
GALAHAD CQP

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package uses a primal-dual interior-point method to solve the convex quadratic programming problem

minimize q(x) = 1
2 xT Hx+ gTx+ f (1.1)

or the shifted least-distance problem

minimize 1
2

n

∑
j=1

w2
j (x j − x0

j)
2 + gT x+ f (1.2)

subject to the general linear constraints

cl
i ≤ aT

i x ≤ cu
i , i = 1, . . . ,m,

and the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

where the n by n symmetric, positive-semi-definite matrix H, the vectors g, w, x0, ai, cl , cu, xl , xu and the scalar f are

given. Any of the constraint bounds cl
i , cu

i , xl
j and xu

j may be infinite. Full advantage is taken of any zero coefficients

in the matrix H or the matrix A of vectors ai.

ATTRIBUTES — Versions: GALAHAD CQP single, GALAHAD CQP double. Uses: GALAHAD CLOCK, GALAHAD SYM-

BOLS, GALAHAD SPACE, GALAHAD TOOLS, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD QPT, GALAHAD QPP, GALAHAD -

QPD, GALAHAD FIT, GALAHAD ROOTS, GALAHAD NORMS, GALAHAD SBLS, GALAHAD CRO, GALAHAD FDC. Date: November

2010. Origin: N. I. M. Gould and D. P. Robinson, Rutherford Appleton Laboratory. Language: Fortran 95 + TR

15581 or Fortran 2003. Parallelism: Some options may use OpenMP and its runtime library.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD CQP single

with the obvious substitution GALAHAD CQP double, GALAHAD CQP single 64 and GALAHAD CQP double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, QPT problem type,

NLPT userdata type, CQP time type, CQP control type, CQP inform type and CQP data type (Section 2.4) and

the subroutines CQP initialize, CQP solve, CQP terminate, (Section 2.5) and CQP read specfile (Section 2.7)

must be renamed on one of the USE statements.

2.1 Matrix storage formats

Both the Hessian matrix H and the constraint Jacobian A, the matrix whose rows are the vectors aT
i , i = 1, . . . ,m, may

be stored in a variety of input formats.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 1

CQP GALAHAD

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) need be held. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The

order is unimportant, but the total number of entries A%ne is also required. The same scheme is applicable to H (thus

requiring integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in

the lower triangle need be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively. The same scheme is applicable to H (thus requiring integer arrays H%ptr, H%col,

and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the first

n components of the array H%val may be used for the purpose. There is no sensible equivalent for the non-square A.

2.1.5 Scaled-identity-matrix storage format

If H is a scalar multiple of the identity matrix (i.e., hii = h11 and hi j = 0 for all 1 ≤ i 6= j ≤ n) only the first diagonal

entry h11 needs be stored, and the first component of the array H%val may be used for the purpose. Again, there is no

sensible equivalent for the non-square A.

2.1.6 Identity-matrix storage format

If H is the identity matrix (i.e., hii = 1 and hi j = 0 for all 1 ≤ i 6= j ≤ n), no explicit entries needs be stored.

2.1.7 Zero-matrix storage format

If H = 0 (i.e., hi j = 0 for all 1 ≤ i, j ≤ n), no explicit entries needs be stored.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 Parallel usage

OpenMP may be used by the GALAHAD CQP package to provide parallelism for some solvers in shared memory envi-

ronments. See the documentation for the GALAHAD package SLS for more details. To run in parallel, OpenMP must

be enabled at compilation time by using the correct compiler flag (usually some variant of -openmp). The number of

threads may be controlled at runtime by setting the environment variable OMP NUM THREADS.

MPI may also be used by the package to provide parallelism for some solvers in a distributed memory environment.

To use this form of parallelism, MPI must be enabled at runtime by using the correct compiler flag (usually some

variant of -lmpi). Although the MPI process will be started automatically when required, it should be stopped by the

calling program once no further use of this form of parallelism is needed. Typically, this will be via statements of the

form

CALL MPI_INITIALIZED(flag, ierr)

IF (flag) CALL MPI_FINALIZE(ierr)

The code may be compiled and run in serial mode.

2.4 The derived data types

Ten derived data types are accessible from the package.

2.4.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrices A and H. The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.4.2).

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji of a symmetric matrix H is represented as a single entry (see §2.1.1–

2.1.3). Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may the column indices

of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 3

CQP GALAHAD

2.4.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

m is a scalar variable of type INTEGER(ip), that holds the number of general linear constraints, m.

Hessian kind is a scalar variable of type INTEGER(ip), that is used to indicate what type of Hessian the problem

involves. Possible values for Hessian kind are:

<0 In this case, a general quadratic program of the form (1.1) is given. The Hessian matrix H will be provided

in the component H (see below).

0 In this case, a linear program, that is a problem of the form (1.2) with weights w = 0, is given.

1 In this case, a least-distance problem of the form (1.2) with weights w j = 1 for j = 1, . . . ,n is given.

>1 In this case, a weighted least-distance problem of the form (1.2) with general weights w is given. The

weights will be provided in the component WEIGHT (see below).

H is scalar variable of type SMT TYPE that holds the Hessian matrix H whenever Hessian kind< 0. The following

components are used:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, and for

the diagonal storage scheme (see Section 2.1.4), the first eight components of H%type must contain the

string DIAGONAL, for the scaled-identity matrix storage scheme (see Section 2.1.5), the first fifteen com-

ponents of H%type must contain the string SCALED IDENTITY, for the identity matrix storage scheme (see

Section 2.1.6), the first eight components of H%type must contain the string IDENTITY, and for the zero

matrix storage scheme (see Section 2.1.7), the first four components of H%type must contain the string

ZERO.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if prob is of derived type CQP problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(prob%H%type, ’COORDINATE’, istat)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

schemes.

