
GALAHAD CHECK

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package uses finite difference approximations to check the gradient of an objective function f (x), the Jacobian

matrix of a constraint function c(x), and the second derivative Hessian matrix of the Lagrangian function

L(x,y) = f (x)− c(x)T y. These quantities are typically associated with a nonlinear optimization problem

minimize f (x)

subject to the general linear constraints

al
i ≤ aT

i x ≤ au
i , i = 1, . . . ,ma,

general nonlinear constraints

cl
i ≤ ci(x)≤ cu

i , i = 1, . . . ,m,

and simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

where the vectors ai, al , au, cl , cu, xl , and xu are given, and the vectors x ∈ IRn and y ∈ IRm are known as the

primal and dual (Lagrange multiplier) vectors, respectively. The user may choose to perform a “cheap” verification

of the requested derivatives, or a more detailed and “expensive” check. Function values can be supplied via internal

subroutine evaluation or reverse communication.

ATTRIBUTES — Versions: GALAHAD CHECK single and GALAHAD CHECK double. Uses: GALAHAD SYMBOLS, GAL-

AHAD SPECFILE, GALAHAD SPACE, GALAHAD MOP, GALAHAD SMT, and GALAHAD NLPT. Date: September 2010. Origin:

D. P. Robinson, University of Oxford, UK, and N. I. M. Gould, Rutherford Appleton Laboratory. Language: For-

tran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD CHECK single

with the obvious substitution GALAHAD CHECK double, GALAHAD CHECK single 64 and GALAHAD CHECK double 64

for the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, NLPT problem type,

CHECK control type, CHECK inform type, CHECK data type, CHECK reverse communication type and GALAHAD userdata -

type (Section 2.3), and the subroutines CHECK initialize, CHECK verify, CHECK terminate (Section 2.4), and

CHECK read specfile (Section 2.8) must be renamed on one of the USE statements.

2.1 Matrix storage formats

The Jacobian matrix J = ∇xc(x) and the Hessian matrix H = ∇xxL(x,y) may be stored in a variety of input formats.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 1

CHECK GALAHAD

2.1.1 Dense storage format

The matrix J is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array J%val

will hold the value ji j for i = 1, . . . ,m and j = 1, . . . ,n. Since H is symmetric, only the lower triangular part (that is the

part hi j for 1 ≤ j ≤ i ≤ n) should be stored. In this case the lower triangle will be stored by rows, that is component

i∗ (i− 1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji) for 1 ≤ j ≤ i ≤ n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of J, its row index i, column index j and value ji j

are stored in the l-th components of the integer arrays J%row, J%col and real array J%val. The order is unimportant,

but the total number of entries J%ne is also required. Since H is symmetric, the same scheme is applicable, except that

only the entries in the lower triangle should be stored.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of J, the i-th component of a integer array J%ptr holds the position of the first

entry in this row, while J%ptr (m+1) holds the total number of entries plus one. The column indices j and values ji j

of the entries in the i-th row are stored in components l = J%ptr(i), . . . ,J%ptr (i+ 1)− 1 of the integer array J%col,

and real array J%val, respectively. Since H is symmetric, the same scheme is applicable, except that only the entries

in the lower triangle should be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.1.4 Sparse column-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in column j appear directly

before those in column j + 1. For the j-th column of J, the j-th component of the integer array J%ptr holds the

position of the first entry in this column, while J%ptr (n+ 1) holds the total number of entries plus one. The row

indices i and values ji j of the entries in the j-th column are stored in components l = J%ptr(j), . . . ,J%ptr (j+1)−1

of the integer array J%row, and real array J%val, respectively. Since H is symmetric, the same scheme is applicable,

except that only the entries in the lower triangle should be stored.

2.1.5 Diagonal storage format

If J is diagonal (i.e., ji j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonal entries jii for 1 ≤ i ≤ n should be stored, and the

first n components of the array J%val should be used for this purpose. The same holds for H.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data types

Seven derived data types are accessible from the package.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 CHECK (May 24, 2024) GALAHAD

GALAHAD CHECK

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the Jacobian matrix J and the Hessian matrix H. The components of

SMT TYPE used here are:

m is a scalar component of type INTEGER(ip) that holds the number of rows of the matrix.

n is a scalar component of type INTEGER(ip) that holds the number of columns of the matrix.

ne is a scalar variable of type INTEGER(ip) that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.3.2).

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Each pair of off-diagonal entries hi j = h ji for the symmetric matrix H is represented as a single entry (see

§2.1.1–2.1.3). Any duplicated entries that appear in the sparse co-ordinate, row-wise, or column-wise schemes

will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip). If sparse row-wise storage is used (see §2.1.3), then it

must have dimension at least m + 1 and hold the pointers to the first entry in each row. If sparse column-wise

storage is used (see §2.1.4), then it must have dimension at least n + 1 and hold the pointers to the first entry in

each column.

2.3.2 The derived data type for holding the problem

The derived data type NLPT problem type holds the problem. The relevant components of NLPT problem type are:

m is a scalar variable of type INTEGER(ip) that holds the number of nonlinear constraints m.

n is a scalar variable of type INTEGER(ip) that holds the number of optimization variables n.

H is scalar variable of type SMT TYPE that holds the Hessian matrix H = ∇xx f (x). The following components are

used here:

H%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of H%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of H%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of H%type must contain the string SPARSE BY ROWS, for the

sparse column-wise storage scheme (see Section 2.1.4), the first seventeen components of H%type must

contain the string SPARSE BY COLUMNS, and for the diagonal storage scheme (see Section 2.1.5), the first

eight components of H%type must contain the string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into H%type. For example, if nlp is of derived type CHECK problem type and involves a Hessian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%H%type, ’COORDINATE’)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 3

CHECK GALAHAD

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

H%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in the lower triangular part

of H in the sparse co-ordinate storage scheme (see Section 2.1.2). It need not be set for any of the other

four schemes.

