
GALAHAD BSC

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

Given matrices A and diagonal D, this package forms the Schur complement S =ADAT in sparse co-ordinate format.

Full advantage is taken of any zero coefficients in the matrices A.

ATTRIBUTES — Versions: GALAHAD BSC single, GALAHAD BSC double. Uses: GALAHAD CLOCK, GALAHAD SY-

MBOLS, GALAHAD SPACE, GALAHAD SMT, GALAHAD QPT, GALAHAD SPECFILE, Date: October 2013. Origin: N. I. M.

Gould, Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD BSC single

with the obvious substitution GALAHAD BSC double, GALAHAD BSC single 64 and GALAHAD BSC double 64 for the

other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, QPT problem type,

BSC time type, BSC control type, BSC inform type and BSC data type (§2.3) and the subroutines BSC initialize,

BSC form, BSC terminate, (§2.4) and BSC read specfile (§2.6) must be renamed on one of the USE statements.

2.1 Matrix storage formats

The input matrix A may be stored in a variety of input formats.

2.1.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n.

2.1.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and value

ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val, respectively. The order

is unimportant, but the total number of entries A%ne is also required.

2.1.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BSC (May 24, 2024) 1

BSC GALAHAD

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data types

Four derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold the matrix A. The components of SMT TYPE used here are:

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the storage scheme used.

If the dense storage scheme (see §2.1.1), is used, the first five components of type must contain the string

DENSE. For the sparse co-ordinate scheme (see §2.1.2), the first ten components of type must contain the string

COORDINATE, and for the sparse row-wise storage scheme (see §2.1.3), the first fourteen components of type

must contain the string SPARSE BY ROWS.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into type. For example, if A is of derived type SMT type and we wish to use the co-ordinate storage

scheme, we may simply

CALL SMT_put(A%type, ’COORDINATE’, istat)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.2).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the column

indices of the entries (see §2.1.2–2.1.3).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least m + 1, that may hold the pointers

to the first entry in each row (see §2.1.3).

2.3.2 The derived data type for holding control parameters

The derived data type BSC control type is used to hold controlling data. Default values may be obtained by call-

ing BSC initialize (see §2.4.1), while components may also be changed by calling GALAHAD BSC read spec (see

§2.6.1). The components of BSC control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in BSC solve and BSC terminate is suppressed if error ≤ 0. The default is error = 6.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 BSC (May 24, 2024) GALAHAD

GALAHAD BSC

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in BSC solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

new a is a scalar variable of type INTEGER(ip), that is used to indicate how A has changed (if at all) since the

previous call to BSC form. Possible values are:

0 A is unchanged

1 the values in A have changed, but its nonzero structure is as before.

2 both the values and structure of A have changed.

3 the structure of A has changed, but only the structure of S (and not its values) is required.

The default is new a = 2.

max col is a scalar variable of type INTEGER(ip), that specifies the maximum number of nonzeros in a column of

A which is permitted when building the Schur-complement. Any negative value will be interpreted as m. The

default is max col = -1.

extra space s is a scalar variable of type INTEGER(ip), that specifies how much extra space (if any) is to be

allocated for the arrays that will hold S above that needed to hold the Schur complement. This may be useful,

for example, if another matrix might be subsequently added to S. The default is extra space s = 0.

s also by column is a scalar variable of type default LOGICAL, that must be set .TRUE. if the array S%ptr should

be allocated and set to indicate the first entry in each column of S, and .FALSE. otherwise. The default is

s also by column = .FALSE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

2.3.3 The derived data type for holding informational parameters

The derived data type BSC inform type is used to hold parameters that give information about the progress and needs

of the algorithm. The components of BSC inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See §2.5 for details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BSC (May 24, 2024) 3

BSC GALAHAD

max col a is a scalar variable of type INTEGER(ip), that gives the maximum number of entries in a column of A.

exceeds max col is a scalar variable of type INTEGER(ip), that gives the number of columns of A that have more

entries than the limit specified by control%max col.

time is a scalar variable of type REAL(rp), that gives the total CPU time (in seconds) spent in the package.

clock time is a scalar variable of type REAL(rp), that gives the total elapsed system clock time (in seconds) spent

in the package.

