% Science and ‘ EcoLe
Technology e “
orers . POLYTECHNIOUE
Facilities Council , ONTREAL

GALAHAD EXPO

USER DOCUMENTATION GALAHAD Optimization Library version 5.3

1 SUMMARY

This package uses an exponential-penalty function to find a (local) minimizer of a differentiable objective func-
tion f(x) of n variables x, subject to m general constraints ¢* < ¢(x) < ¢ and simple bounds x* < x < x" on the
variables. Here, any of the components of the vectors of bounds ¢, ¢, x* and x” may be infinite. The method offers
the choice of direct and iterative solution of the key unconstrained-optimization subproblems, and is most suitable for
large problems. First derivatives are required, and if second derivatives can be calculated, they will be exploited—if
the product of second derivatives with a vector may be found but not the derivatives themselves, that may also be
exploited.

ATTRIBUTES — Versions: GALAHAD_EXPO_single, GALAHAD_EXPO_double. Uses: GALAHAD_CLOCK, GALAHAD_NLPT,
GALAHAD_SYMBOLS, GALAHAD_USERDATA, GALAHAD_SPECFILE, GALAHAD_SMT, GALAHAD_BSC, GALAHAD_MOP, GALAHAD -
SSLS, GALAHAD_TRU, GALAHAD_GLTR, GALAHAD_STRINGS, GALAHAD_SPACE, GALAHAD_NORMS, GALAHAD_BLAS_interface,
and GALAHAD_LAPACK_interface. Date: may 2025. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Lan-
guage: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available with single, double and (if available) quadruple precision reals, and either 32-bit or 64-bit
integers. Access to the 32-bit integer, single precision version requires the USE statement

USE GALAHAD_EXPO_single

with the obvious substitution GALAHAD_EXPO_double, GALAHAD_EXPO_quadruple, GALAHAD_EXPO_single_64, GALA-
HAD_EXPO_double_64 and GALAHAD_EXPO_quadruple_64 for the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT_type, GALAHAD_userdata_-
type, EXPO_time_type, EXPO_control_type, EXPO_inform_type, EXPO_data_type and NLPT_problem_type, (Sec-
tion 2.4) and the subroutines EXPO_initialize, EXPO_solve, EXPO_terminate, (Section 2.5) and EXPO_read_specfile
(Section 2.9) must be renamed on one of the USE statements.

2.1 Basic terminology

The exponential penalty function is defined to be

q)(X,W,F,V,V 7f +Zp W CXp C 761 /‘Lll +Z‘U W exp ()7C;J)/p;j]

+ZV Viexp[(x; —x;)/Vi] +Zv viexp|(x; —x})/Vil, 2D

where ¢}, ¢} and ¢;(x) are the i-th components of ¢", ¢’ and ¢(x), and c;, c‘j and x; are the j-th components of x*, x"
and x, respectively. Here the components of u*, u”, v* and vV are separate penalty parameters for each lower and
upper, general and simple-bound constraint, respectively, while those of w", w”, v*, vV are likewise separate weights
for the same. The algorithm iterates by approximately minimizing ¢(x, w,u, v, V) for a fixed set of penalty parameters
and weights, and then adjusting these parameters and weights. The adjustments are designed so the sequence of
approximate minimizers of ¢ converge to that of the specified constrained optimization problem.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9,2025) 1

EXPO GALAHAD

Key constructs are the gradient of the objective function

g(x) €V, f(x), 2.2)

the Jacobian of the vector of constraints,

I(x) €V ,c(x), (2.3)

and the gradient and Hessian of the Lagrangian function

g.(x,y) €g(x) ~ I (x)y — z and H,(x,y) & Vs,

flx)— Zyiv%i(x)] (2.4)

for given vectors y and z.

The required solution x necessarily satisfies the primal optimality conditions

¢ <e(x) <’ and x" <x<xY, 2.5)
the dual optimality conditions
g(x) =3 (x)y +2z (2.6)
where
y=y -y, z=2z—z" and (y",y",z",2°) >0, (2.7

and the complementary slackness conditions

(e(x) =)y =0, (e(x)—c")y"=0, (x—x")72"=0 and (x—x")"z" =0, (2.8)
where the vectors y and z are known as the Lagrange multipliers for the general constraints, and the dual variables for
the simple bounds, respectively, and where the vector inequalities hold component-wise.

2.2 Matrix storage formats

The matrices J(x) and H, (x,y) (as required and when available) may be stored in a variety of input formats.

2.2.1 Dense storage format

The matrix J is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Component n* (i — 1) + j of the storage array J%val
will hold the value J; j fori=1,...,m, j=1,...,n. Since H, is symmetric, only the lower triangular part (that is the
part H,;; for 1 < j <i < n) should be stored. In this case the lower triangle will be stored by rows, that is component
ix(i—1)/2+ jof the storage array H¥val will hold the value H,;; (and, by symmetry, H, ;;) for 1 < j <i<n.

2.2.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the /-th entry of J, its row index i, column index j and value J;;
are stored in the /-th components of the integer arrays J$row, J%col and real array J%val. The order is unimportant,
but the total number of entries J%ne is required. The same scheme is applicable to H, (thus requiring integer arrays
H%row, H%col, areal array H¥val, and an integer value H%ne), except that only the entries in the lower triangle should
be stored.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 EXPO (August9, 2025) GALAHAD

=4 GALAHAD EXPO

2.2.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i + 1. For the i-th row of J, the i-th component of the integer array J%ptr holds the position of the first
entry in this row, while J%ptr (m+ 1) holds the total number of entries plus one. The column indices j and values J;;
of the entries in the i-th row are stored in components / = J%ptr(i), ...,J%ptr (i+ 1) — 1 of the integer array J%col,
and real array J%val, respectively. The same scheme is applicable to H, (thus requiring integer arrays H¥ptr, H$col,
and a real array H%val), except that only the entries in the lower triangle should be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.2.4 Diagonal storage format

If H, is diagonal (i.e., H;;; = O for all 1 <i# j <n) only the diagonal entries H, ; for 1 < i < n need be stored, and the
first n components of the array H¥val may be used for the purpose. There is no sensible equivalent for the non-square
matrix J.

2.3 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL (rp_) and INTEGER (ip-), where rp_ and
ip_ are the relevant kind values for the real and integer types employed by the particular module in use. The former
are equivalent to default REAL for the single precision versions, DOUBLE PRECISION for the double precision cases
and quadruple-precision if 128-bit reals are available, and correspond to rp_ = real32, rp_ = real64 and rp_ =
reall28 respectively as defined by the fortran iso_fortran_env module. The latter are default (32-bit) and long
(64-bit) integers, and correspond to ip_ = int32 and ip- = int64, respectively, again from the iso_fortran_env
module.

2.4 The derived data types

Seven derived data types are accessible from the package.

2.4.1 The derived data type for holding matrices

The derived data type SMT_TYPE is used to hold the Jacobian matrix J and Hessian matrix H, if these are available.
The components of SMT_TYPE used here are:

m is a scalar component of type INTEGER (ip-), that holds the row dimension of the matrix.
n is a scalar component of type INTEGER (ip-), that holds the column dimension of the matrix.
ne isa scalar variable of type INTEGER (ip-), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme
used. Its precise length and content depends on the type of matrix to be stored (see §2.4.2).

val is arank-one allocatable array of type REAL (rp_) and dimension at least ne, that holds the values of the entries.
Each pair of off-diagonal entries h;; = hj; of the symmetric matrix H, is represented as a single entry (see §2.2.1-
2.2.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER (ip-), and dimension at least ne, that may hold the row indices
of the entries. (see §2.2.2).

col is a rank-one allocatable array of type INTEGER (ip-), and dimension at least ne, that may hold the column
indices of the entries (see §2.2.2-2.2.3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9,2025) 3

EXPO GALAHAD

ptr is arank-one allocatable array of type INTEGER (ip-), and dimension at least m + 1, that may hold the pointers
to the first entry in each row (see §2.2.3).

