
GALAHAD EQP

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package uses an iterative method to solve the equality-constrained quadratic programming problem

minimize 1
2 xT Hx+ gTx+ f (1.1)

subject to the linear constraints

Ax+ c = 0, (1.2)

where the n by n symmetric matrix H, the m by n matrix A, the vectors g and c, and the scalar f are given. Full

advantage is taken of any zero coefficients in the matrices H and A.

The package may alternatively be used to minimize the (shifted) squared-least-distance objective

1
2

n

∑
j=1

w2
j(x j − x0

j)
2 + gT x+ f , (1.3)

subject to the linear constraints (1.2), for given vectors w and x0.

ATTRIBUTES — Versions: GALAHAD EQP single, GALAHAD EQP double. Uses: GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD SPACE, GALAHAD QPD, GALAHAD QPT, GALAHAD FDC, GALAHAD SBLS, GALAHAD GLTR, GALAHAD SPECFILE.

Date: March 2006. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or

Fortran 2003. Parallelism: Some options may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD EQP single

with the obvious substitution GALAHAD EQP double, GALAHAD EQP single 64 and GALAHAD EQP double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types QPT problem type, EQP time type,

EQP control type, EQP inform type and EQP data type (Section 2.4) and the subroutines EQP initialize, EQP -

solve, EQP resolve, EQP terminate, (Section 2.5) and EQP read specfile (Section 2.7) must be renamed on one

of the USE statements.

2.1 Matrix storage formats

Both the Hessian matrix H and the constraint Jacobian A may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EQP (May 24, 2024) 1

EQP GALAHAD

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The

order is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to H (thus

requiring integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in

the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to H (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square A.

2.1.5 Scaled-identity-matrix storage format

If H is a scalar multiple of the identity matrix (i.e., hii = h11 and hi j = 0 for all 1 ≤ i 6= j ≤ n) only the first diagonal

entry h11 needs be stored, and the first component of the array H%val may be used for the purpose. Again, there is no

sensible equivalent for the non-square A.

2.1.6 Identity-matrix storage format

If H is the identity matrix (i.e., hii = 1 and hi j = 0 for all 1 ≤ i 6= j ≤ n), no explicit entries needs be stored.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 Parallel usage

OpenMP may be used by the GALAHAD EQP package to provide parallelism for some solvers in shared memory envi-

ronments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP must

be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number of

threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 EQP (May 24, 2024) GALAHAD

GALAHAD EQP

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.4 The derived data types

Six derived data types are accessible from the package.

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices A and H. The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.4.2).

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of a symmetric matrix H is represented as a single entry (see §2.1.1–

2.1.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

2.4.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip), that holds the number of linear constraints, m.

Hessian kind is a scalar variable of type INTEGER(ip), that is used to indicate what type of Hessian the problem

involves. Possible values for Hessian kind are:

<0 In this case, a general quadratic program of the form (1.1) is given. The Hessian matrix H will be provided

in the component H (see below).

0 In this case, a linear program, that is a problem of the form (1.3) with weights w = 0, is given.

1 In this case, a least-distance problem of the form (1.3) with weights w j = 1 for j = 1, . . . ,n is given.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EQP (May 24, 2024) 3

EQP GALAHAD

>1 In this case, a weighted least-distance problem of the form (1.3) with general weights w is given. The

weights will be provided in the component WEIGHT (see below).

By default Hessian kind = - 1.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H. The following components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, for the

diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the string

DIAGONAL, for the scaled-identity matrix storage scheme (see Section 2.1.5), the first fifteen components

of H%type must contain the string SCALED IDENTITY, for the identity matrix storage scheme (see Sec-

tion 2.1.6), and the first eight components of H%type must contain the string IDENTITY.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if prob is of derived type EQP problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(prob%H%type, ’COORDINATE’, istat)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of the storage schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any of

the other three schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense or diagonal storage schemes are

used.

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

If Hessian kind ≥ 0, the components of H need not be set.

