
GALAHAD DPS

USER DOCUMENTATION GALAHAD Optimization Library version 5.1

1 SUMMARY

Given a real n by n symmetric matrix H, this package construct a symmetric, positive definite matrix M so that H is

diagonal in the norm ‖v‖M =
√

vT Mv induced by M. Subsequently the package can be use to solve the trust-region

subproblem

minimize q(x) = 1
2 xT Hx+ cT x+ f subject to ‖x‖|M ≤ ∆ (1.1)

or the regularized quadratic problem

minimize q(x)+ 1
p σ‖x‖|pM (1.2)

for a real n vector c and scalars f , ∆ > 0, σ > 0 and p ≥ 2.

A factorization of the matrix H will be required, so this package is most suited for the case where such a factorization,

either dense or sparse, may be found efficiently.

ATTRIBUTES — Versions: GALAHAD DPS single, GALAHAD DPS double. Uses: GALAHAD CLOCK, GALAHAD SY-

MBOLS, GALAHAD SPACE, GALAHAD NORMS, GALAHAD SMT, GALAHAD SPECFILE, GALAHAD SLS, GALAHAD TRS, GALAH-

AD RQS Date: March 2018. Origin: N. I. M. Gould. Language: Fortran 2003. Parallelism: Some options may use

OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

The package is available with single, double and (if available) quadruple precision reals, and either 32-bit or 64-bit

integers. Access to the 32-bit integer, single precision version requires the USE statement

USE GALAHAD DPS single

with the obvious substitution GALAHAD DPS double, GALAHAD DPS quadruple, GALAHAD DPS single 64, GALAH-

AD DPS double 64 and GALAHAD DPS quadruple 64 for the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT TYPE, DPS control type,

DPS history type, DPS inform type, DPS data type, (Section 2.4) and the subroutines DPS initialize, DPS solve,

DPS terminate (Section 2.5) and DPS read specfile (Section 2.7) must be renamed on one of the USE statements.

2.1 Matrix storage formats

The matrix H may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix H is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Since H is symmetric, only the lower triangular part

(that is the part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle should be stored by rows, that is

component i∗ (i−1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DPS (November 29, 2024) 1

DPS GALAHAD

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of H, 1 ≤ j ≤ i ≤ n, its row index i, column index

j and value hi j are stored in the l-th components of the integer arrays H%row, H%col and real array H%val, respectively.

Note that only the entries in the lower triangle should be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of H, the i-th component of the integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+ 1) holds the total number of entries plus one. The column indices j, 1 ≤ j ≤ i,

and values hi j of the entries in the i-th row are stored in components l = H%ptr(i), . . . ,H%ptr (i+1)−1 of the integer

array H%col, and real array H%val, respectively. Note that as before only the entries in the lower triangle should be

stored. For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions, DOUBLE PRECISION for the double precision cases

and quadruple-precision if 128-bit reals are available, and correspond to rp = real32, rp = real64 and rp =

real128 respectively as defined by the fortran iso fortran env module. The latter are default (32-bit) and long

(64-bit) integers, and correspond to ip = int32 and ip = int64, respectively, again from the iso fortran env

module.

2.3 Parallel usage

OpenMP may be used by the GALAHAD DPS package to provide parallelism for some solvers in shared memory envi-

ronments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP must

be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number of

threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.4 The derived data types

Five derived data types are accessible from the package.

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices H and perhaps M and/or A. The components of SMT TYPE

used here are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 DPS (November 29, 2024) GALAHAD

GALAHAD DPS

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored.

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of the symmetric matrix H is represented as a single entry (see §2.1.1–

2.1.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least n + 1, that may holds the pointers

to the first entry in each row (see §2.1.3).

2.4.2 The derived data type for holding control parameters

The derived data type DPS control type is used to hold controlling data. Default values may be obtained by calling

DPS initialize (see Section 2.5.1). The components of DPS control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in DPS solve and DPS terminate is suppressed if error≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in DPS solve is suppressed if out< 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level≤ 0. If print level = 1 a single line

of output will be produced for each iteration of the process. If print level ≥ 2 this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

new h is a scalar variable of type INTEGER(ip), that is used to indicate how H has changed (if at all) since the

previous call to DPS solve. Possible values are:

0 H is unchanged.

1 the values in H have changed, but its nonzero structure is as before.