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of non-trivial storage schemes mentioned in Sections 2.1.2–

2.1.4. For the scaled-identity scheme (see Section 2.1.5), the first component, H%val(1), holds the scale

factor h11. It need not be allocated for any of the remaining schemes.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be allocated for any of

the other schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated when any of the other storage schemes are used.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip), that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the sparse

row-wise storage scheme (see Section 2.1.3). It need not be allocated when the other schemes are used.

If Hessian kind ≥ 0, the components of H need not be set.

WEIGHT is a rank-one allocatable array type REAL(rp), that should be allocated to have length n, and its j-th compo-

nent filled with the value w j for j = 1, . . . ,n, whenever Hessian kind > 1. If Hessian kind ≤ 1, WEIGHT need

not be allocated.

target kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the components of the targets

x0 (if they are used) have special or general values. Possible values for target kind are:

0 In this case, x0 = 0.

1 In this case, x0
j = 1 for j = 1, . . . ,n.

6= 0,1 In this case, general values of x0 will be used, and will be provided in the component X0 (see below).

X0 is a rank-one allocatable array type REAL(rp), that should be allocated to have length n, and its j-th component

filled with the value x0
j for j = 1, . . . ,n, whenever Hessian kind> 0 and target kind 6= 0,1. If Hessian kind

≤ 0 or target kind = 0,1, X0 need not be allocated.

gradient kind is a scalar variable of type INTEGER(ip), that is used to indicate whether the components of the

gradient g have special or general values. Possible values for gradient kind are:

0 In this case, g = 0.

1 In this case, g j = 1 for j = 1, . . . ,n.

6= 0,1 In this case, general values of g will be used, and will be provided in the component G (see below).

G is a rank-one allocatable array type REAL(rp), that should be allocated to have length n, and its j-th component

filled with the value g j for j = 1, . . . ,n, whenever gradient kind 6= 0,1. If gradient kind = 0, 1, G need not

be allocated.

f is a scalar variable of type REAL(rp), that holds the constant term, f , in the objective function.

A is scalar variable of type SMT TYPE that holds the Jacobian matrix A when it is available explicitly. The following

components are used:

A%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of A%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten compo-

nents of A%type must contain the string COORDINATE, while for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of A%type must contain the string SPARSE BY ROWS.

Just as for H%type above, the procedure SMT put may be used to allocate sufficient space and insert the

required keyword into A%type. Once again, if prob is of derived type CQP problem type and involves a

Jacobian we wish to store using the sparse row-wise storage scheme, we may simply

CALL SMT_put(prob%A%type, ’SPARSE_BY_ROWS’, istat)

A%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in A in the sparse co-ordinate

storage scheme (see Section 2.1.2). It need not be set for either of the other two appropriate schemes.

A%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the Jacobian

matrix A in any of the appropriate storage schemes discussed in Section 2.1.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 5

CQP GALAHAD

A%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of A in the sparse co-

ordinate storage scheme (see Section 2.1.2). It need not be allocated for either of the other two appropriate

schemes.

A%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of A in

either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see Section 2.1.3) storage scheme.

It need not be allocated when the dense storage scheme is used.

A%ptr is a rank-one allocatable array of dimension m+1 and type INTEGER(ip), that holds the starting position

of each row of A, as well as the total number of entries plus one, in the sparse row-wise storage scheme

(see Section 2.1.3). It need not be allocated when the other appropriate schemes are used.

C l is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of lower bounds cl

on the general constraints. The i-th component of C l, i = 1, . . . ,m, contains cl
i . Infinite bounds are allowed

by setting the corresponding components of C l to any value smaller than -infinity, where infinity is a

component of the control array control (see Section 2.4.3).

C u is a rank-one allocatable array of dimension m and type REAL(rp), that holds the vector of upper bounds cu on

the general constraints. The i-th component of C u, i = 1, . . . ,m, contains cu
i . Infinite bounds are allowed

by setting the corresponding components of C u to any value larger than infinity, where infinity is a

component of the control array control (see Section 2.4.3).

X l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xl on

the the variables. The j-th component of X l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting

the corresponding components of X l to any value smaller than -infinity, where infinity is a component of

the control array control (see Section 2.4.3).

X u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xu on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity, where infinity is a component of

the control array control (see Section 2.4.3).

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

C is a rank-one allocatable array of dimension m and type default REAL(rp), that holds the values Ax of the

constraints. The i-th component of C, i = 1, . . . ,m, contains aT
i x ≡ (Ax)i.

Y is a rank-one allocatable array of dimension m and type REAL(rp), that holds the values y of estimates of the

Lagrange multipliers corresponding to the general linear constraints (see Section 4). The i-th component of Y,

i = 1, . . . ,m, contains yi.

Z is a rank-one allocatable array of dimension n and type default REAL(rp), that holds the values z of estimates

of the dual variables corresponding to the simple bound constraints (see Section 4). The j-th component of Z,

j = 1, . . . ,n, contains z j .

2.4.3 The derived data type for holding control parameters

The derived data type CQP control type is used to hold controlling data. Default values may be obtained by calling

CQP initialize (see Section 2.5.1), while components may also be changed by calling CQP read specfile (see

Section 2.7.1). The components of CQP control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in CQP solve and CQP terminate is suppressed if error ≤ 0. The default is error = 6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in CQP solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

maxit is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which will be allowed

in CQP solve. The default is maxit = 1000.

start print is a scalar variable of type INTEGER(ip), that specifies the first iteration for which printing will occur

in CQP solve. If start print is negative, printing will occur from the outset. The default is start print =

-1.

stop print is a scalar variable of type INTEGER(ip), that specifies the last iteration for which printing will occur

in CQP solve. If stop print is negative, printing will occur once it has been started by start print. The

default is stop print = -1.

infeas max is a scalar variable of type INTEGER(ip), that specifies the number of iterations for which the overall

infeasibility of the problem is not reduced by at least a factor reduce infeas before the problem is flagged

as infeasible (see reduce infeas). The default is infeas max = 200.

muzero fixed is a scalar variable of type INTEGER(ip), that specifies the number of iterations before the initial

barrier parameter (see muzero) may be altered. The default is muzero fixed = 1.

restore problem is a scalar variable of type INTEGER(ip), that specifies how much of the input problem is to be

restored on output. Possible values are:

0 nothing is restored.

