
GALAHAD CRO

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package provides a crossover from a solution to the convex quadratic programming problem

minimize q(x) = 1
2 xT Hx+ gTx+ f

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m,

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

found by an interior-point method to one in which the matrix of defining active constraints/variables is of full rank.

Here, the n by n symmetric, positive-semi-definite matrix H, the vectors g, ai, cl , cu, xl , xu, the scalar f are given. In

addition a solution x along with optimal Lagrange multipliers y for the general constraints and dual variables z for the

simple bounds must be provided (see Section 4). These will be adjusted as necessary. Any of the constraint bounds

cl
i , cu

i , xl
j and xu

j may be infinite. Full advantage is taken of any zero coefficients in the matrix H or the matrix A of

vectors ai.

ATTRIBUTES — Versions: GALAHAD CRO single, GALAHAD CRO double. Uses: GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD SPACE, GALAHAD SPECFILE, GALAHAD TOOLS. GALAHAD QPT, GALAHAD SCU, GALAHAD SLS, GALAHAD -

ULS, Date: January 2012. Origin: N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR

15581 or Fortran 2003. Parallelism: Some options may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD CRO single

with the obvious substitution GALAHAD CRO double, GALAHAD CRO single 64 and GALAHAD CRO double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, QPT problem type,

NLPT userdata type, CRO time type, CRO control type, CRO inform type and CRO data type (Section 2.3) and

the subroutines CRO initialize, CRO crossover, CRO terminate, (Section 2.4) and CRO read specfile (Sec-

tion 2.6) must be renamed on one of the USE statements.

2.1 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CRO (May 24, 2024) 1

CRO GALAHAD

2.2 Parallel usage

OpenMP may be used by the GALAHAD CRO package to provide parallelism for some solvers in shared memory envi-

ronments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP must

be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number of

threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.3 The derived data types

Four derived data types are accessible from the package.

2.3.1 The derived data type for holding control parameters

The derived data type CRO control type is used to hold controlling data. Default values may be obtained by calling

CRO initialize (see Section 2.4.1), while components may also be changed by calling CRO read specfile (see

Section 2.6.1). The components of CRO control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in CRO crossover and CRO terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in CRO crossover is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

max schur complement is a scalar variable of type INTEGER(ip), that specifies the maximum number of columns

permitted in the Schur complement when updating the solution (see Section 4) before a re-factorization is

triggered. The default is max schur complement = 75.

infinity is a scalar variable of type REAL(rp), that is used to specify which constraint bounds are infinite. Any

bound larger than infinity in modulus will be regarded as infinite. The default is infinity = 1019.

feasibility tolerance is a scalar variables of type REAL(rp), that specifies the maximum violation of the KKT

conditions that is permitted. The default iw feasibility tolerance = u, where u is EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD CRO double).

check io is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to check the input

and output data and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of errors The default is check io = .TRUE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 CRO (May 24, 2024) GALAHAD

GALAHAD CRO

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

symmetric linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any symmetric linear system that might arise. Current possible choices are ’sils’,

’ma27’, ’ma57’, ’ma77’, ’ma86’, ’ma97’, ssids, ’pardiso’ and ’wsmp’, although only ’sils’ and, for

OMP 4.0-compliant compilers, ’ssids’ are installed by default. See the documentation for the GALAHAD

package SLS for further details. The default is symmetric linear solver = ’sils’, but we recommend

’ma97’ if it available.

unsymmetric linear solver is a scalar variable of type default CHARACTER and length 30, that specifies the external

package to be used to solve any unsymmetric linear systems that might arise. Possible choices are ’gls’,

’ma28’ and ’ma48’, although only ’gls’ is installed by default. See the documentation for the GALAHAD

package ULS for further details. The default is unsymmetric linear solver = ’gls’, but we recommend

’ma48’ if it available.

