
GALAHAD BLLS

USER DOCUMENTATION GALAHAD Optimization Library version 5.0

1 SUMMARY

This package uses a preconditioned, projected-gradient method to solve the bound-constrained regularized linear

least-squares problem

minimize r(x) = 1
2‖Aox−b‖2

W + 1
2 σ‖x‖2

2,

subject to the simple bound constraints

xl
j ≤ x j ≤ xu

j , j = 1, . . . ,n,

where the o by n real design matrix Ao, the vectors b, xl , xu and the non-negative weights w and σ are given, and where

the Euclidean and weighted-Euclidean norms satisfy ‖v‖2
2 = vT v and ‖v‖2

W = vT Wv, respectively, with W = diag(w).
Any of the constraint bounds xl

j and xu
j may be infinite. Full advantage is taken of any zero coefficients of the Jacobian

matrix Ao of the residuals r(x) =Aox−b; the matrix need not be provided as there are options to obtain matrix-vector

products involving Ao and its transpose either by reverse communication or from a user-provided subroutine.

ATTRIBUTES — Versions: GALAHAD BLLS single, GALAHAD BLLS double. Uses: GALAHAD CPU time, GALAHAD-

SYMBOLS, GALAHAD SPACE, GALAHAD STRING, GALAHAD SORT, GALAHAD NORMS, GALAHAD CONVERT, GALAHAD SBLS,

GALAHAD QPT, GALAHAD QPD, GALAHAD USERDATA. GALAHAD SPECFILE. Date: December 2020. Origin: N. I. M.

Gould, STFC-Rutherford Appleton Laboratory. Language: Fortran 95 + TR 15581 or Fortran 2003.

2 HOW TO USE THE PACKAGE

The package is available using both single and double precision reals, and either 32-bit or 64-bit integers. Access to

the 32-bit integer, single precision version requires the USE statement

USE GALAHAD BLLS single

with the obvious substitution GALAHAD BLLS double, GALAHAD BLLS single 64 and GALAHAD BLLS double 64 for

the other variants.

If it is required to use more than one of the modules at the same time, the derived types SMT type, QPT problem type,

NLPT userdata type, BLLS time type, BLLS control type, BLLS inform type and BLLS data type (Section 2.3)

and the subroutines BLLS initialize, BLLS solve, BLLS terminate, (Section 2.4) and BLLS read specfile (Sec-

tion 2.8) must be renamed on one of the USE statements.

2.1 Matrix storage formats

When it is explicitly available, an m by n matrix A (in our case Ao) may be stored in a variety of input formats.

2.1.1 Dense row-wise storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are

stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val

will hold the value Ai, j for i = 1, . . . ,m, j = 1, . . . ,n.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 1

BLLS GALAHAD

2.1.2 Dense column-wise storage format

The matrix A is stored as a compact dense matrix by columns, that is, the values of the entries of each column in turn

are stored in order within an appropriate real one-dimensional array. Component m ∗ (j− 1)+ i of the storage array

A%val will hold the value Ai, j for i = 1, . . . ,m, j = 1, . . . ,n.

2.1.3 Sparse coordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and

value Ai j are stored in the l-th components of the integer arrays A%row, A%col and real array A%val. The order is

unimportant, but the total number of entries A%ne is required.

2.1.4 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before

those in row i+ 1. For the i-th row of A, the i-th component of the integer array A%ptr holds the position of the first

entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values Ai j

of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+ 1)− 1 of the integer array A%col,

and real array A%val, respectively.

2.1.5 Sparse column-wise storage format

Yet again only the nonzero entries are stored, but this time they are ordered so that those in column j appear directly

before those in column j + 1. For the j-th column of A, the j-th component of the integer array A%ptr holds the

position of the first entry in this column, while A%ptr (n+ 1) holds the total number of entries plus one. The row

indices i and values Ai j of the entries in the j-th column are stored in components l = A%ptr(j), . . . ,A%ptr (j+1)−1

of the integer array A%row, and real array A%val, respectively.

For sparse matrices, the row- and column-wise storage schemes almost always requires less storage than their

predecessor.

2.2 Real and integer kinds

We use the terms integer and real to refer to the fortran keywords REAL(rp) and INTEGER(ip), where rp and

ip are the relevant kind values for the real and integer types employed by the particular module in use. The former

are equivalent to default REAL for the single precision versions and DOUBLE PRECISION for the double precision

cases, and correspond to rp = real32 and rp = real64, respectively, as supplied by the fortran iso fortran env

module. The latter are default (32-bit) and long (64-bit) integers, and correspond to ip = int32 and ip = int64,

respectively, again from the iso fortran env module.

2.3 The derived data types

Ten derived data types are accessible from the package.

2.3.1 The derived data type for holding matrices

The derived data type SMT TYPE is used to hold an m by n matrix A. The components of SMT TYPE used here are:

m is a scalar component of type INTEGER(ip), that holds the number of rows in the matrix.

n is a scalar component of type INTEGER(ip), that holds the number of columns in the matrix.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

2 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

ne is a scalar variable of type INTEGER(ip), that holds the number of matrix entries.

type is a rank-one allocatable array of type default CHARACTER, that is used to indicate the matrix storage scheme

used. Its precise length and content depends on the type of matrix to be stored (see §2.3.2).

val is a rank-one allocatable array of type REAL(rp) and dimension at least ne, that holds the values of the entries.

Any duplicated entries that appear in the sparse coordinate or row-wise schemes will be summed.

row is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may hold the row indices

of the entries. (see §2.1.3 and §2.1.5).

col is a rank-one allocatable array of type INTEGER(ip), and dimension at least ne, that may the column indices

of the entries (see §2.1.3–2.1.4).

ptr is a rank-one allocatable array of type INTEGER(ip), and dimension at least o + 1, that may hold the pointers

to the first entry in each row (see §2.1.4). or dimension at least n + 1, that may hold the pointers to the first

entry in each column (see §2.1.5).