2.3.4 The derived data type for holding problem data

The derived data type BSC data type is used to hold all the data for the problem and the workspace arrays used to

construct the Schur complement between calls of BSC procedures. This data should be preserved, untouched, from the

initial call to BSC initialize to the final call to BSC terminate.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see §2.6 for further features):

1. The subroutine BSC initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine BSC form is called to form the Schur complement.

3. The subroutine BSC terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by BSC form at the end of the solution process.

We use square brackets [] to indicate OPTIONALarguments.

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL BSC initialize(data, control, inform)

data is a scalar INTENT(INOUT) argument of type BSC data type (see §2.3.4). It is used to hold data about the

problem being solved.

control is a scalar INTENT(OUT) argument of type BSC control type (see §2.3.2). On exit, control contains

default values for the components as described in §2.3.2. These values should only be changed after calling

BSC initialize.

inform is a scalar INTENT(OUT) argument of type BSC inform type (see Section 2.3.3). A successful call to

BSC initialize is indicated when the component status has the value 0. For other return values of status,

see Section 2.5.

2.4.2 The subroutine for forming the Schur complement

The sparse matrix S = ADAT is formed as follows:

CALL BSC form(m, n, A, S, data, control, inform[, D])

m is a scalar INTENT(IN) argument of type INTEGER(ip) that specifies the number of rows of A. Restriction: m

≥ 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 BSC (May 24, 2024) GALAHAD

GALAHAD BSC

n is a scalar INTENT(IN) argument of type INTEGER(ip) that specifies the number of columns of A. Restriction: n

> 0.

A is a scalar INTENT(IN) argument of type SMT type whose components must be set to specify the data defining the

matrix A (see §2.3.1).

S is a scalar INTENT(OUT) argument of type SMT type whose components will be set to specify the lower triangle

of the Schur complement S = ADAT . In particular, the nonzeros of the lower triangle of S will be returned in

co-ordinate form (see §2.1.2). Specifically S%type contains the string COORDINATE, S%ne gives the number of

nonzeros, and the array entries S%row(i), S%col(i) and S%val(i), i = 1, ..., S%ne give row and column

indices and values of the entries in the lower triangle of S (see §2.3.1). In addition, for compatibility with other

GALAHAD packages, S%m and S%n provide the row and column dimensions, m and n, of S.

data is a scalar INTENT(INOUT) argument of type BSC data type (see §2.3.4). It is used to hold data about the

problem being solved. It must not have been altered by the user since the last call to BSC initialize.

control is a scalar INTENT(IN) argument of type BSC control type (see §2.3.2). Default values may be assigned

by calling BSC initialize prior to the first call to BSC solve.

inform is a scalar INTENT(OUT) argument of type BSC inform type (see §2.3.3). A successful call to BSC solve is

indicated when the component status has the value 0. For other return values of status, see §2.5.

D is a rank-one OPTIONAL INTENT(IN) argument of type REAL(rp) and length at least n, whose i-th component give

the value of the i-th diagonal entry of the matrix D. If D is absent, D will be assumed to be the identity matrix.

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL BSC terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type BSC data type exactly as for BSC solve, which must not have

been altered by the user since the last call to BSC initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type BSC control type exactly as for BSC solve.

inform is a scalar INTENT(OUT) argument of type BSC inform type exactly as for BSC solve. Only the component

status will be set on exit, and a successful call to BSC terminate is indicated when this component status

has the value 0. For other return values of status, see §2.5.

2.5 Warning and error messages

A negative value of inform%status on exit from BSC form, BSC solve or BSC terminate indicates that an error has

occurred. No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BSC (May 24, 2024) 5

BSC GALAHAD

-3. One of the restrictions n> 0 or m≥ 0 or requirements that prob%A type contain the string ’DENSE’, ’COORDINATE’

or ’SPARSE BY ROWS’ has been violated.

-46 A row of A has more than control%max col entries.

2.6 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type BSC control type (see §2.3.2), by reading an appropriate data specification file using the subroutine

BSC read specfile. This facility is useful as it allows a user to change BSC control parameters without editing and

recompiling programs that call BSC.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by BSC read specfile must start with a ”BEGIN BSC” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by BSC_read_specfile ..)