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

SLS control is a scalar variable argument of type SLS control type that is used to pass control options to external

packages used to solve any symmetric linear systems that might arise. See the documentation for the GALAHAD

package SLS for further details. In particular, default values are as for SLS.

ULS control is a scalar variable argument of type ULS control type that is used to pass control options to exter-

nal packages used to solve any unsymmetric linear systems that might arise. See the documentation for the

GALAHAD package ULS for further details. In particular, default values are as for ULS.

2.3.2 The derived data type for holding timing information

The derived data type CRO time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of CRO time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing the required matrices prior

to factorization.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent computing corrections to the current

solution.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing the

required matrices prior to factorization.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CRO (May 24, 2024) 3

CRO GALAHAD

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent computing cor-

rections to the current solution.

2.3.3 The derived data type for holding informational parameters

The derived data type CRO inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of CRO inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.5 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

dependent is a scalar variable of type INTEGER(ip), that gives the number of dependent active constraints.

time is a scalar variable of type CRO time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.3.2).

SLS control is a scalar variable argument of type SLS control type that is used to pass control options to external

packages used to solve any symmetric linear systems that might arise. See the documentation for the GALAHAD

package SLS for further details. In particular, default values are as for SLS.

ULS control is a scalar variable argument of type ULS control type that is used to pass control options to exter-

nal packages used to solve any unsymmetric linear systems that might arise. See the documentation for the

GALAHAD package ULS for further details. In particular, default values are as for ULS.

scu status is a scalar variable of type INTEGER(ip), that gives the return status from the Schur-complement up-

dating package GALAHAD SCU. See the specification sheet for GALAHAD SCU for details.

SCU inform is a scalar variable of type SCU info type whose components are used to provide information about

Schur-complement updating applied by the package GALAHAD SCU. See the specification sheet for GALAHAD SCU

for details.

2.3.4 The derived data type for holding problem data

The derived data type CRO data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of CRO procedures. This data should be preserved, untouched, from the initial

call to CRO initialize to the final call to CRO terminate.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.6 for further features):

1. The subroutine CRO initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine CRO crossover is called to solve the problem.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 CRO (May 24, 2024) GALAHAD

GALAHAD CRO

3. The subroutine CRO terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by CRO crossover, at the end of the solution process.

We use square brackets [] to indicate OPTIONAL arguments.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL CRO initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type CRO data type (see Section 2.3.4). It is used to hold private data

used by the crossover algorithm.

control is a scalar INTENT(OUT) argument of type CRO control type (see Section 2.3.1). On exit, control con-

tains default values for the components as described in Section 2.3.1. These values should only be changed after

calling CRO initialize.

inform is a scalar INTENT(OUT) argument of type CRO inform type (see Section 2.3.3). A successful call to

CRO initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

2.4.2 The crossover subroutine

The crossover algorithm is called as follows:

CALL CRO crossover(n, m, m equal, H val, H col, H ptr, A val, &

A col, A ptr, G, C l, C u, X l, X u, C, X, Y, &

Z, C stat, X stat, data, control, inform)

n is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of optimization vari-

ables, n. Restriction: n > 0.

m is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of general linear

constraints, m. Restriction: m ≥ 0.

m equal is a scalar INTENT(IN) argument of type INTEGER(ip), that must be set to the number of general linear

constraints that are equalities, i.e., whose lower and upper bounds coincide. Restriction: m ≥ m equal > 0.

H val is an INTENT(IN) rank-one array argument of dimension H ptr(n+1)-1 and type REAL(rp), that must be set

to hold the values of the nonzero entries of the lower triangular part of the Hessian matrix H. The entries must

be ordered so that those in row i appear directly before those in row i+ 1 with no gaps; the order within each

row is unimportant.

H col is an INTENT(IN) rank-one array argument of dimension H ptr(n+1)-1 and type INTEGER(ip), that must be

set to hold the column indices of the lower triangular part of H. These must be ordered so that they correspond

to the values stored in H val.