H%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the lower

triangular part of the Hessian matrix H in any of the storage schemes discussed in Section 2.1.

H%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of the lower triangular

part of H in the sparse co-ordinate storage scheme (see Section 2.1.2) and the sparse column-wise scheme

(see Section 2.1.4). It need not be allocated for any of the other three schemes.

H%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of the

lower triangular part of H in either the sparse co-ordinate (see Section 2.1.2), or the sparse row-wise (see

Section 2.1.3) storage scheme. It need not be allocated for any of the other three schemes.

H%ptr is a rank-one allocatable array of dimension n+1 and type INTEGER(ip) that holds the starting position

of each row of the lower triangular part of H, as well as the total number of entries plus one, in the

sparse row-wise storage scheme (see Section 2.1.3), or the starting position of each column of the lower

triangular part of H, as well as the total number of entries plus one, in the sparse column-wise storage

scheme (see Section 2.1.4). It need not be allocated when the other schemes are used.

J is scalar variable of type SMT TYPE that holds the Jacobian matrix J = ∇xc(x). The following components are

used here:

J%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense storage scheme (see Section 2.1.1) is used, the first five components of J%type

must contain the string DENSE. For the sparse co-ordinate scheme (see Section 2.1.2), the first ten com-

ponents of J%type must contain the string COORDINATE, for the sparse row-wise storage scheme (see

Section 2.1.3), the first fourteen components of J%type must contain the string SPARSE BY ROWS, for the

sparse column-wise storage scheme (see Section 2.1.4), the first seventeen components of J%type must

contain the string SPARSE BY COLUMNS, and for the diagonal storage scheme (see Section 2.1.5), the first

eight components of J%type must contain the string DIAGONAL.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into J%type. For example, if nlp is of derived type CHECK problem type and involves a Jacobian

we wish to store using the co-ordinate scheme, we may simply

CALL SMT_put(nlp%J%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

J%ne is a scalar variable of type INTEGER(ip) that holds the number of entries in the sparse co-ordinate storage

scheme (see Section 2.1.2). It need not be set for any of the other schemes.

J%val is a rank-one allocatable array of type REAL(rp) that holds the values of the entries of the Jacobian

matrix J in any of the storage schemes discussed in Section 2.1.

J%row is a rank-one allocatable array of type INTEGER(ip) that holds the row indices of J in the sparse co-

ordinate storage scheme discussed in Section 2.1.2 and the sparse column-wise storage scheme discussed

in Section 2.1.4. It need not be allocated for any of the other three schemes.

J%col is a rank-one allocatable array variable of type INTEGER(ip) that holds the column indices of J in

either the sparse co-ordinate scheme discussed in Section 2.1.2 or the sparse row-wise scheme discussed

in Section 2.1.3. It need not be allocated for any of the other three schemes.

J%ptr for the sparse row-wise storage scheme discussed in Section 2.1.3, it is a rank-one allocatable array of

dimension m+1 and type INTEGER(ip) that holds the starting position of each row of J as well as the total

number of entries plus one. For the sparse column-wise storage scheme discussed in Section 2.1.4, it is

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 CHECK (May 24, 2024) GALAHAD

GALAHAD CHECK

a rank-one allocatable array of dimension n+1 and type INTEGER(ip) that holds the starting position of

each column of J as well as the total number of entries plus one. It need not be allocated for any of the

other schemes.

G is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient g of the objective

function. The j-th component of G, j = 1, . . . ,n, contains g j.

C is a rank-one allocatable array of dimension m and type REAL(rp) that holds the value of the constraint function.

The j-th component of C, j = 1, . . . ,m, contains c j.

f is a scalar variable of type REAL(rp) that holds the value of the objective function.

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

X l is a rank-one allocatable array of dimension n and type REAL(rp) that holds the lower bounds on the optimiza-

tion variables x.

X u is a rank-one allocatable array of dimension n and type REAL(rp) that holds upper bounds on the optimization

variables x.

Y is a rank-one allocatable array of dimension m and type REAL(rp) that holds the value y of the Lagrange

multiplier estimate. The j-th component of Y, j = 1, . . . ,m, contains y j.

2.3.3 The derived data type for holding control parameters

The derived data type CHECK control type is used to hold controlling data. Default values may be obtained by calling

CHECK initialize (see Section 2.4.1), while components may also be changed by calling GALAHAD CHECK read-

spec (see Section 2.8.1). The components of CHECK control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in CHECK verify and CHECK terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in CHECK verify is suppressed if out ≤ 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a brief

summary of the derivative verification is provided. If print level ≥ 2, this output will be increased to provide

significant detail of each iteration (see Section 2.9 for more details). The default is print level = 0.

verify level is a scalar variable of type INTEGER(ip) that determines the detail of verification performed. A

“cheap” check will be performed if verify level = 1. If verify level ≥ 2, an “expensive”—but more

detailed—verification of the derivatives is done. No checking is performed if verify level ≤ 0. The default

is verify level = 2.

f availability is a scalar variable of type INTEGER(ip) that controls how the user is expected to supply objective

function values, when required. The user should set f availability = 1 if an appropriate evaluation routine is

supplied (see Section 2.5.1), and f availability = 2 if reverse communication will be used (see Section 2.6).

c availability is a scalar variable of type INTEGER(ip) that controls how the user is expected to supply constraint

function values, when required. The user should set c availability = 1 if an appropriate evaluation routine is

supplied (see Section 2.5.2), and c availability = 2 if reverse communication will be used (see Section 2.6).