2.4.2 The derived data type for holding the problem

The derived data type NLPT_problem_type is used to hold the problem. The relevant components of NLPT_problem_type
are:

n is a scalar variable of type INTEGER (ip-), that holds the number of optimization variables, n.
m is a scalar variable of type INTEGER (ip-), that holds the number of general constraints, .

H is scalar variable of type SMT_TYPE that holds the Hessian matrix of the Lagrangian, H,. The following compo-
nents are used here:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.2.1) is used, the first five components of H%type
must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.2.2), the first ten com-
ponents of H$type must contain the string COORDINATE, for the sparse row-wise storage scheme (see
Section 2.2.3), the first fourteen components of H¥type must contain the string SPARSE_BY_ROWS, and for
the diagonal storage scheme (see Section 2.2.4), the first eight components of H$type must contain the
string DTAGONAL.

For convenience, the procedure SMT_put may be used to allocate sufficient space and insert the required
keyword into H$type. For example, if nlp is of derived type EXPO_problem_type and involves a Hessian
we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put (nlp%HStype, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT_put.

H%ne is a scalar variable of type INTEGER (ip-), that holds the number of entries in the lower triangular part
of H in the sparse co-ordinate storage scheme (see Section 2.2.2). It need not be set for any of the other
three schemes.

$val is a rank-one allocatable array of type REAL (rp-), that holds the values of the entries of the lower
triangular part of the Hessian matrix H in any of the storage schemes discussed in Section 2.2.

$row is a rank-one allocatable array of type INTEGER (ip_), that holds the row indices of the lower triangular
part of H in the sparse co-ordinate storage scheme (see Section 2.2.2). It need not be allocated for any of
the other three schemes.

$col is a rank-one allocatable array variable of type INTEGER (ip-), that holds the column indices of the
lower triangular part of H in either the sparse co-ordinate (see Section 2.2.2), or the sparse row-wise (see
Section 2.2.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are
used.

$ptr isarank-one allocatable array of dimension n+1 and type INTEGER (ip-), that holds the starting position
of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse
row-wise storage scheme (see Section 2.2.3). It need not be allocated when the other schemes are used.

G is a rank-one allocatable array of dimension n and type REAL (rp-), that holds the gradient g of the objective
function. The j-th componentof G, j =1,...,n, contains g;.

f is a scalar variable of type REAL (rp-), that holds the value of the objective function.

J is scalar variable of type SMT_TYPE that holds the Jacobian matrix J(x) (if it is available). The following com-
ponents are used here:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 EXPO (August 9, 2025) GALAHAD

GALAHAD EXPO

c.1

X1

GL

J%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage
scheme used. If the dense storage scheme (see Section 2.2.1) is used, the first five components of J$type
must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.2.2), the first ten com-
ponents of J$type must contain the string COORDINATE, and for the sparse row-wise storage scheme (see
Section 2.2.3), the first fourteen components of J%type must contain the string SPARSE_BY_ROWS.

For convenience, the procedure SMT_put may be used to allocate sufficient space and insert the required
keyword into J%type. For example, if nlp is of derived type EXPO_problem_type and involves a Jacobian
we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put (nlp%J%type, ’'COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT_put.

$ne is a scalar variable of type INTEGER (ip-), that holds the number of entries in J in the sparse co-ordinate
storage scheme (see Section 2.2.2). It need not be set for any of the other two schemes.

J%val is a rank-one allocatable array of type REAL (rp_), that holds the values of the entries of the Jacobian
matrix J in any of the storage schemes discussed in Section 2.2.

$row is a rank-one allocatable array of type INTEGER (ip-), that holds the row indices of J in the sparse
co-ordinate storage scheme (see Section 2.2.2). It need not be allocated for any of the other two schemes.

J%col isarank-one allocatable array variable of type INTEGER (ip.), that holds the column indices of J in either
the sparse co-ordinate (see Section 2.2.2), or the sparse row-wise (see Section 2.2.3) storage scheme. It
need not be allocated when the dense scheme is used.

J%ptr is arank-one allocatable array of dimension m+1 and type INTEGER (ip-), that holds the starting position
of each row of J, as well as the total number of entries plus one, in the sparse row-wise storage scheme
(see Section 2.2.3). It need not be allocated when the other schemes are used.

is a rank-one allocatable array of dimension m and type REAL (rp-), that holds the constraint function ¢(x). The
i-th component of C, j = 1,...,m, contains ¢;(x).

is a rank-one allocatable array of dimension m and type REAL (rp-), that holds the vector of lower bounds ¢" on
the constraints. The i-th component of C_1, i = 1,...,m, contains c}. Infinite bounds are allowed by setting the
corresponding components of C_1 to any value smaller than -infinity, where infinity is a component of the
control array control (see Section 2.4.3).

is a rank-one allocatable array of dimension m and type REAL (rp-), that holds the vector of upper bounds ¢” on
the constraints. The i-th component of C_u, i = 1,...,m, contains c}. Infinite bounds are allowed by setting the
corresponding components of C_u to any value larger than that infinity, where infinity is a component of
the control array control (see Section 2.4.3).

is a rank-one allocatable array of dimension n and type REAL (rp-), that holds the vector of lower bounds x" on
the the variables. The j-th component of X_1, j = 1,...,n, contains x‘J Infinite bounds are allowed by setting
the corresponding components of X_1 to any value smaller than -infinity, where infinity is a component of
the control array control (see Section 2.4.3).

is a rank-one allocatable array of dimension n and type REAL (rp-), that holds the vector of upper bounds x" on
the variables. The j-th component of X_u, j = 1,...,n, contains x}. Infinite bounds are allowed by setting the
corresponding components of X_u to any value larger than that infinity, where infinity is a component of
the control array control (see Section 2.4.3).

is a rank-one allocatable array of dimension n and type REAL (rp-), that holds the gradient g, of the Lagrangian
function. The j-th component of GL, j = 1,...,n, contains g, ;.

is a rank-one allocatable array of dimension n and type REAL (rp-), that holds the values x of the optimization
variables. The j-th componentof X, j = 1,...,n, contains x;.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9,2025) 5

EXPO GALAHAD

X is a rank-one allocatable array of dimension n and type REAL (rp-), that holds the values x of the optimization
variables. The j-th componentof X, j = 1,...,n, contains x;.

Y is a rank-one allocatable array of dimension m and type REAL (rp_), that holds the values y of the Lagrange
multipliers. The i-th component of Y, i = 1,...,m, contains y;.

A is a rank-one allocatable array of dimension n and type REAL (rp_), that holds the values x of the dual variables.
The j-th componentof Z, j =1,...,n, contains z;.

pname is a scalar variable of type default CHARACTER and length 10, which contains the “name” of the problem for
printing. The default “empty” string is provided.

VNAMES is a rank-one allocatable array of dimension n and type default CHARACTER and length 10, whose j-th entry
contains the “name” of the j-th variable for printing. This is only used if “debug”’printing control%print_level
> 4) is requested, and will be ignored if the array is not allocated.