WEIGHT is a rank-one allocatable array type REAL(rp), that should be allocated to have length n, and its j-th compo-

nent filled with the value w j for j = 1, . . . ,n, whenever Hessian kind > 1. If Hessian kind ≤ 1, WEIGHT need

not be allocated.

target kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the components of the targets

x0 (if they are used) have special or general values. Possible values for target kind are:

0 In this case, x0 = 0.

1 In this case, x0
j = 1 for j = 1, . . . ,n.

6= 0,1 In this case, general values of x0 will be used, and will be provided in the component X0 (see below).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 EQP (May 24, 2024) GALAHAD

GALAHAD EQP

By default target kind = - 1.

X0 is a rank-one allocatable array type REAL(rp), that should be allocated to have length n, and its j-th component

filled with the value x0
j for j = 1, . . . ,n, whenever Hessian kind> 0 and target kind 6= 0,1. If Hessian kind

≤ 0 or target kind = 0,1, X0 need not be allocated.

gradient kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the components of the

gradient g have special or general values. Possible values for gradient kind are:

0 In this case, g = 0.

1 In this case, g j = 1 for j = 1, . . . ,n.

6= 0,1 In this case, general values of g will be used, and will be provided in the component G (see below).

By default gradient kind = - 1.

G is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient g of the linear term

of the quadratic objective function. The j-th component of G, j = 1, . . . ,n, contains g j. If gradient kind = 0,

1, G need not be allocated.

f is a scalar variable of type REAL(rp), that holds the constant term, f , in the objective function.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A. The following components are used:

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

Just as for H%type above, the procedure SMT put may be used to allocate sufficient space and insert the

required keyword into A%type. Once again, if prob is of derived type EQP problem type and involves a

Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’, istat)

A%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two schemes.

A%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian

matrix A in any of the storage schemes discussed in Section 2.1.

A%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two schemes.

A%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip), that holds the starting position

of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage scheme

(see Section 2.1.3). It need not be allocated when the other schemes are used.

C is a rank-one allocatable array of dimension m and type default REAL(rp), that holds the values of the vectorc

of constant terms for the constraints. The i-th component of C, i = 1, . . . ,m, contains ci.

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

Y is a rank-one allocatable array of dimension m and type REAL(rp), that holds the values y of estimates of

the Lagrange multipliers corresponding to the linear constraints (see Section 4). The i-th component of Y,

i = 1, . . . ,m, contains yi.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EQP (May 24, 2024) 5

EQP GALAHAD

2.4.3 The derived data type for holding control parameters

The derived data type EQP control type is used to hold controlling data. Default values may be obtained by calling

EQP initialize (see Section 2.5.1), while components may also be changed by calling GALAHAD EQP read spec

(see Section 2.7.1). The components of EQP control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in EQP solve and EQP terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in EQP solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

new h is a scalar variable of type INTEGER(ip), that is used to indicate how H has changed (if at all) since the

previous call to EQP solve. Possible values are:

0 H is unchanged

1 the values in H have changed, but its nonzero structure is as before.

2 both the values and structure of H have changed.

The default is new h = 2.

new a is a scalar variable of type INTEGER(ip), that is used to indicate how A has changed (if at all) since the

previous call to EQP solve. Possible values are:

0 A is unchanged

1 the values in A have changed, but its nonzero structure is as before.

2 both the values and structure of A have changed.

The default is new a = 2.

cg maxit is a scalar variable of type INTEGER(ip), that is used to limit the number of conjugate-gradient iterations

performed in the optimality phase. If cg maxit is negative, no limit will be impossed. The default is cg maxit

= 200.

radius is a scalar variable of type default REAL(rp), that may be used to specify an upper bound on the norm of the

allowed solution (a “trust-region” constraint) during the iterative solution of the optimality phase of the problem.

This is particularly useful if the problem is unbounded from below. If radius is set too small, there is a pos-

sibility that this will preclude the package from finding the actual solution. If initial radius is not positive,

it will be reset to the default value, initial radius = SQRT(0.1*HUGE(1.0)) (SQRT(0.1*HUGE(1.0D0)) in

GALAHAD EQP double).

inner stop relative and inner stop absolute are scalar variables of type REAL(rp), that hold the relative

and absolute convergence tolerances for the iterative solution of the optimality phase of the problem using the

package GALAHAD GLTR, and correspond to the values control%stop relative and control%stop absolute

in that package. The defaults are inner stop relative = 0.01 and inner stop absolute =
√

u, where u

is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD EQP double).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 EQP (May 24, 2024) GALAHAD