2.3.2 The derived data type for holding the problem

The derived data type QPT problem type is used to hold the problem. The components of QPT problem type are:

n is a scalar variable of type INTEGER(ip), that holds the number of optimization variables, n.

o is a scalar variable of type INTEGER(ip), that holds the number of residuals, o.

Ao is scalar variable of type SMT TYPE that holds the design matrix Ao (if it is available). The following components

are used here:

Ao%type is an allocatable array of rank one and type default CHARACTER, that is used to indicate the storage

scheme used. If the dense row-wise storage scheme (see Section 2.1.1) is used, the first twelve com-

ponents of Ao%type must contain the string DENSE BY ROWS, while if the column-wise scheme (see Sec-

tion 2.1.2) is used, the fifteen components of Ao%type must contain the string DENSE BY COLUMNS. For the

sparse coordinate scheme (see Section 2.1.3), the first ten components of Ao%type must contain the string

COORDINATE, for the sparse row-wise storage scheme (see Section 2.1.4), the first fourteen components of

Ao%type must contain the string SPARSE BY ROWS. and for the sparse column-wise storage scheme (see

Section 2.1.5), the first seventeen components of Ao%type must contain the string SPARSE BY COLUMNS.

For convenience, the procedure SMT put may be used to allocate sufficient space and insert the required

keyword into Ao%type. For example, if nlp is of derived type BLLS problem type and involves a design

matrix we wish to store using the coordinate scheme, we may simply

CALL SMT_put(nlp%A%type, ’COORDINATE’)

See the documentation for the GALAHAD package SMT for further details on the use of SMT put.

Ao%type should not be allocated if Ao is unavailable (and access provided to Ao provided by other means,

see later sections), and in this case the remaining components of A need not be set.

Ao%ne is a scalar variable of type INTEGER(ip), that holds the number of entries in Ao in the sparse coordinate

storage scheme (see Section 2.1.3). It need not be set for any of the other three schemes.

Ao%val is a rank-one allocatable array of type REAL(rp), that holds the values of the entries of the design

matrix Ao in any of the storage schemes discussed in Section 2.1.

Ao%row is a rank-one allocatable array of type INTEGER(ip), that holds the row indices of Ao in the sparse

coordinate storage scheme (see Section 2.1.3). It need not be allocated for any of the other three schemes.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 3

BLLS GALAHAD

Ao%col is a rank-one allocatable array variable of type INTEGER(ip), that holds the column indices of Ao in

either the sparse coordinate (see Section 2.1.3), or the sparse row-wise (see Section 2.1.4) storage scheme.

It need not be allocated when the dense or column-wise storage schemes are used.

Ao%row is a rank-one allocatable array variable of type INTEGER(ip), that holds the row indices of Ao in either

the sparse coordinate (see Section 2.1.3), or the sparse column-wise (see Section 2.1.5) storage scheme. It

need not be allocated when the dense or row-wise storage schemes are used.

Ao%ptr is a rank-one allocatable array and type INTEGER(ip), that must be of dimension o+1 and hold the

starting position of each row of Ao, as well as the total number of entries plus one, in the sparse row-wise

storage scheme (see Section 2.1.4). If the sparse column-wise storage scheme (see Section 2.1.5) is used,

it must instead be of dimension n+1 and hold the starting position of each column of Ao, as well as the

total number of entries plus one. It need not be allocated when the other schemes are used.

B is a rank-one allocatable array of dimension o and type REAL(rp), that holds the constant term b in the residuals.

The i-th component of B, i = 1, . . . ,m, contains bi.

R is a rank-one allocatable array of dimension o and type REAL(rp), that holds the residuals, r(x) = Aox−b, at

the point x. The i-th component of R, i = 1, . . . ,m, contains ri(x).

G is a rank-one allocatable array of dimension n and type REAL(rp), that holds the gradient of the objective

g(x) = AT
o Wr(x), at the point x. The j-th component of G, j = 1, . . . ,n, contains g j(x).

X l is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of lower bounds xl on

the the variables. The j-th component of X l, j = 1, . . . ,n, contains xl
j. Infinite bounds are allowed by setting

the corresponding components of X l to any value smaller than -infinity, where infinity is a component of

the control array control (see Section 2.3.3).

X u is a rank-one allocatable array of dimension n and type REAL(rp), that holds the vector of upper bounds xu on

the variables. The j-th component of X u, j = 1, . . . ,n, contains xu
j . Infinite bounds are allowed by setting the

corresponding components of X u to any value larger than that infinity, where infinity is a component of

the control array control (see Section 2.3.3).

X is a rank-one allocatable array of dimension n and type REAL(rp), that holds the values x of the optimization

variables. The j-th component of X, j = 1, . . . ,n, contains x j.

Z is a rank-one allocatable array of dimension n and type default REAL(rp), that holds the values z of estimates

of the dual variables corresponding to the simple bound constraints (see Section 4). The j-th component of Z,

j = 1, . . . ,n, contains z j .