CNAMES is a rank-one allocatable array of dimension m and type default CHARACTER and length 10, whose i-th entry
contains the “name” of the i-th constraint for printing. This is only used if “debug”’printing control$print_level
> 4) is requested, and will be ignored if the array is not allocated.

2.4.3 The derived data type for holding control parameters

The derived data type EXPO_control_type is used to hold controlling data. Default values may be obtained by calling
EXPO_initialize (see Section 2.5.1), while components may also be changed by calling GALAHAD_EXPO_read_spec
(see Section 2.9.1). The components of EXPO_control_type are:

error is a scalar variable of type INTEGER (ip-), that holds the stream number for error messages. Printing of error
messages in EXPO_solve and EXPO_terminate is suppressed if error < 0. The defaultis error = 6.

out is a scalar variable of type INTEGER (ip-), that holds the stream number for informational messages. Printing
of informational messages in EXPO_solve is suppressed if out < 0. The defaultis out = 6.

print_level is a scalar variable of type INTEGER (ip_), that is used to control the amount of informational output
which is required. No informational output will occur if print_level <O0. If print_level = 1, a single line
of output will be produced for each iteration of the process. If print_level > 2, this output will be increased
to provide significant detail of each iteration. The defaultis print_level = 0.

start_print is a scalar variable of type INTEGER (ip_), that specifies the first iteration for which printing will occur
in EXPO_solve. If start_print is negative, printing will occur from the outset. The defaultis start_print =
-1.

stop_print is a scalar variable of type INTEGER (ip-), that specifies the last iteration for which printing will occur
in EXPO_solve. If stop_print is negative, printing will occur once it has been started by start_print. The
defaultis stop_print = -1.

print_gap is a scalar variable of type INTEGER (ip_). Once printing has been started, output will occur once every
print_gap iterations. If print_gap is no larger than 1, printing will be permitted on every iteration. The default
isprint_gap = 1.

max-it is a scalar variable of type INTEGER (ip-), that holds the maximum number of iterations which that will be
allowed in EXPO_solve. The defaultis max_it = 100.

max_eval is a scalar variable of type INTEGER (ip-), that holds the maximum number of function evaluations that
will be allowed in EXPO_solve. The default is max_eval = 10000.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 EXPO (August9, 2025) GALAHAD

=4 GALAHAD EXPO

alive_unit is a scalar variable of type INTEGER (ip-). If alive_unit > 0, a temporary file named alive_file (see
below) will be created on stream number alive_unit on initial entry to GALAHAD_EXPO_solve, and execution of
GALAHAD_EXPO_solve will continue so long as this file continues to exist. Thus, a user may terminate execution
simply by removing the temporary file from this unit. If alive_unit < 0, no temporary file will be created, and
execution cannot be terminated in this way. The defaultis alive_unit = 60.

update_multipliers_itmin is a scalar variable of type INTEGER (ip-), that holds the smallest iteration number
for which a Lagrange multipliers/dual variables update will be attempted. Up until this value, only penalty
parameter reductions will be allowed. The default is update_multipliers_itmin = 0.

update_multipliers_tol is a scalar variable of type REAL (rp-), that is used to specify the minimum value the dual
infeasibility is allowed to be before Lagrange multipliers/dual variables updates will be attempted. The default
is update_multipliers_tol =10'°.

infinity is a scalar variable of type REAL (rp_), that is used to specify which constraint bounds are infinite. Any
bound larger than infinity in modulus will be regarded as infinite. The default is infinity =10'.

stop-abs_p and stop_rel_p are scalar variables of type REAL (rp-), that hold the required absolute and relative
accuracy for the primal infeasibility (see Section 4). The absolute value of each component of the primal
infeasibility on exit is required to be smaller than the larger of stop_abs_p and stop_rel_p times a “typical
value” for this component. The defaults are stop_abs_p = stop-relp = u'/3, where u is EPSILON (1.0)
(EPSILON (1.0D0) in GALAHAD_EXPO_double).

stop-abs_d and stop_rel_d are scalar variables of type REAL (rp-), that hold the required absolute and relative
accuracy for the dual infeasibility (see Section 4). The absolute value of each component of the dual infeasibility
on exit is required to be smaller than the larger of stop_abs_p and stop_rel_p times a “typical value” for this
component. The defaults are stop_abs_d = stop_rel_d = u!/3, where u is EPSTLON (1.0) (EPSILON (1.0DO0)
in GALAHAD_EXPO_double).

stop-abs_c and stop_rel_c are scalar variables of type REAL (rp-), that hold the required absolute and relative
accuracy for the violation of complementary slackness (see Section 4). The absolute value of each component
of the complementary slackness on exit is required to be smaller than the larger of stop_abs_p and stop_rel_p
times a “typical value” for this component. The defaults are stop_abs_c = stop-rel_c = u'/3, where u is
EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD_EXPO_double).

stop_s is a scalar variable of type REAL (rp_), that is used to specify the minimum acceptable correction step s
relative to the current estimate of the solution x The algorithm will be deemed to have converged if |s;| < stop_s
«xmax(1,|x;|) for all i = 1,...,n. The default is stop_s = u, where u is EPSILON(1.0) (EPSILON(1.0D0) in
GALAHAD_EXPO_double).

stop_subproblem_rel is a scalar variable of type REAL (rp_), that determines the required accuracy of the subprob-
lem solver GALAHAD_TRU. The subproblem minimization will be stopped as soon as the relative decrease in the
subproblem gradient falls below stop_subproblem_rel. If stop_subproblem_rel is 1.0 or bigger or 0.0 or
smaller, this value will be ignored, and the choice of stopping rule delegated to control_tru$stop-g_relative
(see below). The default is stop_subproblem_rel = -1.0.

initial-mu is a scalar variable of type REAL (rp_), that holds the required initial value of the penalty parameter. If
initial_radius <0, the initial penalty parameter will be chosen automatically by GALAHAD_EXPO_solve The
defaultis initial_radius = 0.1.

mu_reduce is a scalar variable of type REAL (rp-), that holds the amount by which the penalty parameter is reduced
at the end of an iteration. The default is mu_reduce = 0.5.

obj_unbounded is a scalar variable of type default REAL (rp-), that specifies smallest value of the objective function
that will be tolerated before the problem is declared to be unbounded from below. The default is potential_u-
nbounded = —u~2, where u is EPSTLON (1.0) (EPSILON(1.0D0) in GALAHAD_EXPO_double).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9,2025) 7

EXPO GALAHAD

try_advanced_start is a scalar variable of type default REAL (rp_), that specifies the largest value of the KKT
residuals before an advanced start will be attempted. The default is t ry_advanced_start = 1072

try_sgp_start is a scalar variable of type default REAL (rp_), that specifies the largest value of the KKT residuals
before an advanced SQP start will be attempted. The default is try_sqp_start = 1074

stop_advanced_start is a scalar variable of type default REAL (rp_), that specifies the smallest value of the KKT
residuals that an advanced start will be attempted. The default is stop_advanced_start = 1078,

cpu-time_limit is a scalar variable of type REAL (rp-), that is used to specify the maximum permitted CPU time.
Any negative value indicates no limit will be imposed. The default is cpu_time_limit = - 1.0.

clock_time_limit is a scalar variable of type REAL (rp_), that is used to specify the maximum permitted elapsed
system clock time. Any negative value indicates no limit will be imposed. The default is clock_time_limit =
- 1.0.