1 the vector data w, g, cl , cu, xl , and xu will be restored to their input values.

2 the entire problem, that is the above vector data along with the Jacobian matrix A, will be restored.

The default is restore problem = 2.

indicator type is a scalar variable of type INTEGER(ip), that specifies the type of indicator used to assess when a

variable or constraint is active. Possible values are:

1 a variable/constraint is active if and only if the distance to its neaerest bound is no larger than indicator-

tol p (see below).

2 a variable/constraint is active if and only if the distance to its neaerest bound is no larger than indicator-

tol pd (see below) times the magnitude of its corresponding dual variable.

3 a variable/constraint is active if and only if the distance to its neaerest bound is no larger than indicator-

tol tapia (see below) times the distance to the same bound at the previous iteration.

The default is indicator type = 3.

arc is a scalar variable of type INTEGER(ip), that specifies the type of residual trajectory used to define the path to

the solution. Possible values are:

1 the residual trajectory proposed by Zhang will be used.

2 the residual trajectory proposed by Zhao and Sun will be used; note this trajectory does not necessarily ensure

convergence, so should be used with caution.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 7

CQP GALAHAD

3 a combination in which Zhang’s trajectory is used until the method determines that Zhou and Sun’s will be

better.

4 a mixed linear-quadratic variant of Zhang’s proposal will be used.

The default is arc = 1.

series order is a scalar variable of type INTEGER(ip), that specifies the order of (Puiseux or Taylor) series to

approximate the residual trajectory. The default is series order = 2.

infinity is a scalar variable of type REAL(rp), that is used to specify which constraint bounds are infinite. Any

bound larger than infinity in modulus will be regarded as infinite. The default is infinity = 1019.

stop abs p and stop rel p are scalar variables of type REAL(rp), that hold the required absolute and relative

accuracy for the primal infeasibility (see Section 4). The absolute value of each component of the primal

infeasibility on exit is required to be smaller than the larger of stop abs p and stop rel p times a “typical

value” for this component. The defaults are stop abs p = stop rel p = u1/3, where u is EPSILON(1.0)

(EPSILON(1.0D0) in GALAHAD CQP double).

stop abs d and stop rel d are scalar variables of type REAL(rp), that hold the required absolute and relative

accuracy for the dual infeasibility (see Section 4). The absolute value of each component of the dual infeasibility

on exit is required to be smaller than the larger of stop abs p and stop rel p times a “typical value” for this

component. The defaults are stop abs d = stop rel d = u1/3, where u is EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD CQP double).

stop abs c and stop rel c are scalar variables of type REAL(rp), that hold the required absolute and relative

accuracy for the violation of complementary slackness (see Section 4). The absolute value of each component

of the complementary slackness on exit is required to be smaller than the larger of stop abs p and stop rel p

times a “typical value” for this component. The defaults are stop abs c = stop rel c = u1/3, where u is

EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD CQP double).

perturb h is a scalar variable of type REAL(rp), that specifies any perturbation that is to be added to the diagonal

of H. The default is perturb h = 0.0.

prfeas is a scalar variable of type REAL(rp), that aims to specify the closest that any initial variable may be to

infeasibility. Any variable closer to infeasibility than prfeas will be moved to prfeas from the offending

bound. However, if a variable is range bounded, and its bounds are closer than prfeas apart, it will be moved

to the mid-point of the two bounds. The default is prfeas = 104.

dufeas is a scalar variable of type REAL(rp), that aims to specify the closest that any initial dual variable or Lagrange

multiplier may be to infeasibility. Any variable closer to infeasibility than prfeas will be moved to dufeas from

the offending bound. However, if a dual variable is range bounded, and its bounds are closer than dufeas apart,

it will be moved to the mid-point of the two bounds. The default is dufeas = 104.

muzero is a scalar variable of type REAL(rp), that holds the initial value of the barrier parameter. If muzero is not

positive, it will be reset automatically to an appropriate value. The default is muzero = -1.0.

tau is a scalar variable of type REAL(rp), that holds the weight attached to primal-dual infeasibility compared to

complementarity when assessing step acceptance. The default is tau = 1.0.

gamma c is a scalar variable of type REAL(rp), that holds the smallest value that individual complementarity pairs

are allowed to be relative to the average as the iteration proceeds. The default is gamma c = 10−5.

gamma f is a scalar variable of type REAL(rp), that holds the smallest value the average complementarity is allowed

to be relative to the primal-dual infeasibility as the iteration proceeds. The default is gamma c = 10−5.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

reduce infeas is a scalar variable of type default REAL(rp), that specifies the least factor by which the overall

infeasibility of the problem must be reduced, over infeas max consecutive iterations, for it not be declared

infeasible (see infeas max). The default is reduce infeas = 0.99.

obj unbounded is a scalar variable of type default REAL(rp), that specifies smallest value of the objective function

that will be tolerated before the problem is declared to be unbounded from below. The default is obj unbounded

= −u−2, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD CQP double).

potential unbounded is a scalar variable of type default REAL(rp), that specifies smallest value of the potential

function divided by the number of one-sided variable and constraint bounds that will be tolerated before the

analytic center is declared to be unbounded. The default is potential unbounded = -10.0.