2.3.3 The derived data type for holding control parameters

The derived data type BLLS control type is used to hold controlling data. Default values may be obtained by calling

BLLS initialize (see Section 2.4.1), while components may also be changed by calling BLLS read specfile (see

Section 2.8.1). The components of BLLS control type are:

error is a scalar variable of type INTEGER(ip), that holds the stream number for error messages. Printing of error

messages in BLLS solve and BLLS terminate is suppressed if error ≤ 0. The default is error = 6.

out is a scalar variable of type INTEGER(ip), that holds the stream number for informational messages. Printing

of informational messages in BLLS solve is suppressed if out < 0. The default is out = 6.

print level is a scalar variable of type INTEGER(ip), that is used to control the amount of informational output

which is required. No informational output will occur if print level ≤ 0. If print level = 1, a single line

of output will be produced for each iteration of the process. If print level ≥ 2, this output will be increased

to provide significant detail of each iteration. The default is print level = 0.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

4 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

start print is a scalar variable of type INTEGER(ip), that specifies the first iteration for which printing will be

permitted in GALAHAD BLLS solve. If start print is negative, printing will be permitted from the outset. The

default is start print = -1.

stop print is a scalar variable of type INTEGER(ip), that specifies the last iteration for which printing will be

permitted in GALAHAD BLLS solve. If stop print is negative, printing will be permitted once it has been

started by start print. The default is stop print = -1.

print gap is a scalar variable of type INTEGER(ip). Once printing has been started, output will occur once every

print gap iterations. If print gap is no larger than 1, printing will be permitted on every iteration. The default

is print gap = 1.

maxit is a scalar variable of type INTEGER(ip), that holds the maximum number of iterations which will be allowed

in GALAHAD BLLS solve. The default is maxit = 1000.

cold start is a scalar variable of type INTEGER(ip), that should be set to 0 if a warm start is required (with

variables assigned according to X stat, see below), and to any other value if the values given in prob%X suffice.

The default is cold start = 1.

preconditioner is a scalar variable of type INTEGER(ip), that specifies the type of preconditioner (scaling) used

when computing the search direction. Currently this can be 0 (no preconditioner), 1 (a diagonal preconditioner

that normalises the rows of Ao) or 2 (a preconditioner supplied by the user either via a subroutine call of

eval PREC, see §2.5.4, or via reverse communication, see §2.6), although other values may be introduced in

future. The default is preconditioner = 1.

change max is a scalar variable of type INTEGER(ip), that specifies the maximum number of per-iteration changes

in the working set permitted when allowing subspace solution rather than steepest descent (see §4). The default

is change max = 2.

cg maxit is a scalar variable of type INTEGER(ip), that holds the maximum number of conjugate-gradient iterations

which will be allowed per main iteration in GALAHAD BLLS solve. The default is cg maxit = 1000, and any

negative value will be interpreted as n + 1.

arcsearch max steps is a scalar variable of type INTEGER(ip), that specifies the maximum number of steps al-

lowed in an individual piecewise arc search. The default is arcsearch max steps = 1000, and a negative

value removes the limit.

weight is a scalar variable of type REAL(rp), that is used to specify the non-negative regularization weight σ that

controls regularization of the objective function. Any value smaller than 0 will be regarded as zero. The default

is weight = 0.0.

infinity is a scalar variable of type REAL(rp), that is used to specify which constraint bounds are infinite. Any

bound larger than infinity in modulus will be regarded as infinite. The default is infinity = 1019.

stop d is a scalar variable of type default REAL(rp), that holds the required accuracy for the dual infeasibil-

ity (see Section 4). The default is stop d = u1/3, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAH-

AD BLLS double).

identical bounds tol is a scalar variable of type REAL(rp). Each pair of variable bounds (xl
j,x

u
j) that is closer

than identical bounds tolwill be reset to the average of their values, 1
2 (x

l
j+xu

j). The default is identical bounds tol

= u, where u is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD BLLS double).

stop cg relative and stop cg absolute are scalar variables of type REAL(rp), that hold the relative and absolute

convergence tolerances for the conjugate-gradient iteration that occurs in the face of currently-active constraints

when constructing the search direction. stop cg relative = 0.01 and stop cg absolute =
√

u, where u

is EPSILON(1.0) (EPSILON(1.0D0) in GALAHAD BLLS double).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 5

BLLS GALAHAD

alpha max is a scalar variable of type REAL(rp), that specifies the largest arc length allowed. The default is

alpha max = 1020.

alpha initial is a scalar variable of type REAL(rp), that specifies the initial arc length during the inexact piecewise

arc search. The default is alpha initial = 1.0.

alpha reduction is a scalar variable of type REAL(rp), that specifies the arc length reduction factor for the inexact

piecewise arc search. The default is alpha reduction = 0.5.

arcsearch acceptance tol is a scalar variable of type REAL(rp), that specifies the required relative reduction

during the inexact arc search The default is arcsearch acceptance tol = 0.01.

stabilisation weight is a scalar variable of type REAL(rp), that specifies the weight added to the search-direction

subproblem to stabilise the computation. The default is stabilisation weight = 10−12.

cpu time limit is a scalar variable of type REAL(rp), that is used to specify the maximum permitted CPU time.

Any negative value indicates no limit will be imposed. The default is cpu time limit = - 1.0.

direct subproblem solve is a scalar variable of type default LOGICAL, that should be set .TRUE. if the search

over a promising subspace is carried out using matrix factorization, and .FALSE. if the conjugate-gradient

least-squares (CGLS) method is to be preferred. The former is generally more effective so long as the cost

of factorization isn’t exorbitant. The default is direct subproblem solve = .TRUE., but the package will

override this if the design matrix is not explicitly available.

exact arc search is a scalar variable of type default LOGICAL, that should be set .TRUE. if the exact minimizer

along the search arc is required, and .FALSE. if an approximation found by backtracking or advancing suffices.

The default is exact arc search = .TRUE..

advance is a scalar variable of type default LOGICAL, that should be set .TRUE. if the approximate arch search is

allowed to advance as well as backtrack.and .FALSE. if only backtracking is permitted. The default is advance

= .TRUE..

space critical is a scalar variable of type default LOGICAL, that must be set .TRUE. if space is critical when

allocating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the

possible expense of a larger storage requirement. The default is space critical = .FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL, that must be set .TRUE. if the user wishes to

terminate execution if a deallocation fails, and .FALSE. if an attempt to continue will be made. The default is

deallocate error fatal = .FALSE..

prefix is a scalar variable of type default CHARACTER and length 30, that may be used to provide a user-selected

character string to preface every line of printed output. Specifically, each line of output will be prefaced by the

string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied

string. If the user does not want to preface lines by such a string, they may use the default prefix = "".