BEGIN BSC

keyword value

.......

keyword value

END

(.. lines ignored by BSC_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN BSC” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN BSC SPECIFICATION

and

END BSC SPECIFICATION

are acceptable. Furthermore, between the “BEGIN BSC” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when BSC read specfile is called, and the associated device number

passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it possible

to combine the specifications for more than one program/routine. For the same reason, the file is not closed by

BSC read specfile.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 BSC (May 24, 2024) GALAHAD

GALAHAD BSC

2.6.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL BSC_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type BSC control type (see §2.3.2). Default values should have

already been set, perhaps by calling BSC initialize. On exit, individual components of control may have

been changed according to the commands found in the specfile. Specfile commands and the component (see

§2.3.2) of control that each affects are given in Table 2.1.

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

has-a-changed %new a integer

maximum-column-nonzeros-in-schur-complement %max col integer

extra-space-in-s %extra space s integer

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

2.7 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level ≥ 1, statistics concerning the formation of S as well as warning and error messages

will be reported.

3 GENERAL INFORMATION

Use of common: None.

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: BSC solve calls the GALAHAD packages GALAHAD CLOCK, GALAHAD SYMBOLS,

GALAHAD SPACE, GALAHAD SMT, GALAHAD QPT and GALAHAD SPECFILE,

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: n > 0, m ≥ 0, A type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’ }.

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BSC (May 24, 2024) 7

BSC GALAHAD

4 EXAMPLE OF USE

Suppose we form the Schur complement S = ADAT with matrix data

A =

1 1

1 1

1 1

 and D =

1

2

3

4

Then storing the matrices in sparse co-ordinate format, we may use the following code:

! THIS VERSION: GALAHAD 2.6 - 21/10/2013 AT 13:00 GMT.

PROGRAM GALAHAD_BSC_EXAMPLE

USE GALAHAD_BSC_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

TYPE (BSC_data_type) :: data

TYPE (BSC_control_type) :: control

TYPE (BSC_inform_type) :: inform

INTEGER, PARAMETER :: m = 3, n = 4, a_ne = 6

TYPE (SMT_type) :: A, S

REAL (KIND = wp), DIMENSION(n) :: D

INTEGER :: i

D(1 : n) = (/ 1.0_wp, 2.0_wp, 3.0_wp, 4.0_wp /)

! sparse co-ordinate storage format

CALL SMT_put(A%type, ’COORDINATE’, i) ! storage for A

ALLOCATE(A%val(a_ne), A%row(a_ne), A%col(a_ne))

A%ne = a_ne

A%val = (/ 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

A%row = (/ 1, 1, 2, 2, 3, 3 /)

A%col = (/ 1, 2, 3, 4, 1, 4 /)

! problem data complete

CALL BSC_initialize(data, control, inform) ! Initialize control parameters

CALL BSC_form(m, n, A, S, data, control, inform, D = D) ! Form S

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ S:’, /, (’ row ’, I2, ’, column ’, I2, &

& ’, value = ’, F4.1))") &

(S%row(i), S%col(i), S%val(i), i = 1, S%ne)

ELSE ! Error returns

WRITE(6, "(’ BSC_solve exit status = ’, I6) ") inform%status

END IF

CALL BSC_terminate(data, control, inform) ! delete internal workspace

END PROGRAM GALAHAD_BSC_EXAMPLE

This produces the following output:

S:

row 1, column 1, value = 3.0

row 3, column 1, value = 1.0

row 2, column 2, value = 7.0

row 3, column 2, value = 4.0

row 3, column 3, value = 5.0

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

...

! problem data complete

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 BSC (May 24, 2024) GALAHAD

GALAHAD BSC

by

! sparse row-wise storage format

CALL SMT_put(A%type, ’SPARSE_BY_ROWS’, i) ! storage for A

ALLOCATE(A%val(a_ne), A%col(a_ne), A%ptr(m + 1))

A%val = (/ 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! matrix A

A%col = (/ 1, 2, 3, 4, 1, 4 /)

A%ptr = (/ 1, 3, 5, 7 /) ! Set row pointers

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format

CALL SMT_put(A%type, ’DENSE’, i) ! storage for A

ALLOCATE(A%val(n * m))

A%val = (/ 1.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &

1.0_wp, 1.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 1.0_wp /) ! A

! problem data complete

respectively.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BSC (May 24, 2024) 9

