’ or ’DIAGONAL’ has been violated.

-4. The bound constraints are inconsistent.

-7. The objective function appears to be unbounded from below on the feasible set.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 15

EXPO GALAHAD

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factor status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

tor status.

-11. The solution of a set of linear equations using factors from the factorization package failed; the return status

from the factorization package is given in the component inform%factor status.

-15. The preconditioner P(x) appears not to be positive definite.

-16. The problem is so ill-conditioned that further progress is impossible.

-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be

symptomatic of a badly scaled problem.

-19. The elapsed CPU or system clock time limit has been reached. This may happen if either control%cpu time limit

or control%clock time limit is too small, but may also be symptomatic of a badly scaled problem.

-82. The user has forced termination of GALAHAD EXPO solve by removing the file named control%alive file

from unit control%alive unit.

2.9 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type EXPO control type (see Section 2.4.3), by reading an appropriate data specification file using the

subroutine EXPO read specfile. This facility is useful as it allows a user to change EXPO control parameters without

editing and recompiling programs that call EXPO.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by EXPO read specfile must start with a ”BEGIN EXPO” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by EXPO_read_specfile ..)

BEGIN EXPO

keyword value

.......

keyword value

END

(.. lines ignored by EXPO_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN EXPO” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN EXPO SPECIFICATION

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

and

END EXPO SPECIFICATION

are acceptable. Furthermore, between the “BEGIN EXPO” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when EXPO read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by EXPO read specfile.

2.9.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL EXPO_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type EXPO control type (see Section 2.4.3). Default values should

have already been set, perhaps by calling EXPO initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.4.3) of control that each affects are given in Table 2.1 on the following page.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.10 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. This

will include the values of the objective function and the norm of its gradient, the ratio of actual to predicted decrease

following the step, the radius of the trust-region and the time taken so far. In addition, if a direct solution of the

subproblem has been attempted, the Lagrange multiplier from the secular equation and the number of factorizations

used will be recorded, while if an iterative solution has been used, the numbers of phase 1 and 2 iterations will be

given.

If control%print level≥ 2 this output will be increased to provide significant detail of each iteration. This extra

output includes residuals of the linear systems solved, and, for larger values of control%print level, values of the

variables and gradients. Further details concerning the attempted solution of the models may be obtained by increasing

control%TRU control%print level, control%SSLS control%print level and control%GLTR control%print-

level, while details about factorizations are available by increasing control%SSLS control%print level. See the

specification sheets for the packages GALAHAD GLTR, GALAHAD SSLS and GALAHAD TRU for details.

3 GENERAL INFORMATION

Use of common: None.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 17

EXPO GALAHAD

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

start-print %start print integer

stop-print %stop print integer

iterations-between-printing %print gap integer

maximum-number-of-iterations %max it integer

maximum-number-of-evaluations %max eval integer

alive-device %alive unit integer

update-multipliers-from-iteration %update multipliers itmin real

update-multipliers-feasibility-tolerance %update multipliers tol real

infinity-value %infinity real

absolute-primal-accuracy %stop abs p real

relative-primal-accuracy %stop rel p real

absolute-dual-accuracy %stop abs d real

relative-dual-accuracy %stop rel d real

absolute-complementary-slackness-accuracy %stop abs c real

relative-complementary-slackness-accuracy %stop rel c real

minimum-relative-step-allowed %stop s real

relative-subproblem-accuracy %stop subproblem rel real

initial-penalty-parameter initial mu real

penalty-parameter-reduction-factor mu reduce real

minimum-objective-before-unbounded obj unbounded real

try-advanced-start-tolerance try advanced start real

try-sqp-start-tolerance try sqp start real

stop-advanced-start-tolerance stop advanced start real

maximum-cpu-time-limit %cpu time limit real

maximum-clock-time-limit %clock time limit real

hessian-available %hessian available logical

sub-problem-direct %subproblem direct logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

alive-filename %alive file character

Table 2.1: Specfile commands and associated components of control.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: EXPO solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD NLPT,

GALAHAD SYMBOLS, GALAHAD USERDATA, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD BSC, GALAHAD MOP,

GALAHAD SSLS, GALAHAD TRU, GALAHAD GLTR, GALAHAD STRINGS, GALAHAD SPACE, GALAHAD NORMS,

GALAHAD BLAS interface, and GALAHAD LAPACK interface.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: nlp%n > 0 and nlp%H type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