Any other value will result in an error message.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 5

CHECK GALAHAD

g availability is a scalar variable of type INTEGER(ip) that controls how the user is expected to supply the

gradient of the objective function, when required. The user should set g availability = 1 if an appropriate

evaluation routine is supplied (see Section 2.5.3), and g availability = 2 if reverse communication will be

used (see Section 2.6). Any other value will result in an error message.

J availability is a scalar variable of type INTEGER(ip) that controls how the user is expected to supply the

Jacobian of the constraint function, when required. The user should set J availability = 1 if an appropriate

evaluation routine is supplied (see Section 2.5.4), J availability = 2 if reverse communication will be used

to obtain Jacobian values (see Section 2.6), J availability = 3 if an appropriate Jacobian-vector product

routine is supplied (see Section 2.5.6), and J availability = 4 if reverse communication will be used to get

Jacobian-vector products (see Section 2.6). Any other value will result in an error message.

H availability is a scalar variable of type INTEGER(ip) that controls how the user is expected to supply the

Hessian of the Lagrangian function, when required. The user should set H availability = 1 if an appropriate

evaluation routine is supplied (see Section 2.5.5), H availability = 2 if reverse communication will be used to

obtain Hessian values (see Section 2.6), H availability = 3 if an appropriate Hessian-vector product routine

is supplied (see Section 2.5.7), and H availability = 4 if reverse communication will be used to get Hessian-

vector products (see Section 2.6). Any other value will result in an error message.

checkG is a scalar variable of type default LOGICAL that should be set .TRUE. if the gradient of the objective function

should be checked. Otherwise, it should be set .FALSE.. The default is checkG=.TRUE..

checkJ is a scalar variable of type default LOGICAL that should be set .TRUE. if the Jacobian of the constraint function

should be checked. Otherwise, it should be set .FALSE.. The default is checkJ =.TRUE..

checkH is a scalar variable of type default LOGICAL that should be set .TRUE. if the Hessian of the Lagrangian

function should be checked. Otherwise, it should be set .FALSE.. The default is checkH=.TRUE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

2.3.4 The derived data type for holding informational parameters

The derived data type CHECK inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of CHECK inform type are:

status is a scalar variable of type INTEGER(ip) that gives the exit status of the algorithm. See Sections 2.6 and 2.7

for further details.

alloc status is a scalar variable of type INTEGER(ip) that gives the status of the last attempted array allocation or

deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80 that gives the name of the last internal array

for which there was an allocation or deallocation error. This will be the null string if status = 0.

numG wrong is a scalar variable of type INTEGER(ip) that gives the number of components of the gradient of the

objective function that appear to be wrong.

numJ wrong is a scalar variable of type INTEGER(ip) that gives the number of entries of the Jacobian of the constraint

function that appear to be wrong.

numH wrong is a scalar variable of type INTEGER(ip) that gives the number of entries of the Hessian of the La-

grangian function that appear to be wrong.

derivative ok is a scalar variable of type default LOGICAL that is .TRUE. if all derivatives appear to be correct, and

set .FALSE. otherwise.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 CHECK (May 24, 2024) GALAHAD

GALAHAD CHECK

2.3.5 The derived data type for holding problem data

The derived data type CHECK data type is used to hold all the data for a particular problem, or sequences of prob-

lems with the same structure, between calls of CHECK procedures. The only data that should be changed by the

user from the initial call to CHECK initialize to the final call to CHECK terminate is the component RC of type

CHECK reverse communication type (see Section 2.3.6), and this should be done only as directed from GALAH-

AD CHECK verify with positive values of inform%status as described in Section 2.6.

2.3.6 The derived data type for holding reverse communication data

The derived data type CHECK reverse communication type is used to hold data for reverse communication, when

needed. The components of CHECK reverse communication type are:

X is a rank-one allocatable array of type REAL(rp) that holds the values of the optimization variables at which the

user must perform function computation.

Y is a rank-one allocatable array of type REAL(rp) that holds the values of the Lagrange multipliers that the user

must use when evaluating the Hessian of the Lagrangian.

F is a scalar variable of type REAL(rp) in which the user places the value of the objective function evaluated at X,

when required (see Section 2.6).

C is a rank-one allocatable array of type REAL(rp) in which the user places the value of the constraint function

evaluated at X, when required (see Section 2.6).

G is a rank-one allocatable array of type REAL(rp) in which the user places the gradient of the the objective function

evaluated at X, when required (see Section 2.6).

V is a rank-one allocatable array of type REAL(rp) that holds the vector for which a matrix-vector product is required

(see Section 2.6).

U is a rank-one allocatable array of type REAL(rp) in which the user places the result of any required matrix-vector

product with the vector V from above (see Section 2.6).

Jval is a rank-one allocatable array of type REAL(rp) in which the user places the entries of the Jacobian matrix

evaluated at X, when required (see Section 2.6).

Hval is a rank-one allocatable array of type REAL(rp) in which the user places the lower triangular entries of the

Hessian matrix of the Lagrangian evaluated at X and Y, when required (see Section 2.6).

2.3.7 The derived data type for holding user data

The derived data type GALAHAD userdata type is available from the package GALAHAD userdata to allow the user to

pass data to and from user-supplied subroutines for function and derivative calculations (see Section 2.5). Components

of variables of type GALAHAD userdata type may be allocated as necessary. The following components are available:

integer is a rank-one allocatable array of type INTEGER(ip).

real is a rank-one allocatable array of type default REAL(rp)

complex is a rank-one allocatable array of type default COMPLEX (double precision complex in GALAHAD CHECK -

double).

character is a rank-one allocatable array of type default CHARACTER.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 7

CHECK GALAHAD

logical is a rank-one allocatable array of type default LOGICAL.

integer pointer is a rank-one pointer array of type INTEGER(ip).

real pointer is a rank-one pointer array of type default REAL(rp)

complex pointer is a rank-one pointer array of type default COMPLEX (double precision complex in GALAHAD CHECK -

double).

character pointer is a rank-one pointer array of type default CHARACTER.

logical pointer is a rank-one pointer array of type default LOGICAL.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.8 for further features):

1. The subroutine CHECK initialize is used to set default values, and initialize private data, before verifying the

derivatives of one or more problems with the same sparsity and bound structure.