GALAHAD EQP

max infeasibility relative and max infeasibility absolute are scalar variables of type REAL(rp), that

hold the relative and absolute tolerances for assessing infeasibility in the feasibility phase. If the constraints are

believed to be rank defficient and the norm of the residual AxT + c at a ”typical” feasiblke point is larger than

max(max infeasibility relative∗‖A‖, max infeasibility absolute), the problem will be marked as

infeasible, The defaults are max infeasibility relative = max infeasibility absolute = u0.75 where

u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD EQP double).

remove dependencies is a scalar variable of type default LOGICAL, that must be set .TRUE. if linear dependent

constraints Ax+ c = 0 should be removed and .FALSE. otherwise. The default is remove dependencies =

.TRUE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

FDC control is a scalar variable of type FDC control type whose components are used to control any detection

of linear dependencies performed by the package GALAHAD FDC. See the specification sheet for the package

GALAHAD FDC for details, and appropriate default values.

GLTR control is a scalar variable argument of type GLTR control type that is used to pass control options to the

conjugate-gradient solver used to solve linear systems that arise. See the documentation for the GALAHAD

package GLTR for further details. In particular, default values are as for GLTR.

SBLS control is a scalar variable argument of type SBLS control type that is used to pass control options to the

symmetric block linear equation preconditioner used to help solve linear systems that arise. See the documen-

tation for the GALAHAD package SBLS for further details. In particular, default values are as for SBLS.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by

the string prefix(2:LEN(TRIM(prefix))-1), thus ignoreing the first and last non-null components of the

supplied string. If the user does not want to preface lines by such a string, they may use the default prefix =

"".

2.4.4 The derived data type for holding timing information

The derived data type EQP time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of EQP time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

find dependent is a scalar variable of type REAL(rp), that gives the CPU time spent detecting and removing

dependent constraints prior to solution.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent computing the solution given the factor-

ization(s).

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EQP (May 24, 2024) 7

EQP GALAHAD

clock find dependent is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent de-

tecting and removing dependent constraints prior to solution.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent computing the

search direction.

2.4.5 The derived data type for holding informational parameters

The derived data type EQP inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of EQP inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.6 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

cg iter is a scalar variable of type INTEGER(ip), that gives the total number of conjugate-gradient iterations re-

quired.

factorization integer is a scalar variable of type long INTEGER(ip), that gives the amount of integer storage

used for the matrix factorization.

factorization real is a scalar variable of type INTEGER(int64), that gives the amount of real storage used for the

matrix factorization.

obj is a scalar variable of type REAL(rp), that holds the value of the objective function at the best estimate of the

solution found.

time is a scalar variable of type EQP time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.4.4).

FDC inform is a scalar variable of type FDC inform type whose components are used to provide information about

any detection of linear dependencies performed by the package GALAHAD FDC. See the specification sheet for the

package GALAHAD FDC for details.

SBLS inform is a scalar variable of type SBLS inform type whose components are used to hold information relating

to the formation and factorization of the preconditioner. See the documentation for the GALAHAD package SBLS

for further details.

GLTR inform is a scalar variable of type GLTR inform type whose components are used to hold information relating

to the computation of the solution via the conjugate-gradient method. See the documentation for the GALAHAD

package GLTR for further details.

2.4.6 The derived data type for holding problem data

The derived data type EQP data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of EQP procedures. This data should be preserved, untouched, from the initial

call to EQP initialize to the final call to EQP terminate.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 EQP (May 24, 2024) GALAHAD

GALAHAD EQP

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutine EQP initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine EQP solve is called to solve the problem.

3. The subroutine EQP terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by EQP solve, at the end of the solution process.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL EQP initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type EQP data type (see Section 2.4.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type EQP control type (see Section 2.4.3). On exit, control con-

tains default values for the components as described in Section 2.4.3. These values should only be changed after

calling EQP initialize.

inform is a scalar INTENT(INOUT) argument of type EQP inform type (see Section 2.4.5). A successful call to

EQP initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.6.

2.5.2 The equality-constrained-quadratic programming subroutine

The equality-constrained quadratic programming algorithm is called as follows:

CALL EQP solve(p, data, control, inform)

p is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.4.2). It is used to hold data about

the problem being solved. The user must have allocated all array components, and set appropriate values for all

components. Users are free to choose whichever of the matrix formats described in Section 2.1 is appropriate

for A and H for their application—different formats may be used for the two matrices.