SBLS control is a scalar variable of type SBLS control type whose components are used to control the factoriza-

tion and/or preconditioner used, performed by the package GALAHAD SBLS. See the documentation for GALAH-

AD SBLS for further details.

2.3.4 The derived data type for holding timing information

The derived data type BLLS time type is used to hold elapsed CPU times for the various parts of the calculation. The

components of BLLS time type are:

total is a scalar variable of type default REAL, that gives the total time spent in the package.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

6 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

analyse is a scalar variable of type default REAL, that gives the time spent analysing the required matrices prior to

factorization.

factorize is a scalar variable of type default REAL, that gives the time spent factorizing the required matrices.

solve is a scalar variable of type default REAL, that gives the time spent computing the search direction.

2.3.5 The derived data type for holding informational parameters

The derived data type BLLS inform type is used to hold parameters that give information about the progress and

needs of the algorithm. The components of BLLS inform type are:

status is a scalar variable of type INTEGER(ip), that gives the exit status of the algorithm. See Section 2.7 for

details.

alloc status is a scalar variable of type INTEGER(ip), that gives the status of the last attempted array allocation

or deallocation. This will be 0 if status = 0.

bad alloc is a scalar variable of type default CHARACTER and length 80, that gives the name of the last internal array

for which there were allocation or deallocation errors. This will be the null string if status = 0.

factorization status is a scalar variable of type INTEGER(ip), that gives the return status from the matrix fac-

torization.

iter is a scalar variable of type INTEGER(ip), that gives the number of iterations performed.

obj is a scalar variable of type REAL(rp), that holds the value of the objective function r(x) at the best estimate of

the solution found.

norm pg is a scalar variable of type REAL(rp), that holds the Euclidean norm of the projected gradient of r(x) at the

best estimate of the solution found.

time is a scalar variable of type BLLS time type whose components are used to hold elapsed CPU times for the

various parts of the calculation (see Section 2.3.4).

SBLS inform is a scalar variable of type SBLS inform type whose components provide information about the progress

and needs of the factorization/preconditioner performed by the package GALAHAD SBLS. See the documentation

for GALAHAD SBLS for further details.

2.3.6 The derived data type for holding problem data

The derived data type BLLS data type is used to hold all the data for a particular problem, or sequences of problems

with the same structure, between calls of BLLS procedures. This data should be preserved, untouched, from the initial

call to BLLS initialize to the final call to BLLS terminate.

2.3.7 The derived data type for holding user data

The derived data type NLPT userdata type is available to allow the user to pass data to and from user-supplied matrix-

vector product and preconditioning subroutines (see Section 2.5). Components of variables of type NLPT userdata-

type may be allocated as necessary. The following components are available:

integer is a rank-one allocatable array of type INTEGER(ip).

real is a rank-one allocatable array of type default REAL(rp)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 7

BLLS GALAHAD

complex is a rank-one allocatable array of type default COMPLEX (double precision complex in GALAHAD BLLS -

double).

character is a rank-one allocatable array of type default CHARACTER.

logical is a rank-one allocatable array of type default LOGICAL.

integer pointer is a rank-one pointer array of type INTEGER(ip).

real pointer is a rank-one pointer array of type default REAL(rp)

complex pointer is a rank-one pointer array of type default COMPLEX (double precision complex in GALAHAD BLLS -

double).

character pointer is a rank-one pointer array of type default CHARACTER.

logical pointer is a rank-one pointer array of type default LOGICAL.

2.3.8 The derived data type for holding reverse-communication data

The derived data type BLLS reverse type is used to hold data needed for reverse communication when this is re-

quired. The components of BLLS reverse type are:

nz v start is a scalar variable of type INTEGER(ip), that may be used to hold the starting position in NZ v (see

below) of the list of indices of nonzero components of v.

nz v end is a scalar variable of type INTEGER(ip), that may be used to hold the finishing position in NZ v (see

below) of the list of indices of nonzero components of v.

NZ v is a rank-one allocatable array of dimension n and type INTEGER(ip), that may be used to hold the indices

of the nonzero components of v. If used, components NZ v(nz v start:nz v end) of V (see below) will be

nonzero.

V is a rank-one allocatable array of dimension n and type REAL(rp), that is used to hold the components of the output

vector v.

P is a rank-one allocatable array of dimension o and type REAL(rp), that is used to record the components of the

resulting vector Aov.

nz p end is a scalar variable of type INTEGER(ip), that is used to record the finishing position in NZ p (see below)

of the list of indices of nonzero components of Aov if required.

NZ p is a rank-one allocatable array of dimension n and type INTEGER(ip), that is used to record the list of indices

of nonzero components of Aov if required. Components NZ p(1:nz prod end) of P should then be nonzero.

2.4 Argument lists and calling sequences

There are three procedures for user calls (see Section 2.8 for further features):

1. The subroutine BLLS initialize is used to set default values, and initialize private data, before solving one or

more problems with the same sparsity and bound structure.

2. The subroutine BLLS solve is called to solve the problem.

3. The subroutine BLLS terminate is provided to allow the user to automatically deallocate array components of

the private data, allocated by BLLS solve, at the end of the solution process.

We use square brackets [] to indicate OPTIONAL arguments.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

8 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

2.4.1 The initialization subroutine

Default values are provided as follows:

CALL BLLS initialize(data, control)

data is a scalar INTENT(INOUT) argument of type BLLS data type (see Section 2.3.6). It is used to hold data about

the problem being solved.

control is a scalar INTENT(OUT) argument of type BLLS control type (see Section 2.3.3). On exit, control

contains default values for the components as described in Section 2.3.3. These values should only be changed

after calling BLLS initialize.