2. The subroutine CHECK verify is called to check the derivatives of the given problem.

3. The subroutine CHECK terminate is provided to allow the user to automatically deallocate array components

of the private data, allocated by CHECK verify, at the end of the verification process. It is important to do this if

the data object is re-used for another problem with a different structure since CHECK initialize cannot test

for this situation, and any existing associated targets will subsequently become unreachable.

We use square brackets [] to indicate OPTIONAL arguments.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL CHECK initialize(control)

control is a scalar INTENT(OUT) argument of type CHECK control type (see Section 2.3.3). On exit, control

contains default values for the components as described in Section 2.3.3. These values should only be changed

after calling CHECK initialize.

2.4.2 The verification subroutine

The verification algorithm is called as follows:

CALL CHECK verify(nlp, data, control, inform, userdata[, eval F, eval C, &

eval G, eval J, eval H, eval Jv, eval Hv])

nlp is a scalar INTENT(INOUT) argument of type NLPT problem type (see Section 2.3.2). It is used to hold data

about the problem whose derivatives are being verified. For a new problem, the user must allocate all the array

components, and set values for nlp%m, nlp%n, and the required integer components of nlp%J and nlp%H that

is determined by the values of checkJ and checkH as described in Section 2.3.3. Users are free to choose

whichever of the matrix formats described in Section 2.1 is appropriate for J and H for their application.

The components nlp%X and nlp%Y must be set to initial values x and y of the primal and dual variables for the

optimization problem. Prior to verification of the derivatives, the point nlp%X is modified internally to ensure

feasibility with respect to the bound constraints xl and xu; no modification of y is performed. The requested

derivatives are then checked at the point nlp%X and nlp%Y.

Restrictions: nlp%n > 0 and nlp%m ≥ 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 CHECK (May 24, 2024) GALAHAD

GALAHAD CHECK

data is a scalar INTENT(INOUT) argument of type CHECK data type (see Section 2.3.5). It is used to hold data about

the problem derivatives being verified. With the possible exception of the component RC (see Sections 2.3.6 and

2.6), it must not have been altered by the user since the last call to CHECK initialize.

control is a scalar INTENT(IN) argument of type CHECK control type (see Section 2.3.3). Default values may be

assigned by calling CHECK initialize prior to the first call to CHECK solve.

inform is a scalar INTENT(INOUT) argument of type CHECK inform type (see Section 2.3.4). On initial entry,

the component status must be set to the value 1. Other entries need not be set. A successful call to

CHECK verify is indicated when the component status has the value 0. For other return values of status, see

Sections 2.6 and 2.7.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used

to communicate user-supplied data to and from the OPTIONAL subroutines eval F, eval C, eval G, eval J,

eval H, eval Jv, and eval Hv (see Section 2.3.7).

eval F is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the objective function f (x) at a given

vector x. See Section 2.5.1 for details. If f availability = 1 (see Section 2.3.3), then eval F must be present

and declared EXTERNAL in the calling program. If f availability = 2, then GALAHAD CHECK verify will use

reverse communication to obtain objective function values (see Section 2.6).

eval C is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the constraint function c(x) at a given

vector x. See Section 2.5.2 for details. If c availability = 1 (see Section 2.3.3), then eval C must be present

and declared EXTERNAL in the calling program. If c availability = 2, then GALAHAD CHECK verify will use

reverse communication to obtain constraint function values (see Section 2.6).

eval G is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the gradient of the objective function

∇x f (x) at a given vector x. See Section 2.5.3 for details. If g availability = 1 (see Section 2.3.3), then

eval G must be present and declared EXTERNAL in the calling program. If g availability = 2, then GALAH-

AD CHECK verify will use reverse communication to obtain gradient values (see Section 2.6).

eval J is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the Jacobian of the objective function

∇xx f (x) at a given vector x. See Section 2.5.5 for details. If J availability = 1 (see Section 2.3.3), then

eval J must be present and declared EXTERNAL in the calling program. Otherwise, eval J need not be supplied.

eval H is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the Hessian of the Lagrangian ∇xxL(x,y)
at a given point (x,y). See Section 2.5.5 for details. If H availability = 1 (see Section 2.3.3), then eval H

must be present and declared EXTERNAL in the calling program. Otherwise, eval H need not be supplied.

eval Jv is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product of the Jacobian

of the constraint function ∇xc(x) with a given vector v. See Section 2.5.7 for details. If J availability = 3

(see Section 2.3.3), then eval Jv must be present and declared EXTERNAL in the calling program. Otherwise,

eval Jv need not be supplied.

eval Hv is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product of the Hessian

of the Lagrangian function ∇xxL(x,y) with a given vector v. See Section 2.5.7 for details. If H availability

= 3 (see Section 2.3.3), then eval Hv must be present and declared EXTERNAL in the calling program. Otherwise,

eval Hv need not be supplied.

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL CHECK terminate(data, control, inform)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 9

CHECK GALAHAD

data is a scalar INTENT(INOUT) argument of type CHECK data type exactly as for CHECK verify, which must not

have been altered by the user since the last call to CHECK initialize (except possibly data%RC as described

in Section 2.6). On exit, array components will have been deallocated.

control is a scalar INTENT(IN) argument of type CHECK control type exactly as for CHECK verify.

inform is a scalar INTENT(OUT) argument of type CHECK inform type exactly as for CHECK verify. Only the com-

ponent status will be set on exit, and a successful call to CHECK terminate is indicated when this component

status has the value 0. For other return values of status see Section 2.7.