identical bounds tol is a scalar variable of type REAL(rp). Every pair of constraint bounds (cl
i ,c

u
i) or (xl

j,x
u
j)

that is closer than identical bounds tol will be reset to the average of their values, 1
2 (c

l
i + cu

i) or 1
2 (x

l
j + xu

j)
respectively. The default is identical bounds tol = u, where u is EPSILON(1.0) (EPSILON(1.0D0) in GA-

LAHAD CQP double).

mu pounce is a scalar variable of type REAL(rp)that specifies the value of the barrier parameter that must be attained

before an extrapolating “pounce” may be attempted. The default is mu pounce = 10−5.

indicator tol p is a scalar variable of type REAL(rp)that provides the indicator tolerance associated with the test

indicator type = 1. The default is indicator tol p = u1/3, where u is EPSILON(1.0) (EPSILON(1.0D0)

in GALAHAD CQP double).

indicator tol pd is a scalar variable of type REAL(rp)that provides the indicator tolerance associated with the test

indicator type = 2. The default is indicator tol pd = 1.0.

indicator tol tapia is a scalar variable of type REAL(rp)that provides the indicator tolerance associated with the

test indicator type = 3. The default is indicator tol tapia = 0.9.

cpu time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted CPU time.

Any negative value indicates no limit will be imposed. The default is cpu time limit = - 1.0.

clock time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted elapsed

system clock time. Any negative value indicates no limit will be imposed. The default is clock time limit =

- 1.0.

remove dependencies is a scalar variable of type default LOGICAL, that must be set .TRUE. if the algorithm is to

attempt to remove any linearly dependent constraints before solving the problem, and .FALSE. otherwise. We

recommend removing linearly dependencies. The default is remove dependencies = .TRUE..

treat zero bounds as general is a scalar variable of type default LOGICAL. If it is set to .FALSE., variables which

are only bounded on one side, and whose bound is zero, will be recognised as non-negativities/non-positivities

rather than simply as lower- or upper-bounded variables. If it is set to .TRUE., any variable bound xl
j or xu

j

which has the value 0.0 will be treated as if it had a general value. Setting treat zero bounds as general to

.TRUE. has the advantage that if a sequence of problems are reordered, then bounds which are “accidentally”

zero will be considered to have the same structure as those which are nonzero. However, GALAHAD CQP is able to

take special advantage of non-negativities/non-positivities, so if a single problem, or if a sequence of problems

whose bound structure is known not to change, is/are to be solved, it will pay to set the variable to .FALSE..

The default is treat zero bounds as general = .FALSE..

just feasible is a scalar variable of type default LOGICAL, that must be set .TRUE. if the algorithm should stop as

soon as a feasible point of the constraint set is found, and .FALSE. otherwise. The default is just feasible =

.FALSE..

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 9

CQP GALAHAD

getdua is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user-provided estimates of the dual

variables should be replaced by estimates whose aim is to try to balance the requirements of dual feasibility and

complementary slackness, and .FALSE. if users estimates are to be used. The default is getdua = .FALSE..

puiseux is a scalar variable of type default LOGICAL, that must be set .TRUE. if a Puiseux series will be used when

extrapolating along the central path and .FALSE. if a Taylor series is preferred. We recommend using the

Puiseux series unless the solution is known to be non-degenerate. The default is puiseux = .TRUE..

every order is a scalar variable of type default LOGICAL, that must be set .TRUE. if every order of approxima-

tion up to series order will be tried and the best taken, and .FALSE. if only the exact order specified by

series order will be used. The default is every order = .TRUE..

feasol is a scalar variable of type default LOGICAL, that should be set .TRUE. if the final solution obtained will be

perturbed so that variables close to their bounds are moved onto these bounds, and .FALSE. otherwise. The

default is feasol = .FALSE..

balance initial complentarity is a scalar variable of type default LOGICAL, that should be set .TRUE. if the ini-

tial complementarity is required to be balanced, and .FALSE. otherwise. The default is balance initial complentarity

= .FALSE..

crossover is a scalar variable of type default LOGICAL, that must be set .TRUE. if the solution is to be defined in

terms of linearly-independent constraints, and .FALSE. otherwise. The default is crossover = .TRUE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

FDC control is a scalar variable of type FDC control type whose components are used to control any detection

of linear dependencies performed by the package GALAHAD FDC. See the specification sheet for the package

GALAHAD FDC for details, and appropriate default values.

SBLS control is a scalar variable of type SBLS control type whose components are used to control factorizations

performed by the package GALAHAD SBLS. See the specification sheet for the package GALAHAD SBLS for details,

and appropriate default values.

FIT control is a scalar variable of type FIT control type whose components are used to control fitting of data to

polynomials performed by the package GALAHAD FIT. See the specification sheet for the package GALAHAD FIT

for details, and appropriate default values.

ROOTS control is a scalar variable of type ROOTS control type whose components are used to control the poly-

nomial root finding performed by the package GALAHAD ROOTS. See the specification sheet for the package

GALAHAD ROOTS for details, and appropriate default values.

CRO control is a scalar variable of type CRO control type whose components are used to control crossover per-

formed by the package GALAHAD CRO. See the specification sheet for the package GALAHAD CRO for details, and

appropriate default values.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

2.4.4 The derived data type for holding timing information

The derived data type CQP time type is used to hold elapsed CPU and system clock times for the various parts of the

calculation. The components of CQP time type are:

total is a scalar variable of type REAL(rp), that gives the total CPU time spent in the package.

preprocess is a scalar variable of type REAL(rp), that gives the CPU time spent preprocess the problem prior to

solution.

find dependent is a scalar variable of type REAL(rp), that gives the CPU time spent detecting and removing

dependent constraints prior to solution.

analyse is a scalar variable of type REAL(rp), that gives the CPU time spent analysing the required matrices prior

to factorization.

factorize is a scalar variable of type REAL(rp), that gives the CPU time spent factorizing the required matrices.

solve is a scalar variable of type REAL(rp), that gives the CPU time spent computing the search direction.

clock total is a scalar variable of type REAL(rp), that gives the total elapsed system clock time spent in the

package.

clock preprocess is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent preprocess

the problem prior to solution.

clock find dependent is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent de-

tecting and removing dependent constraints prior to solution.

clock analyse is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent analysing the

required matrices prior to factorization.

clock factorize is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent factorizing

the required matrices.

clock solve is a scalar variable of type REAL(rp), that gives the elapsed system clock time spent computing the

search direction.