4 METHOD

The method employed involves a sequential minimization of the exponential penalty function (2.1) for a sequence of

positive penalty parameters (µµµL

k,µµµ
U

k,ννν
L

k,ννν
U

k) and weights (wL

k,w
U

k ,v
L

k,v
U

k), for increasing k ≥ 0. Convergence is ensured

if the penalty parameters are forced to zero, and may be accelerated by adjusting the weights. The minimization

of (2.1) is accomplished using the trust-region unconstrained solver GALAHAD TRU. Although critical points {xk} of

φ(x,wk,µµµk,vk,νννk) converge to a local solution x∗ of the underlying problem, the reduction of the penalty parameters to

zero often results in xk being a poor starting point for the minimization of φ(x,wk+1,µµµk+1,vk+1,νννk+1). Consequently,

a careful extrapolated starting point from xk is used instead. Moreover, once the algorithm is confident that it is

sufficiently close to x∗, it switches to Newton’s method to accelerate the convergence. Both the extrapolation and the

Newton iteration rely on the block-linear-system solver GALAHAD SSLS.

The iteration is terminated as soon as residuals to the optimality conditions (2.5)–(2.8) are sufficiently small. For

infeasible problems, this will not be possible, and instead the residuals to (2.5) will be made as small as possible.

References:

The method is described in detail in

N. Gould, S. Leyffer, A. Montoison and C. Vanaret (2025) The exponential multiplier method in the 21st century.

RAL Technical Report, in preparation.

5 EXAMPLES OF USE

Suppose we wish to minimize the objective function f (x) = x2
1 + x2

2 subject to the constraints

x1 + x2 ≥ 1

x2
1 + x2

2 ≥ 1

px2
1 + x2

2 ≥ p

x2
1 − x2 ≥ 0

x2
2 − x1 ≥ 0 and

−50 ≤ x1,x2 ≤ 50

when the parameter p takes the value 9. Starting from the initial guess x = (3,1), we may use the following code:

PROGRAM GALAHAD_EXPO_EXAMPLE ! GALAHAD 5.3 - 2025-07-25 AT 11:15 GMT.

USE GALAHAD_EXPO_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: rp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (EXPO_control_type) :: control

TYPE (EXPO_inform_type) :: inform

TYPE (EXPO_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

EXTERNAL :: FC, GJ, HL

INTEGER :: s

INTEGER, PARAMETER :: n = 2, m = 5, j_ne = 10, h_ne = 2

REAL (KIND = rp), PARAMETER :: p = 9.0_rp

REAL (KIND = rp), PARAMETER :: infinity = 10.0_rp ** 20 ! infinity

! start problem data

nlp%pname = ’HS23’ ! name

nlp%n = n ; nlp%m = m ; nlp%H%ne = h_ne ! dimensions

ALLOCATE(nlp%X(n), nlp%G(n), nlp%X_l(n), nlp%X_u(n))

ALLOCATE(nlp%C(m), nlp%C_l(m), nlp%C_u(m))

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 19

EXPO GALAHAD

nlp%X(1) = 3.0_rp ; nlp%X(2) = 1.0_rp

nlp%X_l = - 50.0_rp ; nlp%X_u = 50.0_rp ! variable bounds

nlp%C_l = 0.0_rp ; nlp%C_u = infinity ! constraint bounds

! sparse row-wise storage format for the Jacobian

CALL SMT_put(nlp%J%type, ’SPARSE_BY_ROWS’, s) ! specify sparse row storage

ALLOCATE(nlp%J%val(j_ne), nlp%J%col(j_ne), nlp%H%ptr(m + 1))

nlp%J%col = (/ 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 /) ! Jacobian J

nlp%J%ptr = (/ 1, 3, 5, 7, 9, 11 /)