2 both the values and structure of H have changed.

The default is new h = 2.

taylor max degree is a scalar variable of type INTEGER(ip), that specifies the maximum degree of Taylor approx-

imant that will be used to approximate the secular function when trying to improve λ; a first-degree approximant

results in Newton’s method. The higher the degree, the better in general the improvement, but the larger the cost.

Thus there is a balance between many cheap low-degree approximants and a few more expensive higher-degree

ones. Our experience favours higher-degree approximants. The default is taylor max degree = 3, which is

the highest degree currently supported.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DPS (November 29, 2024) 3

DPS GALAHAD

eigen min is a scalar variables of type REAL(rp), that specifies the smallest allowable value of an eigenvalue of the

block diagonal factor of H. Any eigenvalue smaller than eigen min will be set to eigen min when constructing

M. See Section 4 for more details. The default is
√

u, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAH-

AD DPS double).

lower is a scalar variables of type REAL(rp), that holds the value of any known lower bound on the required mul-

tiplier λ∗. A good lower bound may sometimes dramatically improve the performance of the package, but

an incorrect value might cause the method to fail. Thus resetting lower from its default should be used with

caution. The default is lower = - HUGE(1.0) (-HUGE(1.0D0) in GALAHAD DPS double).

upper is a scalar variables of type REAL(rp), that holds the value of any known upper bound on the required mul-

tiplier λ∗. A good upper bound may sometimes dramatically improve the performance of the package, but

an incorrect value might cause the method to fail. Thus resetting upper from its default should be used with

caution. The default is upper = HUGE(1.0) (HUGE(1.0D0) in GALAHAD DPS double).

stop normal and stop absolute normal are scalar variables of type REAL(rp), that hold values for the standard

convergence tolerances of the method (see Section 4). In particular, the method is deemed to have converged for

the trust-region subproblem when the computed solution x and its multiplier λ satisfy either λ= 0 and |‖x‖M <∆

or ‖x‖M−∆| ≤ max(stop normal ∗ ∆, stop absolute normal), while convergence in the regularization case

happens when ‖x‖M − (λ/σ)1/(p−2) ≤ stop normal

∗max(1,‖x‖M,(λ/σ)1/(p−2)). The defaults are stop normal = stop absolute normal = u0.75, where u is

EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD DPS double).

goldfarb is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the package to use

Goldfarb’s method to build M from H, and .FALSE. if the modified-absolute-value method is to be used instead.

The default is goldfarb = .FALSE..

space critical is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the package

to allocate as little internal storage as possible, and .FALSE. otherwise. The package may be more efficient if

space critical is set .FALSE.. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that may be set .TRUE. if the user wishes the

package to return to the user in the unlikely event that an internal array deallocation fails, and .FALSE. if the

package should be allowed to try to continue. The default is deallocate error fatal = .FALSE..

symmetric linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any symmetric linear system that might arise. Current possible choices are ’sils’,

’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma97’, ssids, ’pardiso’ and ’wsmp’, although only ’sils’ and, for

OMP 4.0-compliant compilers, ’ssids’ are installed by default. See the documentation for the GALAHAD

package SLS for further details. The default is symmetric linear solver = ’sils’.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

SLS control is a scalar variable of type SLS control type that is used to control various aspects of the factorization

package SLS. See the documentation for GALAHAD SLS for more details.

2.4.3 The derived data type for holding timing information

The derived data type DPS time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of DPS time type are:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 DPS (November 29, 2024) GALAHAD

GALAHAD DPS

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing required matrices prior to

factorization.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent solving diagonal trust-region or regular-

ization subproblems.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing

required matrices prior to factorization.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed time spent solving diagonal trust-region

or regularization subproblems.