2.4.5 The derived data type for holding informational parameters

The derived data type CQP inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of CQP inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.6 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

factorization status is a scalar variable of type INTEGER(ip), that gives the return status from the matrix fac-

torization.

factorization integer is a scalar variable of type long INTEGER(ip), that gives the amount of integer storage

used for the matrix factorization.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 11

CQP GALAHAD

factorization real is a scalar variable of type INTEGER(int64), that gives the amount of real storage used for the

matrix factorization.

nfacts is a scalar variable of type INTEGER(ip), that gives the total number of factorizations performed.

nbacts is a scalar variable of type INTEGER(ip), that gives the total number of backtracks performed during the

sequence of linesearches.

threads is a scalar variable of type INTEGER(ip), that gives the total number of threads used for parallel execution.

iter is a scalar variable of type INTEGER(ip), that gives the number of iterations performed.

obj is a scalar variable of type REAL(rp), that holds the value of the objective function at the best estimate of the

solution found.

primal infeasibility is a scalar variable of type REAL(rp), that holds the norm of the violation of primal opti-

mality (see Section 2.4.4) at the best estimate of the solution found.

dual infeasibility is a scalar variable of type REAL(rp), that holds the norm of the violation of dual optimality

(see Section 2.4.4) at the best estimate of the solution found.

complementary slackness is a scalar variable of type REAL(rp), that holds the norm of the violation of comple-

mentary slackness (see Section 2.4.4) at the best estimate of the solution found.

potential is a scalar variable of type REAL(rp), that holds the value of the logarithmic potential function sum

-log(distance to constraint boundary).

non negligible pivot is a scalar variable of type REAL(rp), that holds the value of the smallest pivot which was

not judged to be zero when detecting linearly dependent constraints.

feasible is a scalar variable of type default LOGICAL, that has the value .TRUE. if the output value of x satisfies the

constraints, and the value .FALSE. otherwise.

time is a scalar variable of type CQP time type whose components are used to hold elapsed CPU and system clock

times for the various parts of the calculation (see Section 2.4.4).

FDC inform is a scalar variable of type FDC inform type whose components are used to provide information about

any detection of linear dependencies performed by the package GALAHAD FDC. See the specification sheet for the

package GALAHAD FDC for details.

SBLS inform is a scalar variable of type SBLS inform type whose components are used to provide information

about factorizations performed by the package GALAHAD SBLS. See the specification sheet for the package GA-

LAHAD SBLS for details.

FIT inform is a scalar variable of type FIT inform type whose components are used to provide information about

the fitting of data to polynomials performed by the package GALAHAD FIT. See the specification sheet for the

package GALAHAD FIT for details.

ROOTS inform is a scalar variable of type ROOTS inform type whose components are used to provide information

about the polynomial root finding performed by the package GALAHAD ROOTS. See the specification sheet for the

package GALAHAD ROOTS for details.

CRO inform is a scalar variable of type CRO inform type whose components are used to provide information about

the crossover performed by the package GALAHAD CRO. See the specification sheet for the package GALAHAD CRO

for details.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

2.4.6 The derived data type for holding problem data

The derived data type CQP data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of CQP procedures. This data should be preserved, untouched, from the initial

call to CQP initialize to the final call to CQP terminate.

2.5 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.7 for further features):

1. The subroutine CQP initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine CQP solve is called to solve the problem.

3. The subroutine CQP terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by CQP solve, at the end of the solution process.

We use square brackets [] to indicate OPTIONAL arguments.

2.5.1 The initialization subroutine

Default values are provided as follows:

CALL CQP initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type CQP data type (see Section 2.4.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type CQP control type (see Section 2.4.3). On exit, control con-

tains default values for the components as described in Section 2.4.3. These values should only be changed after

calling CQP initialize.

inform is a scalar INTENT(OUT) argument of type CQP inform type (see Section 2.4.5). A successful call to

CQP initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.6.

2.5.2 The quadratic programming subroutine

The quadratic programming solution algorithm is called as follows:

CALL CQP solve(prob, data, control, inform[, C stat, B stat])

prob is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.4.2). It is used to hold data about

the problem being solved. The user must allocate all the array components, and set values for all components

except prob%C.

The components prob%X, prob%Y and prob%Z must be set to initial estimates of the primal variables, x,

Lagrange multipliers, y, for the general constraints and dual variables for the bound constraints, z, respectively.

Inappropriate initial values will be altered, so the user should not be overly concerned if suitable values are not

apparent, and may be content with merely setting prob%X=0.0, prob%Y=0.0 and prob%Z=0.0.

On exit, the components prob%X , prob%C, prob%Y, and prob%Z will contain the best estimates of the primal

variables x, the linear constraints Ax, Lagrange multipliers, y, for the general constraints and dual variables

for the bound constraints z, respectively. Restrictions: prob%n > 0, prob%m ≥ 0, prob%A type ∈ {’DENSE’,

’COORDINATE’, ’SPARSE BY ROWS’ }, and (if H is provided) prob%H%ne ≥ −2. prob%H type ∈ {’DENSE’,

’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’, ’SCALED IDENTITY’, ’IDENTITY’, ’ZERO’ }.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 13

CQP GALAHAD

data is a scalar INTENT(INOUT) argument of type CQP data type (see Section 2.4.6). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to CQP initialize.

control is a scalar INTENT(IN) argument of type CQP control type (see Section 2.4.3). Default values may be

assigned by calling CQP initialize prior to the first call to CQP solve.

inform is a scalar INTENT(INOUT) argument of type CQP inform type (see Section 2.4.5). A successful call to

CQP solve is indicated when the component status has the value 0. For other return values of status, see

Section 2.6.