hessian_available is a scalar variable of type default LOGICAL, that should be set . TRUE. if the user will provide
second derivatives (either by providing an appropriate evaluation routine to the solver or by reverse commu-
nication, see Section 2.7), and .FALSE. if the second derivatives are not explicitly available. The default is
hessian_available = .TRUE.. N.B. .FALSE. is not yet implemented.

subproblem_direct is a scalar variable of type default LOGICAL, that should be set .TRUE. if a direct (factoriza-
tion) method is desired when solving for the step, and .FALSE. if an iterative method suffices. The default is
subproblem_direct = .TRUE.. N.B. .FALSE. is not yet implemented.

space_critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when
allocating arrays and .FALSE. otherwise. The package may run faster if space_critical is .FALSE. but at the
possible expense of a larger storage requirement. The default is space_critical = .FALSE..

deallocate_error_fatal is a scalar variable of type default LOGICAL, that must be set . TRUE. if the user wishes to
terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is
deallocate_error_fatal = .FALSE..

alive_file is a scalar variable of type default CHARACTER and length 30, that gives the name of the temporary file
whose removal from stream number alive_unit terminates execution of GALAHAD_EXPO_solve. The default is
alive_unit = ALIVE.d.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected
character string to preface every line of printed output. Specifically, each line of output will be prefaced by
the string prefix (2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the
supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

nmn

BSC_control is a scalar variable of type BSC_control_type whose components are used to control the formation of
the Hessian matrix of the penalty function, as performed by the package GALAHAD_BSC. See the specification
sheet for the package GALAHAD_BSC for details, and appropriate default values.

TRU_control is a scalar variable of type TRU_control_type whose components are used to control the minimization
of the penalty function, performed by the package GALAHAD_TRU. See the specification sheet for the package GA-
LAHAD_TRU for details, and appropriate default values (but note that value for TRU_control%hessian_available,
will be overridden by GALAHAD_EXPO_solve).

SSLS_control is a scalar variable of type SSLS_control_type whose components are used to control the linear
solve aspects of the calculation, as performed by the package GALAHAD_SSLS. See the specification sheet for the
package GALAHAD_SSLS for details, and appropriate default values.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 EXPO (August 9, 2025) GALAHAD

=4 GALAHAD EXPO

2.4.4 The derived data type for holding timing information

The derived data type EXPO_time_type is used to hold elapsed CPU and system clock times for the various parts of
the calculation. The components of EXPO_t ime_type are:

total is a scalar variable of type default REAL, that gives the CPU total time spent in the package.

preprocess is a scalar variable of type REAL (rp-), that gives the CPU time spent reordering the problem to standard
form prior to solution.

analyse is a scalar variable of type REAL (rp-), that gives the CPU time spent analysing required matrices prior to
factorization.

factorize is a scalar variable of type REAL (rp-), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL (rp_), that gives the CPU time spent using the factors to solve relevant linear
equations.

clock_total is a scalar variable of type default REAL, that gives the total elapsed system clock time spent in the
package.

clock_preprocess is a scalar variable of type REAL (rp._), that gives the elapsed system clock time spent reordering
the problem to standard form prior to solution.

clock_analyse is a scalar variable of type REAL (rp_), that gives the elapsed system clock time spent analysing
required matrices prior to factorization.

clock_factorize is a scalar variable of type REAL (rp_), that gives the elapsed system clock time spent factorizing
the required matrices.

clock_solve is a scalar variable of type REAL (rp_), that gives the elapsed system clock time spent using the factors
to solve relevant linear equations.
2.4.5 The derived data type for holding informational parameters

The derived data type EXPO_inform_type is used to hold parameters that give information about the progress and
needs of the algorithm. The components of EXPO_inform_type are:

status is a scalar variable of type INTEGER (ip_), that gives the exit status of the algorithm. See Sections 2.7 and 2.8
for details.

alloc_status is a scalar variable of type INTEGER (ip-), that gives the status of the last attempted array allocation
or deallocation. This will be 0 if status = 0.

bad_alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array
for which there were allocation or deallocation errors. This will be the null string if status = 0.

n_free is a scalar variable of type INTEGER (ip.), that holds the number of variables that are free from their bounds.
iter is a scalar variable of type INTEGER (ip-), that holds the number of iterations performed.

fc_eval is a scalar variable of type INTEGER (ip-), that gives the total number of objective function evaluations
performed.

gj-eval is a scalar variable of type INTEGER (ip-), that gives the total number of objective function gradient evalua-
tions performed.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9,2025) 9

EXPO GALAHAD

hl_eval is a scalar variable of type INTEGER (ip_), that gives the total number of objective function Hessian evalua-
tions performed.

obj 1is a scalar variable of type REAL (rp_), that holds the value of the objective function at the best estimate of the
solution found.

primal_infeasibility is a scalar variable of type REAL (rp-), that holds the norm of the violation of primal opti-
mality (see Section 2.4.4) at the best estimate of the solution found.

dual_infeasibility is a scalar variable of type REAL (rp-), that holds the norm of the violation of dual optimality
(see Section 2.4.4) at the best estimate of the solution found.

complementary-slackness is a scalar variable of type REAL (rp-), that holds the norm of the violation of comple-
mentary slackness (see Section 2.4.4) at the best estimate of the solution found.

time is a scalar variable of type EXPO_time_type whose components are used to hold elapsed elapsed CPU and
system clock times for the various parts of the calculation (see Section 2.4.4).

BSC_inform is a scalar variable of type BSC_inform_type whose components give information about the formation
of the Hessian matrix of the penalty function, as performed by the package GALAHAD_BSC. See the specification
sheet for the package GALAHAD_BSC for details.

TRU_inform is a scalar variable of type TRU_inform_type whose components give information about the progress
and needs of the algorithm used to minimize the penalty function, as performed by the package GALAHAD_TRU.
See the specification sheet for the package GALAHAD_TRU for details.

SSLS_inform is a scalar variable of type SSLS_inform_type whose components give information about the progress
and needs of the linear-solve stages of the algorithm performed by the package GALAHAD_SSLS. See the specifi-
cation sheet for the package GALAHAD_SSLS for details.

2.4.6 The derived data type for holding problem data

The derived data type EXPO_data-type is used to hold all the data for a particular problem, or sequences of problems
with the same structure, between calls of EXPO procedures. This data should be preserved, untouched (except as
directed on return from GALAHAD_EXPO_solve with positive values of inform$status, see Section 2.7), from the
initial call to EXPO_initialize to the final call to EXPO_terminate.

2.4.7 The derived data type for holding user data

The derived data type GALAHAD_userdata-_type is available from the package GALAHAD_userdata to allow the user to
pass data to and from user-supplied subroutines for function and derivative calculations (see Section 2.6). Components
of variables of type GALAHAD_userdata_type may be allocated as necessary. The following components are available:

integer is arank-one allocatable array of type INTEGER (ip_).
real is arank-one allocatable array of type default REAL (rp-)

complex is a rank-one allocatable array of type default COMPLEX (double precision complex in GALAHAD_EXPO_-
double).

character is a rank-one allocatable array of type default CHARACTER.
logical is arank-one allocatable array of type default LOGICAL.

integer_pointer is arank-one pointer array of type INTEGER (ip-).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 EXPO (August9, 2025) GALAHAD

=4 GALAHAD EXPO

real_pointer is arank-one pointer array of type default REAL (rp_)

complex_pointer isarank-one pointer array of type default COMPLEX (double precision complex in GALAHAD_EXPO_-
double).

character_pointer is arank-one pointer array of type default CHARACTER.

logical-pointer is arank-one pointer array of type default LOGICAL.