2.5 Function and derivative values

2.5.1 The objective function value via internal evaluation

If the control parameter f availability = 1 (see Section 2.3.3), then the argument eval F must be present when

calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the value of the

objective function f (x). The routine must be specified as

SUBROUTINE eval_F(status, X, userdata, F)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval F, eval C, eval G, eval J eval H, eval Jv,

and eval Hv (see Section 2.3.7).

F is a scalar INTENT(OUT) argument of type REAL(rp) that should be set to the value of the objective function

f (x) evaluated at the vector x input in X.

2.5.2 The constraint function value via internal evaluation

If the control parameter c availability = 1 (see Section 2.3.3), then the argument eval C must be present when

calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the value of the

constraint function c(x). The routine must be specified as

SUBROUTINE eval_C(status, X, userdata, C)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the constraint function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval F, eval C, eval G, eval J eval H, eval Jv,

and eval Hv (see Section 2.3.7).

C is a rank-one INTENT(OUT) argument of type REAL(rp) that should be set to the value of the constraint function

c(x) evaluated at the vector x input in X.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 CHECK (May 24, 2024) GALAHAD

GALAHAD CHECK

2.5.3 Gradient values via internal evaluation

If the control parameter g availability = 1 (see Section 2.3.3), then the argument eval G must be present when

calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the value of the

gradient the objective function ∇x f (x). The routine must be specified as

SUBROUTINE eval_G(status, X, userdata, G)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip) that should be set to 0 if the routine has been able

to evaluate the gradient of the objective function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval F, eval C, eval G, eval J eval H, eval Jv,

and eval Hv (see Section 2.3.7).

G is a rank-one INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

gradient of the objective function ∇x f (x) evaluated at the vector x input in X.

2.5.4 Jacobian values via internal evaluation

If the control parameter J availability = 1 (see Section 2.3.3), then the argument eval J must be present when

calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the values of the

Jacobian of the constraint function ∇xc(x). The routine must be specified as

SUBROUTINE eval_J(status, X, userdata, Jval)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip) that should be set to 0 if the routine has been able to

evaluate the Jacobian of the constraint function and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval F, eval C, eval G, eval J eval H, eval Jv,

and eval Hv (see Section 2.3.7).

Jval is a scalar INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

Jacobian of the constraint function ∇xc(x) evaluated at the vector x input in X. The values should be input in the

same order as that in which the array indices were given in nlp%J.

2.5.5 Hessian values via internal evaluation

If the control parameter H availability = 1 (see Section 2.3.3), then the argument eval H must be present when

calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the values of the

Hessian of the Lagrangian ∇xxL(x,y). The routine must be specified as

SUBROUTINE eval_H(status, X, Y, userdata, Hval)

whose arguments are as follows:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 11

CHECK GALAHAD

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the Hessian of the Lagrangian and to a non-zero value if the evaluation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

Y is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the dual vector y.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval F, eval C, eval G, eval J eval H, eval Jv,

and eval Hv (see Section 2.3.7).

Hval is a scalar INTENT(OUT) argument of type REAL(rp), whose components should be set to the values of the

Hessian of the Lagrangian ∇xxL(x,y) evaluated at the vector (x,y) input in X and Y. The values should be input

in the same order as that in which the array indices were given in nlp%H.

2.5.6 Jacobian-vector products via internal evaluation

If the control parameter J availability = 3 (see Section 2.3.3), then the argument eval Jv must be present when

calling GALAHAD CHECK verify and the user must provide a subroutine of that name to compute products of the

Jacobian of the constraint function (and its transpose) of the form u+∇xc(x)v and u+∇xc(x)T v. The routine must

be specified as

SUBROUTINE eval_Jv(status, X, userdata, transpose, U, V)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip) that should be set to 0 if the routine has been able

to perform the required calculation (see transpose below) and to a non-zero value if the computation has not

been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval F, eval C, eval G, eval J eval H, eval Jv,

and eval Hv (see Section 2.3.7).

transpose is a scalar INTENT(IN) argument of type default LOGICAL. If transpose = .FALSE., then the user should

evaluate the sum u+∇xc(x)v. If transpose = .TRUE., then the user should evaluate the sum u+∇xc(x)T v.

U is a rank-one INTENT(INOUT) array argument of type REAL(rp) whose components on input contain the vector

u and on output contains either the sum u+∇xc(x)v or u+∇xc(x)T v depending on the value of transpose

given above.

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

2.5.7 Hessian-vector products via internal evaluation

If the control parameter H availability = 3 (see Section 2.3.3), then the argument eval Hv must be present

when calling GALAHAD CHECK verify and the user must provide a subroutine of that name to evaluate the sum

u+∇xxL(x,y)v involving the product of the Hessian of the Lagrangian ∇xxL(x,y). The routine must be specified

as

SUBROUTINE eval_Hv(status, X, Y, userdata, U, V)

whose arguments are as follows:

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 CHECK (May 24, 2024) GALAHAD

GALAHAD CHECK

status is a scalar INTENT(OUT) argument of type INTEGER(ip) that should be set to 0 if the routine has been able

to perform the required calculation and to a non-zero value if the computation has not been possible.

X is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector x.

Y is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector y.

userdata is a scalar INTENT(INOUT) argument of type GALAHAD userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval F, eval C, eval G, eval J eval H, eval Jv,

and eval Hv (see Section 2.3.7).

U is a rank-one INTENT(INOUT) array argument of type REAL(rp) whose components on input contain the vector

u and on output the sum u+∇xxL(x,y)v.