! sparse co-ordinate storage format for the Hessian

CALL SMT_put(nlp%H%type, ’COORDINATE’, s) ! specify co-ordinate storage

ALLOCATE(nlp%H%val(h_ne), nlp%H%row(h_ne), nlp%H%col(h_ne))

nlp%H%row = (/ 1, 2 /) ! Hessian H

nlp%H%col = (/ 1, 2 /) ! NB lower triangle

! problem data complete

ALLOCATE(userdata%real(1)) ! allocate space for parameter

userdata%real(1) = p ! record parameter, p

CALL EXPO_initialize(data, control, inform) ! initialize control parameters

control%subproblem_direct = .TRUE.

control%max_it = 20

control%max_eval = 100

! control%print_level = 1

! control%tru_control%print_level = 1

control%stop_abs_p = 1.0D-5

control%stop_abs_d = 1.0D-5

control%stop_abs_c = 1.0D-5

inform%status = 1 ! set for initial entry

CALL EXPO_solve(nlp, control, inform, data, userdata, eval_FC = FC, &

eval_GJ = GJ, eval_HL = HL) ! solve problem

IF (inform%status == 0) THEN ! successful return

WRITE(6, "(’ EXPO: ’, I0, ’ major iterations -’, &

& ’ optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, nlp%X

ELSE ! error returns

WRITE(6, "(’ EXPO_solve exit status = ’, I6) ") inform%status

END IF

CALL EXPO_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(nlp%X, nlp%GL, nlp%H%val, nlp%H%row, nlp%H%col, userdata%real)

DEALLOCATE(nlp%J%val, nlp%J%col, nlp%J%ptr)

DEALLOCATE(nlp%C, nlp%X_l, nlp%X_u, nlp%C_l, nlp%C_u, nlp%G)

END PROGRAM GALAHAD_EXPO_EXAMPLE

SUBROUTINE FC(status, X, userdata, F, C)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: rp = KIND(1.0D+0)

INTEGER (KIND = ip_), INTENT(OUT) :: status

REAL (kind = rp), DIMENSION(:), INTENT(IN) :: X

REAL (kind = rp), OPTIONAL, INTENT(OUT) :: F

REAL (kind = rp), DIMENSION(:), OPTIONAL, INTENT(OUT) :: C

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (kind = rp) :: r

r = userdata%real(1)

f = X(1) ** 2 + X(2) ** 2

C(1) = X(1) + X(2) - 1.0_rp

C(2) = X(1) ** 2 + X(2) ** 2 - 1.0_rp

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

C(3) = r * X(1) ** 2 + X(2) ** 2 - r

C(4) = X(1) ** 2 - X(2)

C(5) = X(2) ** 2 - X(1)

status = 0

END SUBROUTINE FC

SUBROUTINE GJ(status, X, userdata, G, J_val)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: rp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = rp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = rp), DIMENSION(:), OPTIONAL, INTENT(OUT) :: G

REAL (KIND = rp), DIMENSION(:), OPTIONAL, INTENT(OUT) :: J_val

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (kind = rp) :: r

r = userdata%real(1)

G(1) = 2.0_rp * X(1)

G(2) = 2.0_rp * X(2)

J_val(1) = 1.0_rp

J_val(2) = 1.0_rp

J_val(3) = 2.0_rp * X(1)

J_val(4) = 2.0_rp * X(2)

J_val(5) = 2.0_rp * r * X(1)

J_val(6) = 2.0_rp * X(2)

J_val(7) = 2.0_rp * X(1)

J_val(8) = - 1.0_rp

J_val(9) = - 1.0_rp

J_val(10) = 2.0_rp * X(2)

END SUBROUTINE GJ

SUBROUTINE HL(status, X, Y, userdata, H_val)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: rp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = rp), DIMENSION(:), INTENT(IN) :: X, Y

REAL (KIND = rp), DIMENSION(:), INTENT(OUT) :: H_val

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (kind = rp) :: r

r = userdata%real(1)

H_val(1) = 2.0_rp - 2.0_rp * (Y(2) + r * Y(3) + Y(4))

H_val(2) = 2.0_rp - 2.0_rp * (Y(2) + Y(3) + Y(5))

END SUBROUTINE HL

Notice how the parameter p is passed to the function evaluation routines via the real component of the derived type
userdata. The code produces the following output:

EXPO: 11 major iterations - optimal objective value = 2.0000E+00

Optimal solution = 1.0000E+00 1.0000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August 9, 2025) 21