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.9 for further features):

1. The subroutine EXPO_initialize is used to set default values, and initialize private data, before solving one or
more problems with the same sparsity and bound structure.

2. The subroutine EXPO_solve is called to solve the problem.

3. The subroutine EXPO_terminate is provided to allow the user to automatically deallocate array components of
the private data, allocated by EXPO_solve, at the end of the solution process. It is important to do this if the data
object is re-used for another problem with a different structure since EXPO_initialize cannot test for this
situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONAL arguments.

2.5.1 The initialization subroutine

Default values are provided as follows:
CALL EXPO_initialize(data, control, inform)

data is a scalar INTENT (INOUT) argument of type EXPO_data_type (see Section 2.4.6). It is used to hold data about
the problem being solved.

control is a scalar INTENT (OUT) argument of type EXPO_control_type (see Section 2.4.3). On exit, control
contains default values for the components as described in Section 2.4.3. These values should only be changed
after calling EXPO_initialize.

inform is a scalar INTENT (OUT) argument of type EXPO_inform_type (see Section 2.4.5). A successful call to
EXPO_initialize is indicated when the component status has the value 0. For other return values of status,
see Section 2.8.

2.5.2 The minimization subroutine

The minimization algorithm is called as follows:

CALL EXPO_solve(nlp, control, inform, data, userdata[, eval_FC, eval_GJ, &
eval_HL, eval_HLPROD])

nlp is a scalar INTENT (INOUT) argument of type NLPT_problem_type (see Section 2.4.2). It is used to hold data
about the problem being solved. For a new problem, the user must allocate all the array components, and set
values for n1p%n and the required integer components of n1p%H if second derivatives will be used. Users are free
to choose whichever of the matrix formats described in Section 2.2 is appropriate for H for their application.

The component n1p%X must be set to an initial estimate, x0, of the minimization variables. A good choice will
increase the speed of the package, but the underlying method is designed to converge (at least to a local solution)
from an arbitrary initial guess.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9, 2025) 11

EXPO GALAHAD

On exit, the component n1p%X will contain the best estimates of the minimization variables x, while n1p%G will
contain the best estimates of the dual variables z.

Restrictions: n1p%n > 0 and n1p%H%type € {/ DENSE’,’ COORDINATE' ,’ SPARSE_BY_ROWS’,’ DIAGONAL' }.

control is a scalar INTENT (IN) argument of type EXPO_control_type (see Section 2.4.3). Default values may be
assigned by calling EXPO_initialize prior to the first call to EXPO_solve. Note that value for TRU_control%-
hessian_available, will be overridden by GALAHAD_EXPO_solve.

inform is a scalar INTENT (INOUT) argument of type EXPO_inform_type (see Section 2.4.5). On initial entry, the
component status must be set to the value 1. Other entries need note be set. A successful call to EXPO_solve
is indicated when the component status has the value 0. For other return values of status, see Sections 2.7
and 2.8.

data is a scalar INTENT (INOUT) argument of type EXPO_data_type (see Section 2.4.6). It is used to hold data about
the problem being solved. With the possible exceptions of the components eval_status and U (see Section 2.7),
it must not have been altered by the user since the last call to EXPO_initialize.

userdata is a scalar INTENT (INOUT) argument of type GALAHAD_userdata_type whose components may be used
to communicate user-supplied data to and from the OPTIONAL subroutines eval_FC, eval_GJ, eval_HL and
eval _HLPROD (see Section 2.4.7).

eval_FC is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the objective function
f(x) and constraints ¢(x) at a given vector X. See Section 2.6.1 for details. If eval FC is present, it must
be declared EXTERNAL in the calling program. If eval _FC is absent, GALAHAD_EXPO_solve will use reverse
communication to obtain function values (see Section 2.7).

eval_GJ is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the gradient of the objec-
tive function g(x) in (2.2) and the Jacobian of the constraints J(x) in (2.3) at a given vector x. See Section 2.6.2
for details. If eval_GJ is present, it must be declared EXTERNAL in the calling program. If eval_GJ is absent,
GALAHAD_EXPO_solve will use reverse communication to obtain gradient values (see Section 2.7).

eval_HL is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the Hessian of the La-
grangian function Hy (x,y) in (2.4) at a given vectors x and y. See Section 2.6.3 for details. If eval_H is present,
it must be declared EXTERNAL in the calling program. If eval_H is absent, GALAHAD_EXPO_solve will use reverse
communication to obtain Hessian values (see Section 2.7).

eval HLPROD isan OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product H, (x,y)v
of the Hessian of the Lagrangian function with a given vector v. See Section 2.6.4 for details. If eval _HLPROD is
present, it must be declared EXTERNAL in the calling program. If eval _HLPROD is absent, GALAHAD_EXPO_solve
will use reverse communication to obtain Hessian-vector products (see Section 2.7).

2.5.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL EXPO_terminate(data, control, inform)

data isascalar INTENT (INOUT) argument of type EXPO_data_type exactly as for EXPO_solve, which must not have
been altered by the user since the last call to EXPO_initialize. On exit, array components will have been
deallocated.

control isa scalar INTENT (IN) argument of type EXPO_control_type exactly as for EXPO_solve.

inform is a scalar INTENT (OUT) argument of type EXPO_inform_type exactly as for EXPO_solve. Only the com-
ponent status will be set on exit, and a successful call to EXPO_terminate is indicated when this component
status has the value 0. For other return values of status, see Section 2.8.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 EXPO (August 9, 2025) GALAHAD

=4 GALAHAD EXPO

2.6 Function and derivative values
2.6.1 objective function and constraint values via internal evaluation

If the argument eval_FC is present when calling GALAHAD_EXPO_solve, the user is expected to provide a subroutine
of that name to evaluate the values of the objective function f(x) and/or the constraints ¢(x).

The routine must be specified as

SUBROUTINE eval_FC(status, X, userdatal, £, C])
whose arguments are as follows:

status is a scalar INTENT (OUT) argument of type INTEGER (ip-), that should be set to O if the routine has been able
to evaluate the objective function and constraints as required, and to a non-zero value if the evaluation has not
been possible.

X is a rank-one INTENT (IN) array argument of type REAL (rp_) whose components contain the vector X.

userdata is a scalar INTENT (INOUT) argument of type GALAHAD userdata_type whose components may be used
to communicate user-supplied data to and from the subroutines eval_FC, eval_GJ, eval_HL and eval HLPROD
(see Section 2.4.7).

f is an OPTIONAL scalar INTENT (OUT) argument of type REAL (rp-), that should be set to the value of the objective
function f(x) evaluated at the vector X input in X if £ is PRESENT.

C isan OPTIONAL rank-one INTENT (OUT) argument of type REAL (rp_) , whose components should be set to the values
of the constraints ¢(x) evaluated at the vector X input in X if C is PRESENT.
2.6.2 Gradient and Jacobian values via internal evaluation

If the argument eval_GJ is present when calling GALAHAD_EXPO_solve, the user is expected to provide a subroutine
of that name to evaluate the value of the gradient the objective function V, f(x). The routine must be specified as

SUBROUTINE eval_GJ(status, X, userdatal[, G, J_val])
whose arguments are as follows:

status is a scalar INTENT (OUT) argument of type INTEGER (ip-), that should be set to O if the routine has been able
to evaluate the gradient and Jacobian if required, and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT (IN) array argument of type REAL (rp_) whose components contain the vector X.

userdata is a scalar INTENT (INOUT) argument of type GALAHAD userdata_type whose components may be used
to communicate user-supplied data to and from the subroutines eval_FC, eval_GJ, eval_HL and eval_HLPROD
(see Section 2.4.7).