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

2.6 Reverse Communication Information

A positive value of inform%status on exit from CHECK verify indicates that GALAHAD CHECK verify is seeking

further information—this will happen if the user has chosen not to evaluate function or derivative values internally

(see Sections 2.3.3 and 2.5). The user should compute the required information and re-enter GALAHAD CHECK verify

with all arguments (except those specifically mentioned below) unchanged.

Possible values of inform%status and the information required are

2. The user should compute the objective function value f (x) at the point x indicated in data%RC%X. The required

value should be set in data%RC%F. If the user is unable to evaluate f (x)—for instance, if the function is undefined

at x—the user need not set data%RC%F, but should then set inform%status to any negative value. Otherwise,

the value of inform%status should remain unchanged.

3. The user should compute the constraint function value c(x) at the point x indicated in data%RC%X. The required

value should be set in data%RC%C. If the user is unable to evaluate c(x)—for instance, if the function is undefined

at x—the user need not set data%RC%C, but should then set inform%status to any negative value. Otherwise,

the value of inform%status should remain unchanged.

4. The user should compute the gradient of the objective function ∇x f (x) at the point x indicated in data%RC%X.

The value of the i-th component of the gradient should be set in data%RC%G(i) for i = 1, . . . ,n. If the user is

unable to evaluate a component of ∇x f (x)—for instance, if a component of the gradient is undefined at x—the

user need not set data%RC%G, but should then set inform%status to a negative value. Otherwise, the value of

inform%status should remain unchanged.

5. The user should compute the Jacobian of the constraint function ∇xc(x) at the point x indicated in data%RC%X.

The l-th component of the Jacobian stored according to the scheme used to input nlp%J (see Section 2.3.2)

should be set in data%RC%Jval(l) for l = 1, . . . , nlp%J%ne. If the user is unable to evaluate a component of

∇xc(x)—for instance, if a component of the Jacobian is undefined at x—the user need not set data%RC%Jval,

but should then set inform%status to a negative number. Otherwise, the value of inform%status should

remain unchanged.

6. The user should compute the value u+∇xc(x)v, which requires a product of the Jacobian of the constraint

function ∇xc(x) at the point x with the vector v; the vectors x, u, and v are contained in data%RC%X, data%RC%U,

and data%RC%V, respectively. On exit, the resulting vector u+∇xc(x)v should be stored in data%RC%U. If the

user is unable to evaluate the product—for instance, if a component of the Jacobian is undefined at x—the

user need not set data%RC%U, but should then set inform%status to a negative value. Otherwise, the value of

inform%status should remain unchanged.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 13

CHECK GALAHAD

7. The user should compute the value u+∇xc(x)T v, which requires a product of the transpose of the Jacobian

of the constraint function ∇xc(x) at the point x with the vector v; the vectors x, u, and v are contained in

data%RC%X, data%RC%U, and data%RC%V, respectively. On exit, the resulting vector u+∇xc(x)T v should be

stored in data%RC%U. If the user is unable to evaluate the product—for instance, if a component of the Jacobian

is undefined at x—the user need not set data%RC%U, but should then set inform%status to a negative value.

Otherwise, the value of inform%status should remain unchanged.

8. The user should compute the Hessian of the Lagrangian ∇xxL(x,y) at the point (x,y) indicated in data%RC%X

and data%RC%Y. The l-th component of the Hessian stored according to the scheme used to input nlp%H (see

Section 2.3.2) should be set in data%RC%Hval(l) for l = 1, . . . , nlp%H%ne. If the user is unable to evalu-

ate a component of ∇xxL(x,y)—for instance, if a component of the Hessian is undefined at (x,y)—the user

need not set data%RC%Hval, but should then set inform%status to a negative value. Otherwise, the value of

inform%status should remain unchanged.

9. The user should compute the value u+∇xxL(x,y)v, which requires a product of the Hessian of the Lagrangian

∇xxL(x,y) at the point (x,y) with the vector v; the vectors x, y, u, and v are contained in data%RC%X, data%RC%Y,

data%RC%U, and data%RC%V, respectively. On exit, the resulting vector u+∇xxL(x,y)v should be stored in

data%RC%U. If the user is unable to evaluate the product—for instance, if a component of the Hessian is un-

defined at (x,y)—the user need not set data%RC%U, but should then set inform%status to a negative value.

Otherwise, the value of inform%status should remain unchanged.

2.7 Warning and error messages

A negative value of inform%status on exit from CHECK verify or CHECK terminate indicates that an error has

occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc, respectively.

-3. Either one of the restrictions nlp%n > 0 or nlp%m ≥ 0 is violated, or the requirement that nlp%J type and

nlp%H type contain a relevant string ’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’SPARSE BY COLUMNS’,

or ’DIAGONAL’ is not satisfied.

-50. The user has called CHECK verify with inform%status < 0, which indicates that the user was not able to

perform a requested computation needed during reverse communication.

-51. The user has called CHECK verify with inform%status = 0, which should never happen. The user should

only set inform%status in two situations: inform%status = 1 prior to the initial call to CHECK verify, and

inform%status < 0 when reverse communication is being used and the user is unable to perform the required

computation as indicated by the value of inform%status on return from CHECK verify (see Section 2.6). The

user should not change inform%status for any other reason.

-55. The user has input an invalid value for at least one of the control parameters f availability, c availability,

g availability, J availability, or H availability as described in Section 2.3.3.

-56. Based on the values of the control parameters f availability, c availability, g availability, J availa-

bility, and H availability (see Section 2.3.3), at least one optional dummy subroutine is missing in the call

to CHECK verify.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 CHECK (May 24, 2024) GALAHAD

GALAHAD CHECK

-57. At least one component of nlp%X l or nlp%X u is inappropriate (see Section 2.3.2).

-58. A user supplied function (see Sections 2.5.1–2.5.7) returned inform%status 6= 0, implying that the function

computation could not be performed at the required point.