C stat is an OPTIONAL rank-one INTENT(OUT) array argument of dimension prob%m and type INTEGER(ip), that

indicates which of the general linear constraints are in the optimal active set. Possible values for C stat(i),

i= 1, . . . , prob%m, and their meanings are

<0 the i-th general constraint is in the active set, on its lower bound,

>0 the i-th general constraint is in the active set, on its upper bound, and

0 the i-th general constraint is not in the active set.

When control%crossover is .TRUE., more specific values are

-1 the i-th general constraint is both independent and active on its lower bound,

-2 the i-th general constraint is on its lower bound but linearly dependent on others,

1 the i-th general constraint is both independent and active on its upper bound,

2 the i-th general constraint is on its upper bound but linearly dependent on others, and

0 the i-th general constraint is not in the active set.

B stat is an OPTIONAL rank-one INTENT(OUT) array argument of dimension prob%n and type INTEGER(ip), that

indicates which of the simple bound constraints are in the current active set. Possible values for B stat(j),

j= 1, . . . , prob%n, and their meanings are

<0 the j-th simple bound constraint is in the active set, on its lower bound,

>0 the j-th simple bound constraint is in the active set, on its upper bound, and

0 the j-th simple bound constraint is not in the active set.

When control%crossover is .TRUE., more specific values are

-1 the j-th simple bound constraint is both independent and active on its lower bound,

-2 the j-th simple bound constraint is on its lower bound but linearly dependent on others,

1 the j-th simple bound constraint is both independent and active on its upper bound,

2 the j-th simple bound constraint is on its upper bound but linearly dependent on others, and

0 the j-th simple bound constraint is not in the active set.

2.5.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL CQP terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type CQP data type exactly as for CQP solve, which must not have

been altered by the user since the last call to CQP initialize. On exit, array components will have been

deallocated.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

control is a scalar INTENT(IN) argument of type CQP control type exactly as for CQP solve.

inform is a scalar INTENT(OUT) argument of type CQP inform type exactly as for CQP solve. Only the component

status will be set on exit, and a successful call to CQP terminate is indicated when this component status

has the value 0. For other return values of status, see Section 2.6.

2.6 Warning and error messages

A negative value of inform%status on exit from CQP solve or CQP terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n > 0 , prob%m ≥ 0 the requirement that prob%A type contain its relevant string

’DENSE’, ’COORDINATE’ or ’SPARSE BY ROWS’, or the requirement that prob%H type contain its relevant string

’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ SCALED IDENTITY, IDENTITY or ZERO, when H is

available, has been violated.

-4. The bound constraints are inconsistent.

-5. The constraints appear to have no feasible point.

-7. The objective function appears to be unbounded from below on the feasible set.

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factor status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

tor status.

-16. The problem is so ill-conditioned that further progress is impossible.

-17. The step is too small to make further impact.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be

symptomatic of a badly scaled problem.

-19. The elapsed CPU or system clock time limit has been reached. This may happen if either control%cpu time limit

or control%clock time limit is too small, but may also be symptomatic of a badly scaled problem.

-23. An entry from the strict upper triangle of H has been specified.

2.7 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type CQP control type (see Section 2.4.3), by reading an appropriate data specification file using the

subroutine CQP read specfile. This facility is useful as it allows a user to change CQP control parameters without

editing and recompiling programs that call CQP.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 15

CQP GALAHAD

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by CQP read specfile must start with a ”BEGIN CQP” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by CQP_read_specfile ..)

BEGIN CQP

keyword value

.......

keyword value

END

(.. lines ignored by CQP_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN CQP” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN CQP SPECIFICATION

and

END CQP SPECIFICATION

are acceptable. Furthermore, between the “BEGIN CQP” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when CQP read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

CQP read specfile.

2.7.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL CQP_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type CQP control type (see Section 2.4.3). Default values should

have already been set, perhaps by calling CQP initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.4.3) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

maximum-number-of-iterations %maxit integer

start-print %start print integer

stop-print %stop print integer

indicator-type-used %indicator type integer

arc-used %arc integer

series-order %series order integer

infinity-value %infinity real

identical-bounds-tolerance %identical bounds tol real

absolute-primal-accuracy %stop abs p real

relative-primal-accuracy %stop rel p real

absolute-dual-accuracy %stop abs d real

relative-dual-accuracy %stop rel d real

absolute-complementary-slackness-accuracy %stop abs c real

relative-complementary-slackness-accuracy %stop rel c real

perturb-hessian-by %perturb h real

initial-barrier-parameter %muzero real

feasibility-vs-complementarity-weight %tao real

balance-complementarity-factor %gamma c real

balance-feasibility-factor %gamma f real

poor-iteration-tolerance %reduce infeas real

minimum-objective-before-unbounded %obj unbounded real

minimum-potential-before-unbounded %potential unbounded real

identical-bounds-tolerance %identical bounds tol real

required-barrier-value-before-pounce mu pounce real

primal-indicator-tolerance %indicator tol p real

primal-dual-indicator-tolerance %indicator tol pd real

tapia-indicator-tolerance %indicator tol tapia real

maximum-cpu-time-limit %cpu time limit real

maximum-clock-time-limit %clock time limit real

remove-linear-dependencies %remove dependencies logical

treat-zero-bounds-as-general %treat zero bounds as general logical

just-find-feasible-point %just feasible logical

puiseux-series %puiseux logical

try-every-order-of-series %every order logical

cross-over-solution %crossover logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

2.8 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. For

the initial-feasible-point phase, this will include values of the current primal and dual infeasibility, and violation

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 17

CQP GALAHAD

of complementary slackness, the feasibility-phase objective value, the current steplength, the value of the barrier

parameter, the number of backtracks in the linesearch and the elapsed CPU time in seconds. Once a suitable feasible

point has been found, the iteration is divided into major iterations, at which the barrier parameter is reduced, and minor

iterations, and which the barrier function is approximately minimized for the current value of the barrier parameter.