2.4.4 The derived data type for holding informational parameters

The derived data type DPS inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of DPS inform type are:

status is a scalar variable of type INTEGER(ip), that gives the current status of the algorithm. See Section 2.6 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last internal array allocation or

deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

mod 1by1 is a scalar variable of type INTEGER(ip), that gives the number of eigenvalues from 1 by 1 blocks from

the factorization of H that were modified when constructing M.

mod 2by2 is a scalar variable of type INTEGER(ip), that gives the number of eigenvalues from 2 by 2 blocks from

the factorization of H that were modified when constructing M.

obj is a scalar variable of type REAL(rp), that holds the value of the objective function 1
2 xT Hx+ cT x+ f .

obj regularized is a scalar variable of type REAL(rp), that holds the value of the regularized objective function
1
2 xT Hx+ cT x+ f + 1

p σ‖x‖p
M.

multiplier is a scalar variable of type REAL(rp), that holds the value of the Lagrange multiplier λ associated with

the constraint.

x norm is a scalar variable of type REAL(rp), that holds the value of ‖x‖M.

pole is a scalar variable of type REAL(rp), that holds a lower bound on max(0,−λ1), where λ1 is the left-most

eigenvalue of the matrix pencil (H,M).

hard case is a scalar variable of type default LOGICAL, that will be .TRUE. if the “hard-case” has occurred (see

Section 4) and .FALSE. otherwise.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DPS (November 29, 2024) 5

DPS GALAHAD

time is a scalar variable of type DPS time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.4.3).

SLS inform is a scalar variable of type SLS inform type, that holds informational parameters concerning the analy-

sis, factorization and solution phases performed by the GALAHAD sparse matrix factorization package SLS. See

the documentation for the package SLS for details of the derived type SLS inform type.

2.4.5 The derived data type for holding problem data

The derived data type DPS data type is used to hold all the data for a particular problem between calls of DPS

procedures. This data should be preserved, untouched, from the initial call to DPS initialize to the final call to

DPS terminate.

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutine DPS initialize is used to set default values and initialize private data.

2. The subroutine DPS solve is called to compute the desired matrix M and then solve the appropriate quadratic

subproblem.

3. The subroutine DPS resolve is used to resolve the problem when the only data that has changed since the last

solution are the values of the radius ∆ or the regularization weight σ and, optionally, the linear and constant

terms c and f .

4. The subroutine DPS terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by DPS solve, at the end of the solution process.

We use square brackets [] to indicate OPTIONAL arguments.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL DPS initialize(data, control, inform)

data is a scalar INTENT(INOUT)argument of type DPS data type (see Section 2.4.5). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT)argument of type DPS control type (see Section 2.4.2). On exit, control contains

default values for the components as described in Section 2.4.2. These values should only be changed after

calling DPS initialize.

inform is a scalar INTENT(OUT) argument of type DPS inform type (see Section 2.4.4). A successful call to

DPS initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 DPS (November 29, 2024) GALAHAD

GALAHAD DPS

2.5.2 The optimization problem solution subroutine

The optimization problem solution algorithm is called as follows:

CALL DPS solve(n, H, c, f, X, data, control, inform[, delta, sigma, p])

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of unknowns, n. Re-

striction: n > 0.

H is scalar INTENT(IN) argument of type SMT TYPE that holds the Hessian matrix H. The following components

are used here:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, and for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if we wish to store M using the co-ordinate scheme, we may simply

CALL SMT_put(H%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

three schemes.

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of the storage schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any of

the other schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when the dense storage scheme is used.

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

C is an array INTENT(IN) argument of dimension n and type REAL(rp), whose i-th entry holds the component ci

of the vector c for the objective function.

f is a scalar INTENT(IN) variable of type REAL(rp), that holds the scalar value f for the objective function.

X is an array INTENT(OUT) argument of dimension n and type REAL(rp), that holds an estimate of the solution x

of the problem (1.1) or (1.2) on exit.

data is a scalar INTENT(INOUT)argument of type DPS data type (see Section 2.4.5). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to DPS initialize.

control is a scalar INTENT(IN) argument of type DPS control type. (see Section 2.4.2). Default values may be

assigned by calling DPS initialize prior to the first call to DPS solve.

inform is a scalar INTENT(INOUT)argument of type DPS inform type (see Section 2.4.4) whose components need

not be set on entry. A successful call to DPS solve is indicated when the component status has the value 0.