H ptr is an INTENT(IN) rank-one array argument of dimension n+1 and type INTEGER(ip), whose j-th component,

j = 1, . . . ,n, holds the starting position of row j of the lower triangular part of H as stored in H val and H col.

The n+ 1-st component must be set to the total number of entries in the lower triangular part of H plus one.

A val is an INTENT(IN) rank-one array argument of dimension A ptr(m+1)-1 and type REAL(rp), that must be

set to hold the values of the nonzero entries of the Jacobian matrix A. The entries must be ordered so that

those in row i appear directly before those in row i+ 1 with no gaps; the order within each row is unimportant.

Restriction: the rows of A must be ordered so that the first m equal are equality constraints.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CRO (May 24, 2024) 5

CRO GALAHAD

A col is an INTENT(IN) rank-one array argument of dimension A ptr(m+1)-1 and type INTEGER(ip), that must

be set to hold the column indices of A. These must be ordered so that they correspond to the values stored in

A val.

A ptr is an INTENT(IN) rank-one array argument of dimension m+1 and type INTEGER(ip), whose i-th component,

i = 1, . . . ,m, holds the starting position of row i of A as stored in A val and A col. The m+ 1-st component

must be set to the total number of entries in A plus one.

G is an INTENT(IN) rank-one array argument of dimension n and type REAL(rp), that holds the gradient g of the

linear term of the quadratic objective function. The j-th component of G, j = 1, . . . ,n, must be set to g j.

C l is an INTENT(IN) rank-one array argument of dimension m and type REAL(rp), that holds the vector of lower

bounds cl on the general constraints. The i-th component of C l, i = 1, . . . ,m, must be set to cl
i . Infinite

bounds are allowed by setting the corresponding components of C l to any value smaller than -infinity,

where infinity is a component of the control array control (see Section 2.3.1).

C u is an INTENT(IN) rank-one array argument of dimension m and type REAL(rp), that holds the vector of upper

bounds cu on the general constraints. The i-th component of C u, i = 1, . . . ,m, must be set to cu
i . Infinite bounds

are allowed by setting the corresponding components of C u to any value larger than infinity, where infinity

is a component of the control array control (see Section 2.3.1).

X l is an INTENT(IN) rank-one array argument of dimension n and type REAL(rp), that holds the vector of lower

bounds xl on the the variables. The j-th component of X l, j = 1, . . . ,n, must be set to xl
j. Infinite bounds are

allowed by setting the corresponding components of X l to any value smaller than -infinity, where infinity

is a component of the control array control (see Section 2.3.1).

X u is an INTENT(IN) rank-one array argument of dimension n and type REAL(rp), that holds the vector of upper

bounds xu on the variables. The j-th component of X u, j = 1, . . . ,n, must be set to xu
j . Infinite bounds are al-

lowed by setting the corresponding components of X u to any value larger than that infinity, where infinity

is a component of the control array control (see Section 2.3.1).

X is an INTENT(INOUT) rank-one array argument of dimension n and type REAL(rp), that holds the values x of

the optimization variables. The j-th component of X, j = 1, . . . ,n, must be set to x j on input, and may have been

adjusted to provide another solution on output.

C is an INTENT(INOUT) rank-one array argument of dimension m and type REAL(rp), that holds the values Ax of

the constraints. The i-th component of C, i = 1, . . . ,m, must be set to aT
i x ≡ (Ax)i on input, and may have been

adjusted to provide another solution on output.

Y is an INTENT(INOUT) rank-one array argument of dimension m and type REAL(rp), that holds the values y of

estimates of the Lagrange multipliers corresponding to the general linear constraints (see Section 4). The i-th

component of Y, i = 1, . . . ,m, must be set to yi on input, and may have been adjusted to provide another solution

on output.