2.4.2 The bound-constrained linear least-squares subroutine

The bound-constrained linear least-squares solution algorithm is called as follows:

CALL BLLS solve(prob, X stat, data, control, inform, userdata[, W, reverse, &

eval APROD, eval ASPROD, eval AFPROD, eval PREC])

prob is a scalar INTENT(INOUT) argument of type QPT problem type (see Section 2.3.2). It is used to hold data about

the problem being solved. The user must allocate and set values for the array components, and set values for

the components prob%B, prob%X l, prob%X u and prob%X. Additionally, the user can provide Ao by allocating

the relevant array components and setting values for prob%Ao using whichever of the matrix formats described

in Section 2.1 is appropriate for the user’s application; if the effect of Ao and its transpose are only available to

form products via reverse communication (see reverse below) or with a set of user-supplied subroutines (see

eval APROD eval ASPROD and eval AFPROD below), prob%Ao is not needed.

The components prob%X must be set to initial estimates of the primal variables, x. Inappropriate initial values

will be altered, so the user should not be overly concerned if suitable values are not apparent, and may be content

with merely setting prob%X=0.0. The components prob%R, prob%G and prob%Z need not be set or allocated on

entry.

On exit, the components prob%X and prob%Z will contain the best estimates of the primal variables x, and

dual variables for the bound constraints z, respectively. The components prob%R and prob%G will contain

the residuals r(x) and gradients g(x) at x, respectively. Restrictions: prob%n > 0, prob%o > 0 and (if Ao

is provided) prob%Ao%ne ≥ 0. prob%Ao type ∈ {’DENSE BY ROWS’, ’DENSE BY COLUMNS’, ’COORDINATE’,

’SPARSE BY ROWS’, SPARSE BY COLUMNS}.

X stat is a rank-one INTENT(INOUT) array argument of dimension prob%n and type INTEGER(ip), that indicates

which of the simple bound constraints are in the current working set. Possible values for X stat(j), j= 1, . . . ,
prob%n, and their meanings are

<0 the j-th simple bound constraint is in the working set, on its lower bound,

>0 the j-th simple bound constraint is in the working set, on its upper bound, and

0 the j-th simple bound constraint is not in the working set.

Suitable values must be supplied if control%blls control%cold start = 0 on entry, but need not be pro-

vided for other input values of control%cold start. Inappropriate values will be ignored. On exit, X stat

will contain values appropriate for the ultimate working set.

data is a scalar INTENT(INOUT) argument of type BLLS data type (see Section 2.3.6). It is used to hold data about

the problem being solved. It must not have been altered by the user since the last call to BLLS initialize.

control is a scalar INTENT(IN) argument of type BLLS control type (see Section 2.3.3). Default values may be

assigned by calling BLLS initialize prior to the first call to BLLS solve.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 9

BLLS GALAHAD

inform is a scalar INTENT(INOUT) argument of type BLLS inform type (see Section 2.3.5). On initial entry, the

component status must be set to 1, while other components need not be set. A successful call to BLLS solve

is indicated when the component status has the value 0. For other return values of status, see Sections 2.6

and 2.7.

userdata is a scalar INTENT(INOUT) argument of type NLPT userdata type whose components may be used to

communicate user-supplied data (see Section 2.3.7) to and from the OPTIONAL subroutines eval APROD and

eval ASPROD (see below).

W is an OPTIONAL rank-one INTENT(INOUT) array argument of dimension prob%n and type REAL(rp) that if

present contains the weights w. If W is absent, weights of one will be used instead.

reverse is an OPTIONAL scalar INTENT(INOUT) argument of type BLLS reverse type (see Section 2.3.8). It is

used to communicate reverse-communication data between the subroutine and calling program. If reverse is

PRESENT and eval%APROD or eval%ASPROD (see below) are absent, the user should monitor inform%status on

exit (see Section 2.6).

eval APROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product p+Aov or

p+AT
o v involving the design matrix (and its transpose) and given vectors v and p. See Section 2.5.1 for details.

If eval APROD is present, it must be declared EXTERNAL in the calling program. If eval APROD is absent, GALA-

HAD BLLS solve will use reverse communication (see Section 2.6) to obtain matrix-vector products if reverse

is PRESENT or otherwise require that the user has provided all relevant components of prob%A.

eval ASPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product Aov

involving the design matrix and a given sparse vector v. See Section 2.5.2 for details. If eval ASPROD is

present, it must be declared EXTERNAL in the calling program. If eval ASPROD is absent, GALAHAD BLLS solve

will use reverse communication (see Section 2.6) to obtain matrix-sparse-vector products if reverse is PRESENT

or otherwise require that the user has provided all relevant components of prob%A.

eval AFPROD is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product Aov or

AT
o v involving the design matrix (and its transpose) and a given vector v in which either only some components

of v or the resulting product are set/required. See Section 2.5.3 for details. If eval AFPROD is present, it must

be declared EXTERNAL in the calling program. If eval AFPROD is absent, GALAHAD BLLS solve will use reverse

communication (see Section 2.6) to obtain matrix-sparse-vector products if reverse is PRESENT or otherwise

require that the user has provided all relevant components of prob%A.

eval PREC is an OPTIONAL user-supplied subroutine whose purpose is to evaluate the value of the product P−1v

involving a symmetric, positive definite preconditioner P and a given vector v. See Section 2.5.4 for details. If

eval PREC is present, it must be declared EXTERNAL in the calling program. If eval PREC is absent, GALAH-

AD BLLS solve will use reverse communication (see Section 2.6) to obtain preconditioning products so long as

reverse is PRESENT; if reverse is not PRESENT, no preconditioning will be performed.