2.8 Further features

In this section, we describe an alternative means of setting control parameters—that is components of the variable

control of type CHECK control type (see Section 2.3.3)—by reading an appropriate data specification file using

the subroutine CHECK read specfile. This facility is useful as it allows a user to change CHECK control parameters

without editing and recompiling programs that call CHECK.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by CHECK read specfile must start with a ”BEGIN CHECK” command

and end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by CHECK_read_specfile ..)

BEGIN CHECK

keyword value

.......

keyword value

END

(.. lines ignored by CHECK_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN CHECK” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN CHECK SPECIFICATION

and

END CHECK SPECIFICATION

are acceptable. Furthermore, between the “BEGIN CHECK” and “END” delimiters, specification commands may occur

in any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical, or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when CHECK read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by CHECK read specfile.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 15

CHECK GALAHAD

2.8.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL CHECK_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type CHECK control type (see Section 2.3.3). Default values

should have already been set, perhaps by calling CHECK initialize. On exit, individual components of

control may have been changed according to the commands found in the specfile. Specfile commands and

the components (see Section 2.3.3) of control that they affect are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

verification-level %verify level integer

f-availability %f availability integer

c-availability %c availability integer

g-availability %G availability integer

J-availability %J availability integer

H-availability %H availability integer

check-gradient %checkG logical

check-Jacobian %checkJ logical

check-Hessian %checkH logical

deallocate-error-fatal %deallocate error fatal logical

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.9 Information printed

If control%print level is positive, information about the derivative verification will be printed on unit control-

%out, provided control%out > 0. If control%print level = 1, a basic summary of the derivative checking is

produced. If control%print level = 2, then in addition to the above there is detailed output of the derivative

verification, control parameters are printed, and basic matrix data is produced. If control%print level = 3, then

in addition to the above, full matrix data is printed. Finally, control%print level ≥ 4 is used for debugging and in

addition to the above also prints private data used during the verification process.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: CHECK verify and CHECK terminate call the GALAHAD packages GALAHAD MOP,

and GALAHAD SPACE.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 CHECK (May 24, 2024) GALAHAD

GALAHAD CHECK

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: nlp%n > 0 and nlp%m ≥ 0.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

Finite difference approximations are used to numerically “verify” requested derivatives. If verify level = 1, we

perform a “cheap” check of the gradient of the objective function by comparing (f (x)− f (x+αs))/α with ∇x f (x)T s

for some appropriately chosen vector s and scalar 0 < α ≪ 1. Similarly, for the Jacobian of the constraints and

the Hessian of the Lagrangian, we compare (c(x)− c(x+αs))/α to ∇xc(x)s and (∇xL(x,y)−∇xL(x+αs,y))/α to

∇xxL(x,y)s, respectively. If verify level= 2, we perform an “expensive” verification of the gradient of the objective

function by comparing (f (x)− f (x+αei))/α with [∇x f (x)]i for i = 1, . . . ,n, where ei is the ith coordinate vector.

Similarly, for the Jacobian of the constraints and the Hessian of the Lagrangian, we compare [(c(x)− c(x+αe j))]i/α

to [∇xc(x)]i j and [(∇xL(x,y)−∇xL(x+αe j,y))]i/α to [∇xxL(x,y)]i j, respectively.

5 EXAMPLES OF USE

Suppose we wish to perform an “expensive” check of the derivatives associated with the objective function f (x) =
x1 + x3

2/3 and the constraint function c(x) = (x1 + x2
2 + x3

3 + x3x2
2,−x4

2) at the point x = (4,3,2) and y = (2,3), with

bounds xl = (−5,−5,−5) and xu = (5,5,5). We may use the following code:

! THIS VERSION: GALAHAD 4.1 - 2021-11-27 AT 13:45 GMT.

PROGRAM GALAHAD_check_example

USE GALAHAD_SMT_double ! double precision version

USE GALAHAD_USERDATA_double ! double precision version

USE GALAHAD_NLPT_double ! double precision version

USE GALAHAD_MOP_double ! double precision version

USE GALAHAD_CHECK_double ! double precision version

IMPLICIT NONE

integer, parameter :: wp = KIND(1.0D+0) ! Define the working precision

type(NLPT_problem_type) :: nlp

type(GALAHAD_userdata_type) :: userdata

type(CHECK_data_type) :: data

type(CHECK_control_type) :: control

type(CHECK_inform_type) :: inform

integer :: stat, Jne, Hne, m, n

real (kind = wp), parameter :: two = 2.0_wp, three = 3.0_wp

real (kind = wp), parameter :: four = 4.0_wp, five = 5.0_wp

external funF, funC, funG, funJ, funH

nlp%m = 2 ; nlp%n = 3 ; m = nlp%m ; n = nlp%n

nlp%J%m = 2 ; nlp%J%n = 3 ; nlp%J%ne = 4 ; Jne = nlp%J%ne

nlp%H%m = 3 ; nlp%H%n = 3 ; nlp%H%ne = 3 ; Hne = nlp%H%ne

call SMT_put(nlp%J%id, ’Toy 2x3 matrix’, stat);

call SMT_put(nlp%J%type, ’COORDINATE’, stat)

call SMT_put(nlp%H%id, ’Toy 3x3 hessian matrix’, stat);

call SMT_put(nlp%H%type, ’COORDINATE’, stat)

allocate(nlp%G(n), nlp%C(m), nlp%X(n), nlp%X_l(n), nlp%X_u(n), nlp%Y(m))

allocate(nlp%J%row(Jne), nlp%J%col(Jne), nlp%J%val(Jne))

allocate(nlp%H%row(Hne), nlp%H%col(Hne), nlp%H%val(Hne))

nlp%J%row = (/ 1, 1, 1, 2 /) ; nlp%J%col = (/ 1, 2, 3, 2 /)

nlp%H%row = (/ 2, 3, 3 /) ; nlp%H%col = (/ 2, 2, 3 /)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 17