G is an OPTIONAL rank-one INTENT (OUT) argument of type REAL (rp-), whose components should be set to the values
of the gradient of the objective function V, f(x) evaluated at the vector X input in X if G is PRESENT.

J_val is an OPTIONAL scalar INTENT (OUT) argument of type REAL (rp-), whose components should be set to the
values of the Jacobian J(x) evaluated at the vector X input in X if J_val is PRESENT. The values should be input
in the same order as that in which the array indices were given in n1p%J.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9,2025) 13

EXPO GALAHAD

2.6.3 Hessian values via internal evaluation

If the argument eval_HL is present when calling GALAHAD_EXPO_solve, the user is expected to provide a subroutine of
that name to evaluate the values of the Hessian of the Lagrangian function H, (x,y). The routine must be specified as

SUBROUTINE eval_ HL(status, X, Y, userdata, H_val)
whose arguments are as follows:

status is a scalar INTENT (OUT) argument of type INTEGER (ip-), that should be set to O if the routine has been
able to evaluate the Hessian of the Lagrangian function, and to a non-zero value if the evaluation has not been

possible.
X is arank-one INTENT (IN) array argument of type REAL (rp-) whose components contain the vector Xx.
Y is a rank-one INTENT (IN) array argument of type REAL (rp-) whose components contain the vector y.

userdata 1is a scalar INTENT (INOUT) argument of type GALAHAD_userdata_type whose components may be used
to communicate user-supplied data to and from the subroutines eval_FC, eval_GJ, eval _HL and eval_HLPROD
(see Section 2.4.7).

H_val is a scalar INTENT (OUT) argument of type REAL (rp-), whose components should be set to the values of the
Hessian of the Lagrangian function H; (x,y) in (2.4) evaluated at the vectors x and y input in X and Y. The
Hessian values should be input in the same order as that in which the array indices were given in n1p%H.

2.6.4 Hessian-vector products via internal evaluation

N.B. not yet implemented. If the argument eval HLPROD is present when calling GALAHAD_EXPO_solve, the user is
expected to provide a subroutine of that name to evaluate the sum u+ H, (x,y)v involving the product of the Hessian
of the Lagrangian function H, (x,y) with a given vector v. The routine must be specified as

SUBROUTINE eval_HLPROD(status, X, Y, userdata, U, V, got_h)
whose arguments are as follows:

status is a scalar INTENT (OUT) argument of type INTEGER (ip_), that should be set to O if the routine has been able
to evaluate the sum u+ H, (x,y)v, and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT (IN) array argument of type REAL (rp_) whose components contain the vector X.
Y is a rank-one INTENT (IN) array argument of type REAL (rp_) whose components contain the vectory.

userdata is a scalar INTENT (INOUT) argument of type GALAHAD userdata_type whose components may be used
to communicate user-supplied data to and from the subroutines eval_FC, eval_GJ, eval_HL and eval HLPROD
(see Section 2.4.7).

U is arank-one INTENT (INOUT) array argument of type REAL (rp-) whose components on input contain the vector
u and on output the sum u+ Vy, f(x)v.

\Y is a rank-one INTENT (IN) array argument of type REAL (rp_) whose components contain the vector v.

got_his an OPTIONAL scalar INTENT (IN) argument of type default LOGICAL. If the Hessian has already been evaluated
at the current and y, got_h will be PRESENT and set . TRUE.; if this is the first time the Hessian is to be accessed
at x, either got_h will be absent or PRESENT and set .FALSE.. This gives the user the opportunity to reuse
“start-up” computations required for the first instance of x to speed up subsequent products.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 EXPO (August 9, 2025) GALAHAD

=4 GALAHAD EXPO

2.7 Reverse Communication Information

N.B. not yet implemented. A positive value of inform%status on exit from EXPO_solve indicates that GALAH-
AD_EXPO_solve is seeking further information—this will happen if the user has chosen not to evaluate function or
derivative values internally (see Section 2.6). The user should compute the required information and re-enter GALAH-
AD_EXPO_solve with inform%$status and all other arguments (except those specifically mentioned below) unchanged.

Possible values of inform$status and the information required are

2. The user should compute the objective function value f(x) and the constraint values ¢(x) at the point x indicated
in n1p%X. The required values should be set in n1p%f and nlp%c, and data%eval_status should be set to 0. If
the user is unable to evaluate f(x) or ¢(x)—for instance, if the function is undefined at x—the user need not set
nlp%f or ¢(x), but should then set data%eval_status to a non-zero value.

3. The user should compute the gradient g(x) of the objective function and the Jacobian J(x) of the constraints
at the point x indicated in n1p%X. The value of the i-th component of the gradient should be set in nlp%G (i),
for i =1,...,n and those for the Jacobian should be set in n1p%J%val (in the same order as that in which the
array indices were given in nlp%J, and data%eval_status should be set to 0. If the user is unable to evaluate
a component of g(x) or J(x)—for instance, if a component of the gradient is undefined at x—the user need not
set n1p%G and nlp%J%val, but should then set data%eval_status to a non-zero value.

4. The user should compute the Hessian H, (x,y) of the Lagrangian function at the point x and y indicated in
nlp%X and nlp%Y, respectively. The value /-th component of the Hessian stored according to the scheme input
in the remainder of nl1p%H (see Section 2.4.2) should be set in nlp%H%val (1), for/ =1,..., nlp%H%ne, and
data%eval_status should be set to 0. If the user is unable to evaluate a component of H, (x,y)—for instance,
if a component of the Hessian is undefined at x and y—the user need not set n1p%$H%val, but should then set
data%eval_status to a non-zero value.

5. The user should compute the product H, (x,y)v of the Hessian of the Lagrangian function H, (x,y) at the point
x and y indicated in n1p%X and nlp%Y with the vector v and add the result to the vector u. The vectors u and
v are given in data%U and data%V respectively, the resulting vector u+ H, (x,y)v should be set in data%U and
data%eval_status should be set to 0. If the user is unable to evaluate the product—for instance, if a component
of the Hessian is undefined at x and y—the user need not set n1p$H%val, but should then set data%eval_status
to a non-zero value.

2.8 Warning and error messages

A negative value of inform%status on exit from EXPO_solve or EXPO_terminate indicates that an error has occurred.
No further calls should be made until the error has been corrected. Possible values are:

-1. Anallocation error occurred. A message indicating the offending array is written on unit control%error, and the
returned allocation status and a string containing the name of the offending array are held in inform$alloc_-
status and inform%bad_alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and
the returned allocation status and a string containing the name of the offending array are held in inform$alloc_-
status and inform%bad_alloc, respectively.

-3. The restriction n1p%n > 0 or requirement that n1p$H_type contains its relevant string ' DENSE’, * COORDINATE',
" SPARSE_BY_ROWS’ or 'DIAGONAL’ has been violated.

-4 . The bound constraints are inconsistent.

-7. The objective function appears to be unbounded from below on the feasible set.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9, 2025) 15

EXPO GALAHAD

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the
component inform$factor_status.

-10. The factorization failed; the return status from the factorization package is given in the component inform$fac-
tor_status.

-11. The solution of a set of linear equations using factors from the factorization package failed; the return status
from the factorization package is given in the component inform%factor_status.

-15. The preconditioner P(x) appears not to be positive definite.
-16. The problem is so ill-conditioned that further progress is impossible.
-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be
symptomatic of a badly scaled problem.