Z is an INTENT(INOUT) rank-one array argument of dimension n and type REAL(rp), that holds the values z

of estimates of the dual variables corresponding to the simple bound constraints (see Section 4). The j-th

component of Z, j = 1, . . . ,n, must be set to z j on input, and may have been adjusted to provide another solution

on output.

C stat is an INTENT(IN) rank-one INTENT(INOUT) array argument of dimension m and type INTEGER(ip), that in-

dicates which of the general linear constraints are in the current active set. Possible input values for C stat(i),

i= 1, . . . , m, and their meanings are

<0 the i-th general constraint is in the active set on its lower bound, i.e., aT
i x = cl

i ,

>0 the i-th general constraint is in the active set on its upper bound, i.e., aT
i x = cu

i , and

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 CRO (May 24, 2024) GALAHAD

GALAHAD CRO

0 the i-th general constraint is not in the active set, i.e., cl
i < aT

i x < cu
i .

On output, the value of C stat(i) may have changed to mean

-1 the i-th general constraint is both independent and active on its lower bound,

-2 the i-th general constraint is on its lower bound but linearly dependent on others,

1 the i-th general constraint is both independent and active on its upper bound,

2 the i-th general constraint is on its upper bound but linearly dependent on others, and

0 the i-th general constraint is not in the active set.

X stat is an INTENT(IN) rank-one INTENT(INOUT) array argument of dimension n and type INTEGER(ip), that

indicates which of the simple bound constraints are in the current active set. Possible input values for X stat(j),

j= 1, . . . , n, and their meanings are

<0 the j-th simple bound constraint is in the active set on its lower bound, i.e., x j = xl
j,

>0 the j-th simple bound constraint is in the active set on its upper bound, i.e., x j = xu
j , and

0 the j-th simple bound constraint is not in the active set, i.e., xl
j < x j < xu

j .

On output, the value of X stat(j) may have changed to mean

-1 the j-th simple bound constraint is both independent and active on its lower bound,

-2 the j-th simple bound constraint is on its lower bound but linearly dependent on others,

1 the j-th simple bound constraint is both independent and active on its upper bound,

2 the j-th simple bound constraint is on its upper bound but linearly dependent on others, and

0 the j-th simple bound constraint is not in the active set.

data is a scalar INTENT(INOUT) argument of type CRO data type (see Section 2.3.4). It is used to hold pri-

vate data used by the crossover algorithm and must not have been altered by the user since the last call to

CRO initialize.

control is a scalar INTENT(IN) argument of type CRO control type (see Section 2.3.1). Default values may be

assigned by calling CRO initialize prior to the first call to CRO crossover.

inform is a scalar INTENT(INOUT) argument of type CRO inform type (see Section 2.3.3). A successful call to

CRO crossover is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL CRO terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type CRO data type exactly as for CRO crossover, that must not have

been altered by the user since the last call to CRO initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type CRO control type exactly as for CRO crossover.

inform is a scalar INTENT(OUT) argument of type CRO inform type exactly as for CRO crossover. Only the com-

ponent status will be set on exit, and a successful call to CRO terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CRO (May 24, 2024) 7

CRO GALAHAD

2.5 Warning and error messages

A negative value of inform%status on exit from CRO crossover or CRO terminate indicates that an error has

occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n > 0 or the requirement that prob%H type contain its relevant string ’DENSE’,

’COORDINATE’, ’SPARSE BY ROWS’ or ’DIAGONAL’ when H is available, has been violated.

-4. The bound constraints are inconsistent.

-7. The objective function appears to be unbounded from below on the feasible set.

-9. An error was reported by SLS analyse. The return status from SLS analyse is given in inform%SLS inform%-

status. See the documentation for the GALAHAD package SLS for further details.

-10. An error was reported by SLS factorize or SCU append. The return status from SLS factorize is given in

inform%SLS inform%status and that from SCU append in inform%scu status. See the documentation for

the GALAHAD packages SLS and SCU for further details.