CHECK GALAHAD

nlp%X = (/ four, three, two /) ; nlp%X_l = -five ; nlp%X_u = five

nlp%Y = (/ two, three /)

call CHECK_initialize(control) ; control%print_level = 3

inform%status = 1

call CHECK_verify(nlp, data, control, inform, userdata, &

funF, funC, funG, funJ, funH)

call CHECK_terminate(data, control, inform)

END PROGRAM GALAHAD_check_example

SUBROUTINE funF(status, X, userdata, F)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (kind = wp), INTENT(IN), DIMENSION(:) :: X

REAL (kind = wp), INTENT(OUT) :: F

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

F = X(1) + X(2)**3 / 3.0_wp

status = 0

RETURN

END SUBROUTINE funF

SUBROUTINE funC(status, X, userdata, C)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (kind = wp), INTENT(IN), DIMENSION(:) :: X

REAL (kind = wp), DIMENSION(:), INTENT(OUT) :: C

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

C(1) = X(1) + X(2)**2 + X(3)**3 + X(3)*X(2)**2

C(2) = -X(2)**4

status = 0

RETURN

END SUBROUTINE funC

SUBROUTINE funG(status, X, userdata, G)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: G

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

G(1) = 1.0_wp

G(2) = X(2)**2

G(3) = 0.0_wp

status = 0

RETURN

END SUBROUTINE funG

SUBROUTINE funJ(status, X, userdata, Jval)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: X

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: Jval

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

Jval(1) = 1.0_wp

Jval(2) = 2.0_wp * X(2) * (1.0_wp + X(3))

Jval(3) = 3.0_wp * X(3)**2 + X(2)**2

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 CHECK (May 24, 2024) GALAHAD

GALAHAD CHECK

Jval(4) = -4.0_wp * X(2)**3

status = 0

RETURN

END SUBROUTINE funJ

SUBROUTINE funH(status, X, Y, userdata, Hval)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

REAL (kind = wp), DIMENSION(:), INTENT(IN) :: X

REAL (kind = wp), DIMENSION(:), INTENT(IN) :: Y

REAL (kind = wp), DIMENSION(:), INTENT(OUT) ::Hval

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

Hval(1) = 2.0_wp * (X(2) - Y(1) - Y(1)*X(3) + 6.0_wp*Y(2)*X(2)**2)

Hval(2) = -2.0_wp * Y(1) * X(2)

Hval(3) = -6.0_wp * Y(1) * X(3)

status = 0

RETURN

END SUBROUTINE funH

The code produces the following output:

--

-------------------- BEGIN: CHECK_verify --------------------

--

EXPENSIVE VERIFICATION OF THE GRADIENT G(X)

Component Ok Difference Value Error

-------------- --- ---------------- ---------------- ----------------

G(1) OK 9.999999891E-01 1.000000000E+00 5.437063107E-09

G(2) OK 9.000000276E+00 9.000000000E+00 2.755274155E-08

G(3) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

EXPENSIVE VERIFICATION OF THE JACOBIAN C(X)

Component Ok Difference Value Error

-------------- --- ---------------- ---------------- ----------------

J(1, 1) OK 9.999999891E-01 1.000000000E+00 5.437063107E-09

J(2, 1) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

J(1, 2) OK 1.800000025E+01 1.800000000E+01 1.328101027E-08

J(2, 2) OK -1.080000049E+02 -1.080000000E+02 4.540609994E-08

J(1, 3) OK 2.100000052E+01 2.100000000E+01 2.356511149E-08

J(2, 3) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

EXPENSIVE VERIFICATION OF THE HESSIAN H(X,Y)

Component Ok Difference Value Error

-------------- --- ---------------- ---------------- ----------------

H(1, 1) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

H(2, 1) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

H(3, 1) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

H(1, 2) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

H(2, 2) OK 3.180000098E+02 3.180000000E+02 3.083032558E-08

H(3, 2) OK -1.200000017E+01 -1.200000000E+01 1.294047150E-08

H(1, 3) OK 0.000000000E+00 0.000000000E+00 0.000000000E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD CHECK (May 24, 2024) 19

CHECK GALAHAD

H(2, 3) OK -1.200000017E+01 -1.200000000E+01 1.294047150E-08

H(3, 3) OK -2.400000049E+01 -2.400000000E+01 1.943240311E-08

| SUMMARY |

| (Verify : Expensive) |

THE GRADIENT OF THE OBJECTIVE FUNCTION IS ---- [OK]

THE JACOBIAN OF THE CONSTRAINT FUNCTION IS --- [OK]

THE HESSIAN OF THE LAGRANGIAN FUNCTION IS ---- [OK]

| CONTROL PARAMETERS |

checkG = T f_available = 1 deall_error_fatal = F

checkJ = T c_available = 1 print_level = 3

checkH = T g_available = 1 verify_level = 2

error = 6 J_available = 1 out = 6

H_available = 1

--

| MATRIX DATA |

--

J%type --- COORDINATE

J%id --- Toy 2x3 matrix

H%type --- COORDINATE

H%id --- Toy 3x3 hessian matrix

m = 2

n = 3

J%row J%col J%val

----- ----- -----------------

1 1 1.0000000000E+00

1 2 1.8000000571E+01

1 3 2.1000001142E+01

2 2 -1.0800000000E+02

H%row H%col H%val

----- ----- ----------------

2 2 3.1800000000E+02

3 2 -1.2000000000E+01

3 3 -2.4000000000E+01

EXIT STATUS : 0

--

-------------------- END: CHECK_verify --------------------

--

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 CHECK (May 24, 2024) GALAHAD