2.4.3 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL BLLS terminate(data, control, inform)

data is a scalar INTENT(INOUT) argument of type BLLS data type exactly as for BLLS solve, which must not have

been altered by the user since the last call to BLLS initialize. On exit, array components will have been

deallocated.

control is a scalar INTENT(IN) argument of type BLLS control type exactly as for BLLS solve.

inform is a scalar INTENT(OUT) argument of type BLLS inform type exactly as for BLLS solve. Only the com-

ponent status will be set on exit, and a successful call to BLLS terminate is indicated when this component

status has the value 0. For other return values of status, see Section 2.7.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

10 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

2.5 Matrix-vector operations

2.5.1 Matrix-vector products via internal evaluation

If the argument eval APROD is present when calling GALAHAD BLLS solve, the user is expected to provide a subroutine

of that name to evaluate the sum p+Aov or p+AT
o v involving the product of the design matrix Ao or its transpose

AT
o and a given vector v. The routine must be specified as

SUBROUTINE eval_APROD(status, userdata, transpose, V, P)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the sum p+Aov or p+AT
o v and to a non-zero value if the evaluation has not been possible.

userdata is a scalar INTENT(INOUT) argument of type NLPT userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval APROD (see Section 2.3.7).

transpose is a scalar INTENT(IN) array argument of type default that will be set .TRUE. if the product involves the

transpose of the design matrix AT
o and .FALSE. if the product involves the matrix Ao itself.

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

P is a rank-one INTENT(INOUT) array argument of type REAL(rp) whose components on input contain the vector

p and on output the sum p+Aov when %transpose is .FALSE. or p+AT
o v when %transpose is .TRUE..

2.5.2 Matrix-sparse-vector products via internal evaluation

If the argument eval ASPROD is present when calling GALAHAD BLLS solve, the user is expected to provide a subrou-

tine of that name to evaluate the product of the design matrix Ao with a given vector v. The routine must be specified

as

SUBROUTINE eval_ASPROD(status, userdata, V, P[, NZ_in, nz_in_start, nz_in_end, &
NZ_out, nz_out_end])

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the product Aov and to a non-zero value if the evaluation has not been possible.

userdata is a scalar INTENT(INOUT) argument of type NLPT userdata type whose components may be used to

communicate user-supplied data to and from the subroutine (see Section 2.3.7).

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v. If compo-

nents nz in start, nz in end and NZ in (see below) are PRESENT, only components NZ in(nz in start:nz in end)

of V will be nonzero and the remaining components of V should be ignored. Otherwise, all components of V

should be presumed to be nonzero.

P is a rank-one INTENT(OUT) array argument of type REAL(rp) whose components on output contain the re-

quired components of Aov. If components nz out end and NZ out (see below) are PRESENT, only the nonzero

components NZ out(1:nz out end) of P need be assigned. Otherwise, all components of P must be set.

nz in start is an OPTIONAL scalar variable of type INTEGER(ip), that, if PRESENT, holds the starting position in

NZ in of the list of indices of nonzero components of v.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 11

BLLS GALAHAD

nz in end is an OPTIONAL scalar variable of type INTEGER(ip), that, if PRESENT, holds the finishing position in

NZ in of the list of indices of nonzero components of v.

NZ in is an OPTIONAL rank-one array of dimension n and type INTEGER(ip), that, if PRESENT, holds the indices of

the nonzero components of v. If any of nz in start, nz in end and NZ in are absent, all components of V are

assumed to be nonzero.

nz out end is an OPTIONAL scalar variable of type INTEGER(ip), that, if PRESENT, must be set to record the number

of non-zeros in Aov.

NZ out is an OPTIONAL rank-one array of dimension o and type INTEGER(ip), that, if PRESENT, must be set to record

the list of indices of nonzero components of Aov. If either of nz out end and NZ out are absent, all components

of P should be set even if they are zero.

2.5.3 Matrix-vector sub-products via internal evaluation

If the argument eval AFPROD is present when calling GALAHAD BLLS solve, the user is expected to provide a subrou-

tine of that name to evaluate the product of the design matrix Ao, or its transpose, with a given vector v. Here, either

only a subset of the components of the vector v are nonzero, or only a subset of the components product AT
o v are to

required. The routine must be specified as

SUBROUTINE eval_AFPROD(status, userdata, transpose, V, P, FREE, n_free)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the sum Aov or AT
o v and to a non-zero value if the evaluation has not been possible.

userdata is a scalar INTENT(INOUT) argument of type NLPT userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval APROD (see Section 2.3.7).

transpose is a scalar INTENT(IN) array argument of type default that will be set .TRUE. if the product involves the

transpose of the design matrix AT
o and .FALSE. if the product involves the matrix Ao itself.

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v. If

transpose is .FALSE. only those components whose indices FREE(:n free) (see below) will by set, and

the remainder will be presumed to be zero.

P is a rank-one INTENT(OUT) array argument of type REAL(rp) whose components on output must be set to the

product Aov when %transpose is .FALSE.. If %transpose is .TRUE., components with indices FREE(:n free)

(see below) should be set to the corresponding components of the product AT
o v, and the remaining components

ignored.

FREE is a rank-one INTENT(IN) array argument of type INTEGER(ip) that flags the input components of v that are

set (when transpose is .FALSE.) or output components of AT
o v that are required (when transpose is .TRUE.).