The components p%X and p%Y must be set to initial estimates, x0, of the solution variables, x, and Lagrange

multipliers for the constraints, y. Inappropriate initial values will be altered, so the user should not be overly

concerned if suitable values are not apparent, and may be content with merely setting p%X=0.0 and p%Y=0.0.

On exit, the components p%X and p%Y will contain the best estimates of the solution variables x, and Lagrange

multipliers for the constraints y. Restrictions: p%n > 0 and, p%m ≥ 0, and prob%H type and prob%A type

∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ }.

data is a scalar INTENT(INOUT) argument of type EQP data type (see Section 2.4.6). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to EQP initialize.

control is a scalar INTENT(INOUT) argument of type EQP control type (see Section 2.4.3). Default values may be

assigned by calling EQP initialize prior to the first call to EQP solve.

inform is a scalar INTENT(OUT) argument of type EQP inform type (see Section 2.4.5). A successful call to

EQP solve is indicated when the component status has the value 0. For other return values of status, see

Section 2.6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EQP (May 24, 2024) 9

EQP GALAHAD

2.5.3 The resolve subroutine

Once EQP solve has been called, further quadratic programs, for which the data g, c and f may have been altered but

A and H are unchanged, may be solved more efficiently as follows:

CALL EQP resolve(p, data, control, inform)

p is a scalar INTENT(INOUT) argument of type QPT problem type as described for EQP solve but for which only

the components %G , %f and %C may have been altered since the last call to EQP solve. As before, on exit, the

components p%X and p%Y will contain the best estimates of the solution variables x, and Lagrange multipliers

for the constraints y.

data , control and inform are precisely as described for EQP solve.

2.5.4 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL EQP terminate(data, control, info)

data is a scalar INTENT(INOUT) argument of type EQP data type exactly as for EQP solve, which must not have

been altered by the user since the last call to EQP initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type EQP control type exactly as for EQP solve.

inform is a scalar INTENT(OUT) argument of type EQP inform type exactly as for EQP solve. Only the component

status will be set on exit, and a successful call to EQP terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.6.

2.6 Warning and error messages

A negative value of inform%status on exit from EQP solve or EQP terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n > 0 or prob%m ≥ 0 or requirements that prob%A type and prob%H type contain

its relevant string ’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’ or ’DIAGONAL’ has been violated.

-5. The constraints appear to be inconsistent.

-9. An error was reported by the subroutine SILS analyse called by SBLS. The return status from SILS analyse is

given in one of the components of inform%SBLS inform%SLS inform. See the documentation for the GALA-

HAD package SILS for further details.

-10. An error was reported by the subroutine SILS factorizecalled by SBLS. The return status from SILS factorize

is given in one of the components of inform%SBLS inform%SLS inform. See the documentation for the GALA-

HAD package SILS for further details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 EQP (May 24, 2024) GALAHAD

GALAHAD EQP

-11. An error was reported by the subroutine SILS solve called by SBLS. The return status from SILS solve is given

in one of the components of inform%SBLS inform%SLS inform. See the documentation for the GALAHAD

package SILS for further details.

-12. An error was reported by the subroutine ULS analyse called by SBLS. The return status from ULS analyse is

given in one of the components of inform%SBLS inform%ULS inform. See the documentation for the GALA-

HAD package ULS for further details.

-14. An error was reported by the subroutine ULS solve called by SBLS. The return status from ULS solve is given

in one of the components of inform%SBLS inform%ULS inform. See the documentation for the GALAHAD

package ULS for further details.

-15. The computed preconditioner has the wrong inertia and is thus unsuitable.

-16. The residuals from the preconditioning step are large, indicating that the factorization may be unsatisfactory.

-25. EQP resolve has been called before EQP solve.

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type EQP control type (see Section 2.4.3), by reading an appropriate data specification file using the

subroutine EQP read specfile. This facility is useful as it allows a user to change EQP control parameters without

editing and recompiling programs that call EQP.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by EQP read specfile must start with a ”BEGIN EQP” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by EQP_read_specfile ..)