For other return values of status, see Section 2.6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DPS (November 29, 2024) 7

DPS GALAHAD

delta is an OPTIONAL scalar INTENT(IN) variable of type default REAL(rp), that must be set on initial entry to

the value of the radius of the trust-region constraint, ∆ if the solution to the trust-region subproblem (1.1) is

required. If delta is not PRESENT, the trust-region subproblem will not be solved, but when it is PRESENT, the

regularization subproblem will not be solved regardless of the status of sigma (see below). Restriction: delta

> 0.

sigma is an OPTIONAL scalar INTENT(IN) variable of type default REAL(rp), that must be set on initial entry to the

value of the regularization weight, σ if the solution to the regularization subproblem (1.2) is required. If sigma

is not PRESENT, the regularization subproblem will not be solved. Restriction: sigma > 0.

p is an OPTIONAL scalar INTENT(IN) variable of type default REAL(rp), that must be set on initial entry to the

value of the regularization order, p if the solution to the regularization subproblem (1.2) is required. If p is not

PRESENT, the regularization order is taken to be 3.0. Restriction: p ≥ 2.0.

2.5.3 The optimization problem re-solution subroutine

The optimization problem solution algorithm may be recalled with modified problem data as follows:

CALL DPS resolve(n, X, data, control, inform[, C, f, delta, sigma, p])

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of unknowns, n. This

should not have been changed since the last call to DPS solve.

X is an array INTENT(OUT) argument of dimension n and type REAL(rp), that holds an estimate of the solution x

of the problem (1.1) or (1.2) on exit.

data is a scalar INTENT(INOUT)argument of type DPS data type (see Section 2.4.5). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to DPS solve.

control is a scalar INTENT(IN) argument of type DPS control type. (see Section 2.4.2). Default values may be

assigned by calling DPS initialize prior to the first call to DPS solve.

inform is a scalar INTENT(INOUT)argument of type DPS inform type (see Section 2.4.4) whose components need

not be set on entry. A successful call to DPS solve is indicated when the component status has the value 0.

For other return values of status, see Section 2.6.

C is an OPTIONAL array INTENT(IN) argument of dimension n and type REAL(rp), that if PRESENT whose i-th

entry holds the component ci of a new vector c for the objective function.

f is an OPTIONAL scalar INTENT(IN) variable of type REAL(rp), that if PRESENT holds the a new value of the

scalar f for the objective function.

delta is an OPTIONAL scalar INTENT(IN) variable of type default REAL(rp), that must be set on entry to the value

of the radius of the trust-region constraint, ∆ if the solution to the trust-region subproblem (1.1) is required. If

delta is not PRESENT, the trust-region subproblem will not be solved, but when it is PRESENT, the regularization

subproblem will not be solved regardless of the status of sigma (see below). Restriction: delta > 0.

sigma is an OPTIONAL scalar INTENT(IN) variable of type default REAL(rp), that must be set on entry to the value

of the regularization weight, σ if the solution to the regularization subproblem (1.2) is required. If sigma is not

PRESENT, the regularization subproblem will not be solved. Restriction: sigma > 0.

p is an OPTIONAL scalar INTENT(IN) variable of type default REAL(rp), that must be set on entry to the value of the

regularization order, p if the solution to the regularization subproblem (1.2) is required. If p is not PRESENT, the

regularization order is taken to be 3.0. Restriction: p ≥ 2.0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 DPS (November 29, 2024) GALAHAD

GALAHAD DPS

2.5.4 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL DPS terminate(data, control, inform)

data is a scalar INTENT(INOUT)argument of type DPS data type exactly as for DPS solve that must not have been

altered by the user since the last call to DPS initialize. On exit, array components will have been deallocated.

control is a scalar INTENT(IN)argument of type DPS control type exactly as for DPS solve.

inform is a scalar INTENT(OUT)argument of type DPS inform type exactly as for DPS solve. Only the component

status will be set on exit, and a successful call to DPS terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.6.

2.6 Warning and error messages

A negative value of inform%status on exit from DPS solve or DPS terminate indicates that an error might have

occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. (DPS solve and DPS resolve only) One of the restrictions n > 0, radius > 0, sigma > 0 or p ≥ 2 has been

violated.