Specifically, only indices FREE(:n free) of the relevant vector is set or required, and the remainder should be

treated as zero (if transpose is .FALSE.) or ignored (if transpose is .TRUE.).

n free is a scalar INTENT(IN) argument of type INTEGER(ip), that specifies the number of components of FREE

that need be considered.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

12 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

2.5.4 Application of a preconditioner via internal evaluation

If the argument eval PREC is present when calling GALAHAD BLLS solve, the user is expected to provide a subroutine

of that name to evaluate the product P−1v involving a symmetric, positive definite preconditioner P and a given n-

vector v. Ideally the n by n matrix P should be chosen so that the of the product is inexpensive to compute, but also

so that P is a good approximation of AT
o Ao in the sense that the eigenvalues of P−1AT

o Ao are clustered around a small

number of values (preferably all around 1.0). The routine must be specified as

SUBROUTINE eval_PREC(status, userdata, V, P)

whose arguments are as follows:

status is a scalar INTENT(OUT) argument of type INTEGER(ip), that should be set to 0 if the routine has been able

to evaluate the product P−1v, and to a non-zero value if the evaluation has not been possible.

userdata is a scalar INTENT(INOUT) argument of type NLPT userdata type whose components may be used to

communicate user-supplied data to and from the subroutines eval APROD (see Section 2.3.7).

V is a rank-one INTENT(IN) array argument of type REAL(rp) whose components contain the vector v.

P is a rank-one INTENT(INOUT) array argument of type REAL(rp) whose components on output contain the

vector p = P−1v.

2.6 Reverse Communication Information

A positive value of inform%status on exit from BLLS solve indicates that GALAHAD BLLS solve is seeking further

information—this will happen if the user has chosen to evaluate matrix-vector products by reverse communication.

The user should compute the required information and re-enter GALAHAD BLLS solve with inform%status and all

other arguments (except those specifically mentioned below) unchanged.

Possible values of inform%status and the information required are

2. The user should compute the product Aov involving the product of the design matrix, Ao, with a given vector v.

The vector v is given in reverse%V, and the product Aov should be written to reverse%P, and reverse%eval status

should be set to 0. If the user is unable to evaluate the product, the user need not set reverse%P, but should then

set reverse%eval status to a non-zero value.

3. The user should compute the product AT
o v involving the product of the transpose of the design matrix, Ao, with

a given vector v. The vector v is given in reverse%V, and the product AT
o v should be written to reverse%P,

and reverse%eval status should be set to 0. If the user is unable to evaluate the product, the user need not

set reverse%P, but should then set reverse%eval status to a non-zero value.

4. The user should compute the matrix-vector product Aov using the vector v whose nonzero components are

stored in positions reverse%NZ in(reverse%nz in start:reverse%nz in end) of reverse%V. The remain-

ing components of reverse%V should be ignored. The component reverse%eval status should set to 0 un-

less the user is unable to evaluate the product, in which case reverse%eval status should be set to a non-zero

value, and the remaining components left unaltered.

5. The user should compute the nonzero components of the matrix-vector product Aov using the vector v whose

nonzero components are stored in positions reverse%NZ in(reverse%nz in start:reverse%nz in end) of

reverse%V. The remaining components of reverse%V should be ignored. The nonzero components must oc-

cupy positions reverse%NZ out(1:reverse%nz out end) of reverse%P, and the components reverse%NZ out

and reverse%nz out end must be set. The component reverse%eval status should set to 0 unless the user

is unable to evaluate the product, in which case reverse%eval status should be set to a non-zero value, and

the remaining components left unaltered.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 13

BLLS GALAHAD

6. The user should compute the matrix-vector product AT
o v using the vector v given in reverse%V. The components

(AT
o v) j of the product AT

o v, for j = reverse%NZ in(reverse%nz in start:reverse%nz in end), should

be written to reverse%P(j). The component reverse%eval status should set to 0 unless the user is unable to

evaluate the product, in which case reverse%eval status should be set to a non-zero value, and the remaining

components left unaltered.

7. The user should compute the product P−1v involving a symmetric, positive definite preconditioner P and a

given vector v The vector v is given in reverse%V, and the product P−1v should be written to reverse%P, and

reverse%eval status should be set to 0. If the user is unable to evaluate the product, the user need not set

reverse%P, but should then set reverse%eval status to a non-zero value. This value of inform%status can

only occur if the user has set control%preconditioner = 2.

2.7 Warning and error messages

A negative value of inform%status on exit from BLLS solve or BLLS terminate indicates that an error has occurred.

No further calls should be made until the error has been corrected. Possible values are:

-1. An allocation error occurred. A message indicating the offending array is written on unit control%error, and the

returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-2. A deallocation error occurred. A message indicating the offending array is written on unit control%error and

the returned allocation status and a string containing the name of the offending array are held in inform%alloc -

status and inform%bad alloc respectively.

-3. One of the restrictions prob%n > 0, prob%o > 0 or the requirement that prob%Ao type contain its relevant string

’DENSE BY ROWS’, ’DENSE BY COLUMNS’, ’COORDINATE’, ’SPARSE BY ROWS’ or SPARSE BY COLUMNS, when

Ao is available, has been violated.

-4. The bound constraints are inconsistent.

-9. The analysis phase of the factorization failed; the return status from the factorization package is given in the

component inform%factor status.

-10. The factorization failed; the return status from the factorization package is given in the component inform%fac-

tor status.

-18. Too many iterations have been performed. This may happen if control%maxit is too small, but may also be

symptomatic of a badly scaled problem.

-19. The CPU time limit has been reached. This may happen if control%cpu time limit is too small, but may

also be symptomatic of a badly scaled problem.

2.8 Further features

In this section, we describe an alternative means of setting control parameters, that is components of the variable

control of type BLLS control type (see Section 2.3.3), by reading an appropriate data specification file using the

subroutine BLLS read specfile. This facility is useful as it allows a user to change BLLS control parameters without

editing and recompiling programs that call BLLS.

A specification file, or specfile, is a data file containing a number of ”specification commands”. Each command

occurs on a separate line, and comprises a ”keyword”, which is a string (in a close-to-natural language) used to identify

a control parameter, and an (optional) ”value”, which defines the value to be assigned to the given control parameter.