BEGIN EQP

keyword value

.......

keyword value

END

(.. lines ignored by EQP_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN EQP” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN EQP SPECIFICATION

and

END EQP SPECIFICATION

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EQP (May 24, 2024) 11

EQP GALAHAD

are acceptable. Furthermore, between the “BEGIN EQP” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when EQP read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

EQP read specfile.

Control parameters corresponding to the components SBLS control and GLTR control may be changed by in-

cluding additional sections enclosed by “BEGIN SBLS” and “END SBLS”, and “BEGIN GLTR” and “END GLTR”, respec-

tively. See the specification sheets for the packages GALAHAD SBLS and GALAHAD GLTR for further details.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL EQP_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type EQP control type (see Section 2.4.3). Default values should

have already been set, perhaps by calling EQP initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.4.3) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-number-of-cg-iterations %cg maxit integer

trust-region-radius %radius real

max-relative-infeasibility-allowed %max infeasibility relative real

max-absolute-infeasibility-allowed %max infeasibility absolute real

inner-iteration-relative-accuracy-required %inner stop relative real

inner-iteration-absolute-accuracy-required %inner stop absolute real

remove-linear-dependencies %remove dependencies logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, the norm of the constraint violation and the value of the objective function for

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 EQP (May 24, 2024) GALAHAD

GALAHAD EQP

both the feasibility and optimality phases are reported. Additionally, if control%print level = 2, print level

= 1 output from both SBLS and GLTR occurs, summarising the factorization and iteration phases, as well as timing

statistics from the two phases. If control%print level ≥ 3 detailed output from SBLS and GLTR occurs which is

unlikely to be useful to general users.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: EQP solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS,

GALAHAD SPACE, GALAHAD QPT, GALAHAD FDC, GALAHAD SBPS, GALAHAD GLTR and GALAHAD SPECFILE.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n > 0, prob%m ≥ 0, prob%A type and prob%H type ∈ {’DENSE’, ’COORDINATE’,

’SPARSE BY ROWS’, ’DIAGONAL’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

Any finite solution x to the problem necessarily satisfies the primal optimality conditions

Ax+ c = 0 (4.1)

and the dual optimality conditions

Hx+ g−ATy = 0, (4.2)

where the components of the vector y are known as the Lagrange multipliers for the constraints.

A solution to the problem is found in two phases. In the first, a point xF satisfying (4.1) is found. In the second,

the required solution x = xF + s is determined by finding s to minimize q(s) = 1
2 sT Hs + gT

Fs + fF subject to the

homogeneous constraints As = 0, where gF = HxF + g and fF = 1
2 xT

FHxF + gT xF + f . The required constrained

minimizer of q(s) is obtained by implictly applying the preconditioned conjugate-gradient method in the null space of

A. Any preconditioner of the form

KG =

(

G AT

A 0

)

is suitable, and the GALAHAD package SBLS provides a number of possibilities. In order to ensure that the minimizer

obtained is finite, an additional, precautionary trust-region constraint ‖s‖ ≤ ∆ for some suitable positive radius ∆ is

imposed, and the GALAHAD package GLTR is used to solve this additionally-constrained problem.

References:

The preconditioning aspcets are described in detail in

H. S. Dollar, N. I. M. Gould and A. J. Wathen. “On implicit-factorization constraint preconditioners”. In Large

Scale Nonlinear Optimization (G. Di Pillo and M. Roma, eds.) Springer Series on Nonconvex Optimization and Its

Applications, Vol. 83, Springer Verlag (2006) 61–82

and

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EQP (May 24, 2024) 13

EQP GALAHAD

H. S. Dollar, N. I. M. Gould, W. H. A. Schilders and A. J. Wathen “On iterative methods and implicit-factorization

preconditioners for regularized saddle-point systems”. SIAM Journal on Matrix Analysis and Applications, 28(1)

(2006) 170–189,

while the constrained conjugate-gradient method is discussed in

N. I. M. Gould, S. Lucidi, M. Roma and Ph. L. Toint, “Solving the trust-region subproblem using the Lanczos

method”. SIAM Journal on Optimization 9(2) (1999), 504-525.

5 EXAMPLE OF USE

Suppose we wish to minimize 1
2 x2

1 + x2
2 +

3
2 x2

3 +4x1x3 +2x2+1 subject to the the general linear constraints 2x1 + x2 −
2 = 0 and x2 + x3 − 2 = 0. Then, on writing the data for this problem as

H =





1 4

2

4 3



 , g =





0

2

0



 , A =

(

2 1

1 1

)

and c =

(

−2

−2

)

in sparse co-ordinate format, we may use the following code:

! THIS VERSION: GALAHAD 2.1 - 22/03/2007 AT 09:00 GMT.