-19. The elapsed CPU or system clock time limit has been reached. This may happen if either control%cpu_time_limit
or control%clock-time_limit is too small, but may also be symptomatic of a badly scaled problem.

-82. The user has forced termination of GALAHAD_EXPO_solve by removing the file named control%alive_file
from unit control%alive_unit.

2.9 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable
control of type EXPO_control_type (see Section 2.4.3), by reading an appropriate data specification file using the
subroutine EXPO_read_specfile. This facility is useful as it allows a user to change EXPO control parameters without
editing and recompiling programs that call EXPO.

A specification file, or specfile, is a data file containing a number of “specification commands”. Each command
occurs on a separate line, and comprises a "keyword”, which is a string (in a close-to-natural language) used to identify
a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.
All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not
contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more
than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword
and value.

The portion of the specification file used by EXPO_read_specfile must start with a "BEGIN EXP0O” command and
end with an "END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by EXPO_read_specfile ..)

BEGIN EXPO
keyword value
keyword value
END

(.. lines ignored by EXPO_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN EXPO” and “END” delimiter
command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,
so that lines such as

BEGIN EXPO SPECIFICATION

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 EXPO (August9, 2025) GALAHAD

=4 GALAHAD EXPO

and

END EXPO SPECIFICATION

are acceptable. Furthermore, between the “BEGIN EXPO” and “END” delimiters, specification commands may occur in
any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !
or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some
specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real
values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for
logical parameters are ”ON”, ”TRUE”, ”. TRUE.”, ”T”, ”YES”, *Y”, or “OFF”, ”NO”, ”N”, “FALSE”, ”.FALSE.” and "F”.
Empty values are also allowed for logical control parameters, and are interpreted as “TRUE”.

The specification file must be open for input when EXPO_read_specfile is called, and the associated device
number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it
possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed
by EXPO_read_specfile.

2.9.1 To read control parameters from a specification file
Control parameters may be read from a file as follows:

CALL EXPO_read_specfile(control, device)

control isascalar INTENT (INOUT) argument of type EXPO_control_type (see Section 2.4.3). Default values should
have already been set, perhaps by calling EXPO_initialize. On exit, individual components of control may
have been changed according to the commands found in the specfile. Specfile commands and the component
(see Section 2.4.3) of control that each affects are given in Table 2.1 on the following page.

device is a scalar INTENT (IN)argument of type INTEGER (ip_), that must be set to the unit number on which the
specfile has been opened. If device is not open, control will not be altered and execution will continue, but
an error message will be printed on unit control%error.

2.10 Information printed

If control$print_level is positive, information about the progress of the algorithm will be printed on unit control-
$out. If control%print_level = 1, a single line of output will be produced for each iteration of the process. This
will include the values of the objective function and the norm of its gradient, the ratio of actual to predicted decrease
following the step, the radius of the trust-region and the time taken so far. In addition, if a direct solution of the
subproblem has been attempted, the Lagrange multiplier from the secular equation and the number of factorizations
used will be recorded, while if an iterative solution has been used, the numbers of phase 1 and 2 iterations will be
given.

If control$print_level > 2 this output will be increased to provide significant detail of each iteration. This extra
output includes residuals of the linear systems solved, and, for larger values of control%print_level, values of the
variables and gradients. Further details concerning the attempted solution of the models may be obtained by increasing
control%TRU_control$print_level, control%SSLS_control%print_level and control$GLTR_control%print-
_level, while details about factorizations are available by increasing control$SSLS_control%print_level. See the
specification sheets for the packages GALAHAD_GLTR, GALAHAD_SSLS and GALAHAD_TRU for details.

3 GENERAL INFORMATION

Use of common: None.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9, 2025) 17

EXPO

GALAHAD

command component of control value type
error-printout-device serror integer
printout-device Sout integer
print-level $print_level integer
start-print $start_print integer
stop-print $stop_print integer
iterations-between-printing $print_gap integer
maximum-number-of-iterations Smax_it integer
maximum-number-of-evaluations $max_eval integer
alive-device %alive_unit integer
update-multipliers-from-iteration $update_multipliers_itmin | real
update-multipliers-feasibility-tolerance Supdate_multipliers_tol real
infinity-value $infinity real
absolute-primal-accuracy sstop-_abs_p real
relative-primal-accuracy $stop-rel_p real
absolute-dual-accuracy $stop-abs_d real
relative-dual-accuracy sstop-_rel_d real
absolute-complementary-slackness—accuracy | %stop-abs_c real
relative-complementary-slackness-accuracy | %stop-rel_c real
minimum-relative-step-allowed $stop-s real
relative-subproblem-accuracy %$stop_subproblem_rel real
initial-penalty-parameter initial_mu real
penalty-parameter-reduction-factor mu-_reduce real
minimum-objective-before-unbounded obj-_unbounded real
try-advanced-start-tolerance try_advanced_start real
try-sgp-start-tolerance try_sgp-start real
stop-advanced-start-tolerance stop-advanced_start real
maximum-cpu-time-limit %Scpu-time_limit real
maximum-clock-time-limit $clock_time_limit real
hessian-available %hessian_available logical
sub-problem-direct $subproblem_direct logical
space-critical $space_critical logical
deallocate-error-fatal %deallocate_error_fatal logical
alive-filename $alive_file character

Table 2.1: Specfile commands and associated components of control.

Workspace: Provided automatically by the module.
Other routines called directly: None.

Other modules used directly: EXPO_solve calls the GALAHAD packages GALAHAD_CLOCK, GALAHAD_NLPT,
GALAHAD_SYMBOLS, GALAHAD_USERDATA, GALAHAD_SPECFILE, GALAHAD_SMT, GALAHAD_BSC, GALAHAD_MOP,
GALAHAD_SSLS, GALAHAD_TRU, GALAHAD_GLTR, GALAHAD_STRINGS, GALAHAD_SPACE, GALAHAD_NORMS,
GALAHAD_BLAS_interface, and GALAHAD_LAPACK_interface.

Input/output: Outputis under control of the arguments control%error, control%out and control%print_level.
Restrictions: nlp%n > 0 and nlp%H_type € {/ DENSE’, ' COORDINATE’, ' SPARSE_BY_ROWS’, ' DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 EXPO (August9, 2025) GALAHAD

=4 GALAHAD EXPO

4 METHOD

The method employed involves a sequential minimization of the exponential penalty function (2.1) for a sequence of
positive penalty parameters (u,p,V;,V}) and weights (wy, wy,v;,v}), for increasing k > 0. Convergence is ensured
if the penalty parameters are forced to zero, and may be accelerated by adjusting the weights. The minimization
of (2.1) is accomplished using the trust-region unconstrained solver GALAHAD_TRU. Although critical points {x;} of
O(X, Wy, Uy, Vi, Vi) converge to a local solution x, of the underlying problem, the reduction of the penalty parameters to
zero often results in x; being a poor starting point for the minimization of ¢(X, Wi 1, M1, Vi+1,Vk+1)- Consequently,
a careful extrapolated starting point from x; is used instead. Moreover, once the algorithm is confident that it is
sufficiently close to x., it switches to Newton’s method to accelerate the convergence. Both the extrapolation and the
Newton iteration rely on the block-linear-system solver GALAHAD_SSLS.

The iteration is terminated as soon as residuals to the optimality conditions (2.5)—(2.8) are sufficiently small. For
infeasible problems, this will not be possible, and instead the residuals to (2.5) will be made as small as possible.

References:
The method is described in detail in

N. Gould, S. Leyffer, A. Montoison and C. Vanaret (2025) The exponential multiplier method in the 21st century.
RAL Technical Report, in preparation.