-11. An error was reported by SLS solve or SCU solve. The return status from SLS solve is given in inform%SLS -

inform%status and that from SCU solve in inform%scu status. See the documentation for the GALAHAD

packages SLS and SCU for further details.

-13. An error was reported by ULS factorize. The return status from ULS factorize is given in inform%uls -

factorize status. See the documentation for the GALAHAD package ULS for further details.

-14. An error was reported by ULS solve. The return status from ULS solve is given in inform%uls solve status.

See the documentation for the GALAHAD package ULS for further details.

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type CRO control type (see Section 2.3.1), by reading an appropriate data specification file using the

subroutine CRO read specfile. This facility is useful as it allows a user to change CRO control parameters without

editing and recompiling programs that call CRO.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by CRO read specfile must start with a ”BEGIN CRO” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 CRO (May 24, 2024) GALAHAD

GALAHAD CRO

(.. lines ignored by CRO_read_specfile ..)

BEGIN CRO

keyword value

.......

keyword value

END

(.. lines ignored by CRO_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN CRO” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN CRO SPECIFICATION

and

END CRO SPECIFICATION

are acceptable. Furthermore, between the “BEGIN CRO” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when CRO read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

CRO read specfile.

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL CRO_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type CRO control type (see Section 2.3.1). Default values should

have already been set, perhaps by calling CRO initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.1) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line indicating how many dependent constraints will be removed. If

control%print level ≥ 2, this output will be increased to provide details of the dependent constraints, while if

control%print level ≥ 5, full debugging details (probably only of interest to the code developer) are provided.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CRO (May 24, 2024) 9

CRO GALAHAD

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-dimension-of-schur-complement %max schur complement integer

infinity-value %infinity real

feasibility-tolerance %feasibility tol real

check-input-output %check io logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

symmetric-linear-equation-solver %symmetric linear solver character

unsymmetric-linear-equation-solver %unsymmetric linear solver character

Table 2.1: Specfile commands and associated components of control.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: CRO crossover calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS,

GALAHAD SPACE, GALAHAD SPECFILE, GALAHAD TOOLS. GALAHAD QPT, GALAHAD SCU, GALAHAD SLS and GALAHAD -

ULS.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: n > 0, m ≥ m equal, m equal ≥ 0, prob%A type and prob%H type ∈ {’DENSE’, ’COORDINATE’,

’SPARSE BY ROWS’, ’DIAGONAL’ }. (if H and A are explicit).

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

Any required solution x necessarily satisfies the primal optimality conditions

Ax = c (4.1)

and

cl ≤ c ≤ cu
, xl ≤ x ≤ xu

, (4.2)

the dual optimality conditions

Hx+ g= AT y+ z, y = yl + yu and z = zl + zu
, (4.3)

and

yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0, (4.4)

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0, (4.5)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 CRO (May 24, 2024) GALAHAD

GALAHAD CRO

where the vectors y and z are known as the Lagrange multipliers for the general linear constraints, and the dual

variables for the bounds, respectively, and where the vector inequalities hold componentwise.

Denote the active constraints by AAx = cA and the active bounds by IAx = xA. Then any optimal solution satisfies

the linear system




H −AT
A −IT

A

AA 0 0

IA 0 0









x

yA

zA



=





−g

cA

xA



 ,

where yA and zA are the corresponding active Lagrange multipliers and dual variables respectively. Consequently the

difference between any two solutions (∆x,∆y,∆z) must satisfy





H −AT
A −IT

A

AA 0 0

IA 0 0









∆x

∆yA

∆zA



= 0. (4.6)

Thus there can only be multiple solution if the coefficient matrix K of (4.6) is singular. The algorithm used in GA-

LAHAD CRO exploits this. The matrix K is checked for singularity using the GALAHAD package GALAHAD ULS. If

K is non singular, the solution is unique and the solution input by the user provides a linearly independent active set.