PROGRAM GALAHAD_EQP_EXAMPLE

USE GALAHAD_EQP_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (QPT_problem_type) :: p

TYPE (EQP_data_type) :: data

TYPE (EQP_control_type) :: control

TYPE (EQP_inform_type) :: inform

INTEGER :: s

INTEGER, PARAMETER :: n = 3, m = 2, h_ne = 4, a_ne = 4

! start problem data

ALLOCATE(p%G(n), p%C(m), p%X(n), p%Y(m))

p%new_problem_structure = .TRUE. ! new structure

p%n = n ; p%m = m ; p%f = 1.0_wp ! dimensions & objective constant

p%G = (/ 0.0_wp, 2.0_wp, 0.0_wp /) ! objective gradient

p%C = (/ - 2.0_wp, - 2.0_wp /) ! constraint constants

p%X = 0.0_wp ; p%Y = 0.0_wp ! start from zero

! sparse co-ordinate storage format

CALL SMT_put(p%H%type, ’COORDINATE’, s) ! Specify co-ordinate

CALL SMT_put(p%A%type, ’COORDINATE’, s) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%row(h_ne), p%H%col(h_ne))

ALLOCATE(p%A%val(a_ne), p%A%row(a_ne), p%A%col(a_ne))

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /) ! Hessian H

p%H%row = (/ 1, 2, 3, 3 /) ! NB lower triangle

p%H%col = (/ 1, 2, 3, 1 /) ; p%H%ne = h_ne

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%row = (/ 1, 1, 2, 2 /)

p%A%col = (/ 1, 2, 2, 3 /) ; p%A%ne = a_ne

! problem data complete

CALL EQP_initialize(data, control, inform) ! Initialize control parameters

CALL EQP_solve(p, data, control, inform) ! Solve problem

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ EQP: ’, I0, ’ CG iteration(s). Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%cg_iter, inform%obj, p%X

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 EQP (May 24, 2024) GALAHAD

GALAHAD EQP

ELSE ! Error returns

WRITE(6, "(’ EQP_solve exit status = ’, I6) ") inform%status

END IF

CALL EQP_terminate(data, control, inform) ! delete internal workspace

DEALLOCATE(p%G, p%C, p%X, p%Y) ! deallocate problem arrays

DEALLOCATE(p%H%val, p%H%row, p%H%col, p%A%val, p%A%row, p%A%col)

DEALLOCATE(p%H%type, p%A%type)

END PROGRAM GALAHAD_EQP_EXAMPLE

This produces the following output:

EQP: 1 CG iteration(s). Optimal objective value = 7.0541E+00

Optimal solution = 3.2432E-01 1.3514E+00 6.4865E-01

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(p%H%type, ’SPARSE_BY_ROWS’, s) ! Specify sparse-by-row

CALL SMT_put(p%A%type, ’SPARSE_BY_ROWS’, s) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%col(h_ne), p%H%ptr(n + 1))

ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /) ! Hessian H

p%H%col = (/ 1, 2, 3, 1 /) ! NB lower triangular

p%H%ptr = (/ 1, 2, 3, 5 /) ! Set row pointers

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%col = (/ 1, 2, 2, 3 /)

p%A%ptr = (/ 1, 3, 5 /) ! Set row pointers

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(p%H%type, ’DENSE’, s) ! Specify dense

CALL SMT_put(p%A%type, ’DENSE’, s) ! storage for H and A

ALLOCATE(p%H%val(n * (n + 1) / 2))

ALLOCATE(p%A%val(n * m))

p%H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 4.0_wp, 0.0_wp, 3.0_wp /) ! Hessian

p%A%val = (/ 2.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian

! problem data complete

respectively.

If instead H had been the diagonal matrix

H =





1

0

3





but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’, s) ! Specify dense storage for H

ALLOCATE(p%H%val(n))

p%H%val = (/ 1.0_wp, 0.0_wp, 3.0_wp /) ! Hessian values

Notice here that zero diagonal entries are stored.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD EQP (May 24, 2024) 15