S EXAMPLES OF USE

Suppose we wish to minimize the objective function f(x) = x% —|—x§ subject to the constraints

X14+x >1
x%+x% >1
pxi+x3 >p
x%—xz >0

x5 —x; >0 and
—50<x1,x, <50

when the parameter p takes the value 9. Starting from the initial guess x = (3, 1), we may use the following code:

PROGRAM GALAHAD_EXPO_EXAMPLE ! GALAHAD 5.3 - 2025-07-25 AT 11:15 GMT.
USE GALAHAD_EXPO_double ! double precision version
IMPLICIT NONE

INTEGER, PARAMETER :: rp = KIND(1.0D+0) ! set precision

TYPE (NLPT_problem_type):: nlp

TYPE (EXPO_control_type) :: control

TYPE (EXPO_inform_type) :: inform

TYPE (EXPO_data_type) :: data

TYPE (GALAHAD_userdata_type) :: userdata

EXTERNAL :: FC, GJ, HL

INTEGER :: s

INTEGER, PARAMETER :: n =2, m =5, j_ne = 10, h_ne = 2
REAL (KIND = rp), PARAMETER :: p = 9.0_rp

REAL (KIND = rp), PARAMETER :: infinity = 10.0_rp ** 20 ! infinity
! start problem data

nlp%pname = ’HS23’ ! name

nlp%n = n ; nlp%m = m ; nlp%H%ne = h_ne ! dimensions

, nlp%X_1(n), nlp%X_u(n)

ALLOCATE (nlp%X(n), nlp%G(n)
(m), nlpsC_u(m))

ALLOCATE (nlp%C(m), nlp%C_1

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9, 2025) 19

EXPO GALAHAD

nlp%X(1) = 3.0_rp ; nlp%X(2) = 1.0_rp
nlp%X_1 = - 50.0_rp ; nlp%X_u = 50.0_rp ! variable bounds
nlp%C_1 = 0.0_rp ; nlp%C_u = infinity ! constraint bounds

! sparse row-wise storage format for the Jacobian
CALL SMT_put (nlp%J%type, ’SPARSE_BY_ROWS’, s) ! specify sparse row storage
ALLOCATE (nlp%J%val(j_ne), nlp%J%col(j_ne), nlp%H%ptr(m + 1))
nlp%J%col = (/ 1, 2, 1, 2, 1, 2, 1, 2, 1, 2 /) ! Jacobian J

nlp%J%ptr = (/ 1, 3, 5, 7, 9, 11 /)
! sparse co-ordinate storage format for the Hessian

CALL SMT_put (nlp%$H%type, ’'COORDINATE’, s) ! specify co-ordinate storage
ALLOCATE (nlp%H%val(h_ne), nlp%H%row(h_ne), nlp%H%col(h_ne))
nlp%H%row = (/ 1, 2 /) ! Hessian H
nlp%H%col = (/ 1, 2 /) ! NB lower triangle
! problem data complete
ALLOCATE (userdata%real(1)) ! allocate space for parameter
userdata%real(1) =p ! record parameter, p
CALL EXPO_initialize(data, control, inform) ! initialize control parameters

control%subproblem_direct = .TRUE.
control%max_it = 20
control%max_eval = 100

! control%print_level =1

! control%tru_control%print_level = 1
control%stop_abs_p = 1.0D-5
control%stop_abs_d = 1.0D-5

control%stop_abs_c = 1.0D-5

inform$status = 1 ! set for initial entry

CALL EXPO_solve(nlp, control, inform, data, userdata, eval_FC = FC, &

eval_GJ = GJ, eval_HL = HL) ! solve problem

IF (inform%status ==) THEN ! successful return
WRITE(6, "(' EXPO: ', I0, ' major iterations -', &
& ! optimal objective value =", &
& ES12.4, /, ' Optimal solution = ', (5ES12.4))") &
inform%iter, inform%obj, nlp%X

ELSE ! error returns
WRITE(6, "(' EXPO_solve exit status ="', I6) ") inform%status

END IF

CALL EXPO_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE (nlp%X, nlp3%GL, nlp%H%val, nlp%H%row, nlp%H%col, userdata%real)
DEALLOCATE (nlp%J%val, nlp%J%col, nlp%J%ptr)

DEALLOCATE (nlp%C, nlp%X_1l, nlp%X_u, nlp%C_1l, nlp%C_u, nlp%G)

END PROGRAM GALAHAD_EXPO_EXAMPLE

SUBROUTINE FC(status, X, userdata, F, C)
USE GALAHAD_USERDATA_double
INTEGER, PARAMETER :: rp = KIND(1.0D+0

INTEGER (KIND = ip_), INTENT(OUT) :: status

REAL (kind = rp), DIMENSION(:), INTENT(IN) :: X

REAL (kind = rp), OPTIONAL, INTENT(OUT) :: F

REAL (kind = rp), DIMENSION(:), OPTIONAL, INTENT(OUT) :: C
TYPE (GALAHAD userdata_type), INTENT(INOUT) :: userdata

REAL (kind = rp) :: 1

r = userdata%real(1

f=X(1) ** 2+ X(2) **2

C(1l)=X(1)+X(2)-1.0_rp

C(2)=X(1)*>*2+X(2) *2-1.0_rp

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 EXPO (August9, 2025) GALAHAD

=4 GALAHAD EXPO

C(3)=r*X(1) **24+X(2) *2 -1
C(4d) =X(1)* 2 -X(2)
C(5)=X(2)*2-X(1)

status = 0

END SUBROUTINE FC

SUBROUTINE GJ(status, X, userdata, G, J_val)
USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: rp = KIND(1.0D+0)
INTEGER, INTENT(OUT) :: status

REAL (KIND = rp), DIMENSION (), INTENT(IN) :: X

REAL (KIND = rp), DIMENSION (), OPTIONAL, INTENT(OUT) :: G
REAL (KIND = rp), DIMENSION(:), OPTIONAL, INTENT(OUT) :: J_val
TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (kind = rp) :: 1

r = userdata%real(1

G(1l)=2.0_rp *X(1

G(2)=2.0_rp * X(2)

Jval(1) =1.0_rp

Jval(2) =1.0_rp

Jval(3) =2.0_rp * X(1)

Jval(4) =2.0_rp * X(2)

Jwval(5) =2.0_rp *r *X(1

Jval(6) =2.0_rp * X(2)

Jval(7) =2.0_rp * X(1)

Jval(8) =-1.0_rp

Jval(9) =-1.0_rp

J_val(10) = 2.0_rp * X(2)

END SUBROUTINE GJ

SUBROUTINE HL(status, X, Y, userdata, H_val)
USE GALAHAD_USERDATA_double
INTEGER, PARAMETER :: rp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = rp), DIMENSION(:), INTENT(IN) :: X, Y

REAL (KIND = rp), DIMENSION(:), INTENT(OUT) :: H_val
TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata
REAL (kind = rp) :: 1

r = userdata%real(1

Hval(1l)=2.0_rp-2.0_rp* (Y(2)+1r*Y(3)+Y(4))
Hval(2) =2.0_rp-2.0_rp * (Y(2)+Y(3)+Y(5))

END SUBROUTINE HL

Notice how the parameter p is passed to the function evaluation routines via the real component of the derived type
userdata. The code produces the following output:

EXPO: 11 major iterations - optimal objective value = 2.0000E+00
Optimal solution = 1.0000E+00 1.0000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EXPO (August9, 2025) 21