Otherwise K is singular, and partitions AT
A = (AT

AB AT
AN) and IT

A = (IT
AB IT

AN) are found so that





H −AT
AB −IT

AB

AAB 0 0

IAB 0 0





is non-singular and the “non-basic” constraints AT
AN and IT

AN are linearly dependent on the “basic” ones (AT
AB IT

AB). In

this case (4.6) is equivalent to





H −AT
AB −IT

AB

AAB 0 0

IAB 0 0









∆x

∆yAB

∆zAB



=





AT
AN

0

0



∆yAN +





IT
AN

0

0



∆zAN . (4.7)

Thus, starting from the user’s (x,y,z) and with a factorization of the coefficient matrix of (4.7) found by the GALAHAD

package GALAHAD SLS, the alternative solution (x+αx,y+αy,z+αz), featuring (∆x,∆yAB,∆zAB) from (4.7) in which

successively one of the components of ∆yAN and ∆zAN in turn is non zero, is taken. The scalar α at each stage is chosen

to be the largest possible that guarantees (4.4); this may happen when a non-basic multiplier/dual variable reaches zero,

in which case the corresponding constraint is disregarded, or when this happens for a basic multiplier/dual variable,

in which case this constraint is exchanged with the non-basic one under consideration and disregarded. The latter

corresponds to changing the basic-non-basic partition in (4.7), and subsequent solutions may be found by updating

the factorization of the coefficient matrix in (4.7) following the basic-non-basic swap using the GALAHAD package

GALAHAD SCU.

5 EXAMPLE OF USE

Suppose we have solved the quadratic program

minimize
x

1
2

11

∑
i=1

x2
i +

1
2

10

∑
i=1

xixi+1 + 1
2 x1 − 1

2 x2 −
10

∑
i=1

xi − 1
2 x11

subject to
11

∑
i=1

xi = 10,
11

∑
i=3

xi ≥ 9,
11

∑
i=2

xi ≤ 10

and x1 ≥ 0, xi ≥ 1 for i = 2, . . . ,11

(using, for example, GALAHAD’s CQP package), and have found the primal-dual solution x = (0,1,1, . . . ,1), y =
(−1, 3

2 ,−2) and z = (2,4, 5
2 ,

5
2 , . . .

5
2) for which all variables and constraints are active; clearly such a solution has

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CRO (May 24, 2024) 11

CRO GALAHAD

dependent active constraints. Then we may find a crossover solution in which the defining active set is linearly

independent using the following code:

! THIS VERSION: GALAHAD 2.5 - 06/01/2012 AT 08:30 GMT.

PROGRAM GALAHAD_CRO_EXAMPLE

USE GALAHAD_CRO_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (CRO_data_type) :: data

TYPE (CRO_control_type) :: control

TYPE (CRO_inform_type) :: inform

INTEGER :: i

INTEGER, PARAMETER :: n = 11, m = 3, m_equal = 1, a_ne = 30, h_ne = 21

INTEGER, DIMENSION(h_ne) :: H_col

INTEGER, DIMENSION(n + 1) :: H_ptr

REAL (KIND = wp), DIMENSION(h_ne) :: H_val

INTEGER, DIMENSION(a_ne) :: A_col

INTEGER, DIMENSION(m + 1) :: A_ptr

REAL (KIND = wp), DIMENSION(a_ne) :: A_val

REAL (KIND = wp), DIMENSION(n) :: G, X_l, X_u, X, Z

REAL (KIND = wp), DIMENSION(m) :: C_l, C_u, C, Y

INTEGER, DIMENSION(m) :: C_stat

INTEGER, DIMENSION(n) :: X_stat

! start problem data

H_val = (/ 1.0D+0, 5.0D-1, 1.0D+0, 5.0D-1, 1.0D+0, 5.0D-1, 1.0D+0, 5.0D-1, &

1.0D+0, 5.0D-1, 1.0D+0, 5.0D-1, 1.0D+0, 5.0D-1, 1.0D+0, 5.0D-1, &

1.0D+0, 5.0D-1, 1.0D+0, 5.0D-1, 1.0D+0 /) ! H values

H_col = (/ 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, &

11 /) ! H columns

H_ptr = (/ 1, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22 /) ! pointers to H col