-9. (DPS solve only) The analysis phase of the factorization of the matrix H failed.

-10. (DPS solve only) The factorization of the matrix H failed.

-16. (DPS solve and DPS resolve only) The problem is so ill-conditioned that further progress is impossible.

-40. (DPS solve only) An error occurred when building the preconditioner.

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type DPS control type (see Section 2.4.2), by reading an appropriate data specification file using the

subroutine DPS read specfile. This facility is useful as it allows a user to change DPS control parameters without

editing and recompiling programs that call DPS.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by DPS read specfile must start with a ”BEGIN DPS” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DPS (November 29, 2024) 9

DPS GALAHAD

(.. lines ignored by DPS_read_specfile ..)

BEGIN DPS

keyword value

.......

keyword value

END

(.. lines ignored by DPS_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN DPS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN DPS SPECIFICATION

and

END DPS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN DPS” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when DPS read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

DPS read specfile.

Control parameters corresponding to the components SLS control and IR control may be changed by including

additional sections enclosed by “BEGIN SLS” and “END SLS”, and “BEGIN IR” and “END IR”, respectively. See the

specification sheets for the packages GALAHAD SLS and GALAHAD IR for further details.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL DPS_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type DPS control type (see Section 2.4.2). Default values should

have already been set, perhaps by calling DPS initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.4.2) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 DPS (November 29, 2024) GALAHAD

GALAHAD DPS

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

use-dense-factorization %dense factorization integer

has-h-changed %new h integer

max-degree-taylor-approximant %taylor max degree integer

smallest-eigenvalue-allowed %eigen min real

lower-bound-on-multiplier %lower real

upper-bound-on-multiplier %upper real

stop-normal-case %stop normal real

stop-absolute-normal-case %stop absolute normal real

build-goldfarb-preconditioner %goldfarb logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

symmetric-linear-equation-solver %symmetric linear solver character

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. In the

first phase of the algorithm, this will include the current estimate of the multiplier and known brackets on its optimal

value. In the second phase, the residual ‖x‖M −∆ (in the trust-region case), the current estimate of the multiplier

and the size of the correction will be printed. If control%print level ≥ 2, this output will be increased to provide

significant detail of each iteration. This extra output includes times for various phases.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: DPS solve and DPS resolve call the GALAHAD packages GALAHAD CLOCK, GALA-

HAD SYMBOLS, GALAHAD SPACE, GALAHAD NORMS, GALAHAD SMT, GALAHAD SPECFILE, GALAHAD SLS, GALAH-

AD TRS and GALAHAD RQS.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: n > 0, ∆ > 0, σ > 0, p ≥ 2.

Portability: ISO Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x∗ necessarily satisfies the optimality condition Hx∗ + λ∗Mx∗ + c = 0, where λ∗ ≥ 0 is a

Lagrange multiplier that corresponds to the constraint ‖x‖M ≤ ∆ in the trust-region case (1.1), and is given by

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DPS (November 29, 2024) 11

DPS GALAHAD

λ∗ = σ‖x∗‖p−2 for the regularization problem (1.2). In addition H+ λ∗M will be positive semi-definite; in most

instances it will actually be positive definite, but in special “hard” cases singularity is a possibility.

The matrix H is decomposed as

H = PLDLT PT

by calling the GALAHAD package SLS. Here P is a permutation matrix, L is unit lower triangular and D is block

diagonal, with blocks of dimension at most two. The spectral decomposition of each diagonal block of D is computed,

and each eigenvalue θ is replaced by max(|θ|,θmin), where θmin is a positive user-supplied value. The resulting block

diagonal matrix is B, from which we define the “modified-absolute-value”

M = PLBLT PT ;

an alternative due to Goldfarb uses instead the simpler

M = PLLT PT .

Given the factors of H (and M), the required solution is found by making the change of variables y = B
1
2 LT PT x

(or y = LT PT x in the Goldfarb case) which results in “diagonal” trust-region and regularization subproblems, whose

solution may be easily obtained suing a Newton or higher-order iteration of a resulting “secular” equation. If subse-

quent problems, for which H and c are unchanged, are to be attempted, the existing factorization and solution may

easily be exploited.