For the major iterations, the value of the barrier parameter, the required values of dual feasibility and violation of

complementary slackness, and the current constraint infeasibility are reported. Each minor iteration of the optimality

phase results in a line giving the current dual feasibility and violation of complementary slackness, the objective

function value, the ratio of predicted to achieved reduction of the objective function, the trust-region radius, the

number of backtracks in the linesearch, the number of conjugate-gradient iterations taken, and the elapsed CPU time

in seconds.

If control%print level ≥ 2 this output will be increased to provide significant detail of each iteration. This

extra output includes residuals of the linear systems solved, and, for larger values of control%print level, values

of the primal and dual variables and Lagrange multipliers.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: CQP solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS, GALA-

HAD SPACE, GALAHAD TOOLS, GALAHAD SPECFILE, GALAHAD SMT, GALAHAD QPT, GALAHAD QPP, GALAHAD QPD,

GALAHAD FIT, GALAHAD ROOTS, GALAHAD NORMS, GALAHAD SBLS, GALAHAD CRO and GALAHAD FDC.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n> 0, prob%m≥ 0, prob%A type and prob%H type ∈{’DENSE’, ’COORDINATE’, ’SPARSE BY -

ROWS’, ’DIAGONAL’, ’SCALED IDENTITY’, ’IDENTITY’, ’ZERO’ }. (if H and A are explicit).

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x necessarily satisfies the primal optimality conditions

Ax = c (4.1)

and

cl ≤ c ≤ cu, xl ≤ x ≤ xu, (4.2)

the dual optimality conditions

Hx+ g = AT y+ z (or W2(x− x0)+ g = AT y+ z for the least-distance type objective) (4.3)

where

y = yl + yu, z = zl + zu, yl ≥ 0, yu ≤ 0, zl ≥ 0 and zu ≤ 0, (4.4)

and the complementary slackness conditions

(Ax− cl)T yl = 0, (Ax− cu)T yu = 0, (x− xl)T zl = 0 and (x− xu)T zu = 0, (4.5)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

where the diagonal matrix W2 has diagonal entries w2
j , j = 1, . . . ,n, where the vectors y and z are known as the

Lagrange multipliers for the general linear constraints, and the dual variables for the bounds, respectively, and where

the vector inequalities hold component-wise.

Primal-dual interior point methods iterate towards a point that satisfies these conditions by ultimately aiming

to satisfy (4.1), (4.3) and (4.5), while ensuring that (4.2) and (4.4) are satisfied as strict inequalities at each stage.

Appropriate norms of the amounts by which (4.1), (4.3) and (4.5) fail to be satisfied are known as the primal and dual

infeasibility, and the violation of complementary slackness, respectively. The fact that (4.2) and (4.4) are satisfied as

strict inequalities gives such methods their other title, namely interior-point methods.

The method aims at each stage to reduce the overall violation of (4.1), (4.3) and (4.5), rather than reducing each

of the terms individually. Given an estimate v = (x, c, y, yl , yu, z, zl , zu) of the primal-dual variables, a correction

∆v = ∆(x, c, y, yl , yu, z, zl , zu) is obtained by solving a suitable linear system of Newton equations for the nonlinear

systems (4.1), (4.3) and a parameterized “residual trajectory” perturbation of (4.5); residual trajectories proposed by

Zhang (1994) and Zhao and Sun (1999) are possibilities. An improved estimate v+α∆v is then used, where the

step-size α is chosen as close to 1.0 as possible while ensuring both that (4.2) and (4.4) continue to hold and that the

individual components which make up the complementary slackness (4.5) do not deviate too significantly from their

average value. The parameter that controls the perturbation of (4.5) is ultimately driven to zero.

If the algorithm believes that it is close to the solution, it may take a speculative “pounce” extrapolation, based

on an estimate of the ultimate active set, to avoid further costly iterations. If the pounce is unsuccessful, the iteration

continues, but further pounces may be attempted later.

The Newton equations are solved by applying the GALAHAD matrix factorization package GALAHAD SBLS, but

there are options to factorize the matrix as a whole (the so-called ”augmented system” approach), to perform a block

elimination first (the ”Schur-complement” approach), or to let the method itself decide which of the two previous

options is more appropriate. The ”Schur-complement” approach is usually to be preferred when all the weights are

nonzero or when every variable is bounded (at least one side), but may be inefficient if any of the columns of A is too

dense.

Optionally, the problem may be pre-processed temporarily to eliminate dependent constraints using the package

GALAHAD FDC. This may improve the performance of the subsequent iteration.

References:

The basic algorithm is a generalisation of those of

Y. Zhang (1994). On the convergence of a class of infeasible interior-point methods for the horizontal linear comple-

mentarity problem. SIAM J. Optimization 4 (1) 208-227,

and

G. Zhao and J. Sun (1999). On the rate of local convergence of high-order infeasible path-following algorithms for P∗
linear complementarity problems. Computational Optimization and Applications 14 (1) 293-307,

with many enhancements described by

N. I. M. Gould, D. Orban and D. P. Robinson (2013). Trajectory-following methods for large-scale degenerate convex

quadratic programming, Mathematical Programming Computation 5(2) 113-142.