A_val = (/ 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, &

1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, &

1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, &

1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0 /) ! A values

A_col = (/ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 3, 4, 5, 6, 7, 8, 9, 10, 11, &

2, 3, 4, 5, 6, 7, 8, 9, 10, 11 /) ! A columns

A_ptr = (/ 1, 12, 21, 31 /) ! pointers to A columns

G = (/ 5.0D-1, -5.0D-1, -1.0D+0, -1.0D+0, -1.0D+0, -1.0D+0, -1.0D+0, &

-1.0D+0, -1.0D+0, -1.0D+0, -5.0D-1 /) ! objective gradient

C_l = (/ 1.0D+1, 9.0D+0, - infinity /) ! constraint lower bound

C_u = (/ 1.0D+1, infinity, 1.0D+1 /) ! constraint upper bound

X_l = (/ 0.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, &

1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0 /) ! variable lower bound

X_u = (/ infinity, infinity, infinity, infinity, infinity, infinity, &

infinity, infinity, infinity, infinity, infinity /) ! upper bound

C = (/ 1.0D+1, 9.0D+0, 1.0D+1 /) ! optimal constraint value

X = (/ 0.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, 1.0D+0, &

1.0D+0, 1.0D+0, 1.0D+0 /) ! optimal variables

Y = (/ -1.0D+0, 1.5D+0, -2.0D+0 /) ! optimal Lagrange multipliers

Z = (/ 2.0D+0, 4.0D+0, 2.5D+0, 2.5D+0, 2.5D+0, 2.5D+0, &

2.5D+0, 2.5D+0, 2.5D+0, 2.5D+0, 2.5D+0 /) ! optimal dual variables

C_stat = (/ -1, -1, 1 /) ! constraint status

X_stat = (/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 /) ! variable status

! problem data complete

CALL CRO_initialize(data, control, inform) ! Initialize control parameters

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 CRO (May 24, 2024) GALAHAD

GALAHAD CRO

CALL CRO_crossover(n, m, m_equal, H_val, H_col, H_ptr, A_val, A_col, &

A_ptr, G, C_l, C_u, X_l, X_u, C, X, Y, Z, C_stat, &

X_stat , data, control, inform) ! crossover

IF (inform%status == 0) THEN ! successful return

WRITE(6, "(’ x_l x x_u z stat’, /, &

& (4ES12.4, I5))") &

(X_l(i), X(i), X_u(i), Z(i), X_stat(i), i = 1, n)

WRITE(6, "(’ c_l c c_u y stat’, /, &

& (4ES12.4, I5))") &

(C_l(i), C(i), C_u(i), Y(i), C_stat(i), i = 1, m)

WRITE(6, "(’ CRO_solve exit status = ’, I0) ") inform%status

ELSE ! error returns

WRITE(6, "(’ CRO_solve exit status = ’, I0) ") inform%status

END IF

CALL CRO_terminate(data, control, inform) ! delete internal workspace

END PROGRAM GALAHAD_CRO_EXAMPLE

This produces the following output:

x_l x x_u z stat

0.0000E+00 0.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

1.0000E+00 1.0000E+00 1.0000E+20 1.0000E+00 -1

c_l c c_u y stat

1.0000E+01 1.0000E+01 1.0000E+01 0.0000E+00 -2

9.0000E+00 9.0000E+00 1.0000E+20 0.0000E+00 -2

-1.0000E+20 1.0000E+01 1.0000E+01 0.0000E+00 2

CRO_solve exit status = 0

Notice that active variable 1 and constraints 2 and 3 are found to be active but linearly dependent.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CRO (May 24, 2024) 13