The dominant cost is that for the factorization of the symmetric, but potentially indefinite, matrix H using the

GALAHAD package SLS.

Reference:

The method is described in detail for the trust-region case in

N. I. M. Gould and J. Nocedal (1998). The modified absolute-value factorization for trust-region minimization. In

“High Performance Algorithms and Software in Nonlinear Optimization” (R. De Leone, A. Murli, P. M. Pardalos and

G. Toraldo, eds.), Kluwer Academic Publishers, pp. 225–241,

while the adaptation for the regularization case is obvious. The method used to solve the diagonal trust-region and

regularization subproblems are as given by

H. S. Dollar, N. I. M. Gould and D. P. Robinson (2010). On solving trust-region and other regularised subproblems in

optimization. Mathematical Programming Computation 2(1) 21–57

with simplifications due to the diagonal Hessian.

5 EXAMPLE OF USE

Suppose we wish to solve the trust-region subproblem (1.1) in 10 unknowns, whose data is

H =

−2 1

1 −2 .
. . .

. −2 1

1 −2

, c =

1

1

.
1

1

and f = 0,

with a radius ∆ = 1 and then to change the first component of c to 2, and to resolve with radii ∆ = 1 and ∆ = 10. Then

we may use the following code:

PROGRAM GALAHAD_DPS_EXAMPLE ! GALAHAD 3.0 - 23/03/2018 AT 07:30 GMT.

USE GALAHAD_DPS_double ! double precision version

IMPLICIT NONE

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 DPS (November 29, 2024) GALAHAD

GALAHAD DPS

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

INTEGER, PARAMETER :: n = 10 ! problem dimension

INTEGER :: i

REAL (KIND = wp) :: f, delta

TYPE (SMT_type) :: H

REAL (KIND = wp), DIMENSION(n) :: C, X

TYPE (DPS_data_type) :: data

TYPE (DPS_control_type) :: control

TYPE (DPS_inform_type) :: inform

INTEGER :: s

H%ne = 2 * n - 1 ! set up problem

CALL SMT_put(H%type, ’COORDINATE’, s) ! specify co-ordinate for H

ALLOCATE(H%row(H%ne), H%col(H%ne), H%val(H%ne), STAT = i)

DO i = 1, n - 1

H%row(i) = i ; H%col(i) = i ; H%val(i) = - 2.0_wp

H%row(n + i) = i + 1; H%col(n + i) = i ; H%val(n + i) = 1.0_wp

END DO

H%row(n) = n ; H%col(n) = n ; H%val(n) = -2.0_wp

C = 1.0_wp ; f = 0.0_wp ; delta = 1.0_wp

CALL DPS_initialize(data, control, inform) ! initialize control parameters

! control%symmetric_linear_solver = "ma27 "

CALL DPS_solve(n, H, C, f, X, data, control, inform, delta = delta)

WRITE(6, "(/ A, ES12.4, A, / (5ES12.4))") &

’ optimal f =’, inform%obj, ’, optimal x = ’, X

C(1) = 2.0_wp ! change the first component of C to 2

CALL DPS_resolve(n, X, data, control, inform, C = C, delta = delta)

WRITE(6, "(/ A, /, A, ES12.4, A, / (5ES12.4))") &

’ change C:’, ’ optimal f =’, inform%obj, ’, optimal x = ’, X

delta = 10.0_wp ! increase the radius

CALL DPS_resolve(n, X, data, control, inform, delta = delta)

WRITE(6, "(/ A, /, A, ES12.4, A, / (5ES12.4))") &

’ increase delta:’, ’ optimal f =’, inform%obj, ’, optimal x = ’, X

CALL DPS_terminate(data, control, inform) ! Deallocate arrays

END PROGRAM GALAHAD_DPS_EXAMPLE

This produces the following output:

optimal f = -3.7571E+00, optimal x =

-2.7911E-01 -5.0239E-01 -2.7290E-01 -4.7758E-01 -2.6316E-01

-4.3860E-01 -2.4561E-01 -3.6842E-01 -2.0468E-01 -2.0468E-01

change C:

optimal f = -4.1519E+00, optimal x =

-4.9788E-01 -4.4809E-01 -2.4341E-01 -4.2596E-01 -2.3471E-01

-3.9119E-01 -2.1907E-01 -3.2860E-01 -1.8255E-01 -1.8255E-01

increase delta:

optimal f = -8.6519E+01, optimal x =

-4.9788E+00 -4.4809E+00 -2.4341E+00 -4.2596E+00 -2.3471E+00

-3.9119E+00 -2.1907E+00 -3.2860E+00 -1.8255E+00 -1.8255E+00

If, instead, we wish to solve the cubic (p = 3) regularization subproblem (1.2) using the same problem data and
initial weight σ = 1, and then to change the first component of c to 2, and to resolve with weights σ = 1 and σ = 0.1,
the following code is suitable:

PROGRAM GALAHAD_DPS_EXAMPLE2 ! GALAHAD 3.0 - 23/03/2018 AT 07:30 GMT.

USE GALAHAD_DPS_double ! double precision version

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD DPS (November 29, 2024) 13

DPS GALAHAD

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

INTEGER, PARAMETER :: n = 10 ! problem dimension

INTEGER :: i

REAL (KIND = wp) :: f, sigma, p

TYPE (SMT_type) :: H

REAL (KIND = wp), DIMENSION(n) :: C, X

TYPE (DPS_data_type) :: data

TYPE (DPS_control_type) :: control

TYPE (DPS_inform_type) :: inform

INTEGER :: s

H%ne = 2 * n - 1 ! set up problem

CALL SMT_put(H%type, ’COORDINATE’, s) ! specify co-ordinate for H

ALLOCATE(H%row(H%ne), H%col(H%ne), H%val(H%ne), STAT = i)

DO i = 1, n - 1

H%row(i) = i ; H%col(i) = i ; H%val(i) = - 2.0_wp

H%row(n + i) = i + 1; H%col(n + i) = i ; H%val(n + i) = 1.0_wp

END DO

H%row(n) = n ; H%col(n) = n ; H%val(n) = -2.0_wp

C = 1.0_wp ; f = 0.0_wp ; sigma = 1.0_wp ; p = 3.0_wp

CALL DPS_initialize(data, control, inform) ! initialize control parameters

CALL DPS_solve(n, H, C, f, X, data, control, inform, sigma = sigma, p = p)

WRITE(6, "(/ A, ES12.4, A, / (5ES12.4))") &

’ optimal f =’, inform%obj, ’, optimal x = ’, X

C(1) = 2.0_wp ! change the first component of C to 2

CALL DPS_resolve(n, X, data, control, inform, C = C, sigma = sigma)

WRITE(6, "(/ A, /, A, ES12.4, A, / (5ES12.4))") &

’ change C:’, ’ optimal f =’, inform%obj, ’, optimal x = ’, X

sigma = 0.1_wp ! decrease the weight

CALL DPS_resolve(n, X, data, control, inform, sigma = sigma)

WRITE(6, "(/ A, /, A, ES12.4, A, / (5ES12.4))") &

’ decrease sigma:’, ’ optimal f =’, inform%obj, ’, optimal x = ’, X

CALL DPS_terminate(data, control, inform) ! Deallocate arrays

END PROGRAM GALAHAD_DPS_EXAMPLE2

This produces the following output:

optimal f = -1.0543E+01, optimal x =

-6.6225E-01 -1.1920E+00 -6.4753E-01 -1.1332E+00 -6.2441E-01

-1.0407E+00 -5.8278E-01 -8.7417E-01 -4.8565E-01 -4.8565E-01

change C:

optimal f = -1.2103E+01, optimal x =

-1.2324E+00 -1.1092E+00 -6.0251E-01 -1.0544E+00 -5.8099E-01

-9.6831E-01 -5.4226E-01 -8.1338E-01 -4.5188E-01 -4.5188E-01

decrease sigma:

optimal f = -1.2938E+02, optimal x =

-6.3944E+00 -5.7550E+00 -3.1262E+00 -5.4708E+00 -3.0145E+00

-5.0242E+00 -2.8135E+00 -4.2203E+00 -2.3446E+00 -2.3446E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 DPS (November 29, 2024) GALAHAD