5 EXAMPLE OF USE

Suppose we wish to minimize 1
2 x2

1 +x2
2+x2x3+ 3

2 x2
3+2x2+1 subject to the general linear constraints 1 ≤ 2x1+x2 ≤ 2

and x2 + x3 = 2, and simple bounds −1 ≤ x1 ≤ 1 and x3 ≤ 2. Then, on writing the data for this problem as

H =

1

2 1

1 3

 , g =

0

2

0

 , xl =

−1

−∞

−∞

 , xu =

1

∞

2

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 19

CQP GALAHAD

and

A =

(

2 1

1 1

)

, cl =

(

1

2

)

, and cu =

(

2

2

)

in sparse co-ordinate format, we may use the following code:

! THIS VERSION: GALAHAD 2.4 - 17/11/2010 AT 16:00 GMT.

PROGRAM GALAHAD_CQP_EXAMPLE

USE GALAHAD_CQP_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (CQP_data_type) :: data

TYPE (CQP_control_type) :: control

TYPE (CQP_inform_type) :: inform

INTEGER :: s

INTEGER, PARAMETER :: n = 3, m = 2, h_ne = 4, a_ne = 4

INTEGER, ALLOCATABLE, DIMENSION(:) :: C_stat, B_stat

! start problem data

ALLOCATE(p%G(n), p%X_l(n), p%X_u(n))

ALLOCATE(p%C(m), p%C_l(m), p%C_u(m))

ALLOCATE(p%X(n), p%Y(m), p%Z(n))

ALLOCATE(B_stat(n), C_stat(m))

p%new_problem_structure = .TRUE. ! new structure

p%n = n ; p%m = m ; p%f = 1.0_wp ! dimensions & objective constant

p%G = (/ 0.0_wp, 2.0_wp, 0.0_wp /) ! objective gradient

p%C_l = (/ 1.0_wp, 2.0_wp /) ! constraint lower bound

p%C_u = (/ 2.0_wp, 2.0_wp /) ! constraint upper bound

p%X_l = (/ - 1.0_wp, - infinity, - infinity /) ! variable lower bound

p%X_u = (/ 1.0_wp, infinity, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ; p%Y = 0.0_wp ; p%Z = 0.0_wp ! start from zero

! sparse co-ordinate storage format

CALL SMT_put(p%H%type, ’COORDINATE’, s) ! Specify co-ordinate

CALL SMT_put(p%A%type, ’COORDINATE’, s) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%row(h_ne), p%H%col(h_ne))

ALLOCATE(p%A%val(a_ne), p%A%row(a_ne), p%A%col(a_ne))

p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H

p%H%row = (/ 1, 2, 3, 3 /) ! NB lower triangle

p%H%col = (/ 1, 2, 2, 3 /) ; p%H%ne = h_ne

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%row = (/ 1, 1, 2, 2 /)

p%A%col = (/ 1, 2, 2, 3 /) ; p%A%ne = a_ne

! problem data complete

CALL CQP_initialize(data, control, inform) ! Initialize control parameters

control%SBLS_control%symmetric_linear_solver = ’sytr’

control%FDC_control%symmetric_linear_solver = ’sytr’

! control%SBLS_control%print_level = 1

! control%FDC_control%print_level = 1

! control%FDC_control%use_sls = .TRUE.

! control%print_level = 1

control%infinity = infinity ! Set infinity

CALL CQP_solve(p, data, control, inform, C_stat, B_stat) ! Solve

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ CQP: ’, I0, ’ iterations ’, /, &

& ’ Optimal objective value =’, &

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 CQP (May 24, 2024) GALAHAD

GALAHAD CQP

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, p%X

ELSE ! Error returns

WRITE(6, "(’ CQP_solve exit status = ’, I6) ") inform%status

END IF

CALL CQP_terminate(data, control, inform) ! delete internal workspace

END PROGRAM GALAHAD_CQP_EXAMPLE

This produces the following output:

CQP: 10 iterations

Optimal objective value = 6.3462E+00

Optimal solution = 1.5385E-01 6.9231E-01 1.3077E+00

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the relevant lines
in

! sparse co-ordinate storage format

...

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(p%H%type, ’SPARSE_BY_ROWS’, s) ! Specify sparse row

CALL SMT_put(p%A%type, ’SPARSE_BY_ROWS’, s) ! storage for H and A

ALLOCATE(p%H%val(h_ne), p%H%col(h_ne), p%H%ptr(n + 1))

ALLOCATE(p%A%val(a_ne), p%A%col(a_ne), p%A%ptr(m + 1))

p%H%val = (/ 1.0_wp, 2.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H

p%H%col = (/ 1, 2, 2, 3 /) ! NB lower triangle

p%H%ptr = (/ 1, 2, 3, 5 /)

p%A%val = (/ 2.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%A%col = (/ 1, 2, 2, 3 /)

p%A%ptr = (/ 1, 3, 5 /)

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(p%H%type, ’DENSE’, s) ! Specify dense

CALL SMT_put(p%A%type, ’DENSE’, s) ! storage for H and A

ALLOCATE(p%H%val(n * (n + 1) / 2))

ALLOCATE(p%A%val(n * m))

p%H%val = (/ 1.0_wp, 0.0_wp, 2.0_wp, 0.0_wp, 1.0_wp, 3.0_wp /) ! Hessian H

p%A%val = (/ 2.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

! problem data complete

respectively.

If instead H had been the diagonal matrix

H =

1

2

3

but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL SMT_put(prob%H%type, ’DIAGONAL’, s) ! Specify dense storage for H

ALLOCATE(p%H%val(n))

p%H%val = (/ 1.0_wp, 2.0_wp, 3.0_wp /) ! Hessian values

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CQP (May 24, 2024) 21