All keywords and values are case insensitive, keywords may be preceded by one or more blanks but values must not

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

14 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

contain blanks, and each value must be separated from its keyword by at least one blank. Values must not contain more

than 30 characters, and each line of the specfile is limited to 80 characters, including the blanks separating keyword

and value.

The portion of the specification file used by BLLS read specfile must start with a ”BEGIN BLLS” command and

end with an ”END” command. The syntax of the specfile is thus defined as follows:

(.. lines ignored by BLLS_read_specfile ..)

BEGIN BLLS

keyword value

.......

keyword value

END

(.. lines ignored by BLLS_read_specfile ..)

where keyword and value are two strings separated by (at least) one blank. The “BEGIN BLLS” and “END” delimiter

command lines may contain additional (trailing) strings so long as such strings are separated by one or more blanks,

so that lines such as

BEGIN BLLS SPECIFICATION

and

END BLLS SPECIFICATION

are acceptable. Furthermore, between the “BEGIN BLLS” and “END” delimiters, specification commands may occur in

any order. Blank lines and lines whose first non-blank character is ! or * are ignored. The content of a line after a !

or * character is also ignored (as is the ! or * character itself). This provides an easy manner to ”comment out” some

specification commands, or to comment specific values of certain control parameters.

The value of a control parameters may be of three different types, namely integer, logical or real. Integer and real

values may be expressed in any relevant Fortran integer and floating-point formats (respectively). Permitted values for

logical parameters are ”ON”, ”TRUE”, ”.TRUE.”, ”T”, ”YES”, ”Y”, or ”OFF”, ”NO”, ”N”, ”FALSE”, ”.FALSE.” and ”F”.

Empty values are also allowed for logical control parameters, and are interpreted as ”TRUE”.

The specification file must be open for input when BLLS read specfile is called, and the associated device

number passed to the routine in device (see below). Note that the corresponding file is REWINDed, which makes it

possible to combine the specifications for more than one program/routine. For the same reason, the file is not closed

by BLLS read specfile.

2.8.1 To read control parameters from a specification file

Control parameters may be read from a file as follows:

CALL BLLS_read_specfile(control, device)

control is a scalar INTENT(INOUT)argument of type BLLS control type (see Section 2.3.3). Default values should

have already been set, perhaps by calling BLLS initialize. On exit, individual components of control may

have been changed according to the commands found in the specfile. Specfile commands and the component

(see Section 2.3.3) of control that each affects are given in Table 2.1.

device is a scalar INTENT(IN)argument of type INTEGER(ip), that must be set to the unit number on which the

specfile has been opened. If device is not open, control will not be altered and execution will continue, but

an error message will be printed on unit control%error.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 15

BLLS GALAHAD

command component of control value type

error-printout-device %error integer

printout-device %out integer

print-level %print level integer

start-print %start print integer

stop-print %stop print integer

iterations-between-printing %print gap integer

maximum-number-of-iterations %maxit integer

cold-start %cold start integer

preconditioner %preconditioner integer

max-change-to-working-set-for-subspace-solution %change max integer

maximum-number-of-cg-iterations-per-iteration %cg maxit integer

maximum-number-of-arcsearch-steps %arcsearch max steps integer

infinity-value %infinity real

primal-accuracy-required %stop p real

dual-accuracy-required %stop d real

complementary-slackness-accuracy-required %stop c real

identical-bounds-tolerance %identical bounds tol real

cg-relative-accuracy-required %stop cg relative real

cg-absolute-accuracy-required %stop cg absolute real

maximum-arcsearch-stepsize %alpha max real

initial-arcsearch-stepsize %alpha initial real

arcsearch-reduction-factor %alpha reduction real

arcsearch-acceptance-tolerance %arcsearch acceptance tol real

regularization-weight %regularization weight real

maximum-cpu-time-limit %cpu time limit real

direct-subproblem-solve %direct subproblem solve logical

exact-arc-search-used %exact arc search logical

inexact-arc-search-can-advance %advance logical

space-critical %space critical logical

deallocate-error-fatal %deallocate error fatal logical

output-line-prefix %prefix character

Table 2.1: Specfile commands and associated components of control.

2.9 Information printed

If control%print level is positive, information about the progress of the algorithm will be printed on unit control-

%out. If control%print level = 1, a single line of output will be produced for each iteration of the process. This

will give the total number of CG iterations performed (if any), the value of the objective function and the norm of the

projected gradient, the stepsize taken, the number of free variables (i.e., those that have a positive value), the change in

the number of free variables since the last iteration, and the elapsed CPU time in seconds. If control%print level

≥ 2 this output will be increased to provide significant detail of each iteration. This extra output includes residuals

of the linear systems solved, and, for larger values of control%print level, and the values of the primal and dual

variables.

3 GENERAL INFORMATION

Use of common: None.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

16 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

Workspace: Provided automatically by the module.

Other routines called directly: None.

Other modules used directly: BLLS solve calls the GALAHAD packages GALAHAD CPU time, GALAHAD SYMBOLS,

GALAHAD SPACE, GALAHAD STRING, GALAHAD SORT, GALAHAD NORMS, GALAHAD CONVERT, GALAHAD SBLS,

GALAHAD QPT, GALAHAD QPD, GALAHAD USERDATA and GALAHAD SPECFILE.

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: prob%n> 0, prob%o> 0, prob%Ao type ∈{’DENSE BY ROWS’, ’DENSE BY COLUMNS’, ’COORDINATE’,

’SPARSE BY ROWS’, SPARSE BY COLUMNS } (if Ao is explicit).

Portability: ISO Fortran 95 + TR 15581 or Fortran 2003. The package is thread-safe.

4 METHOD

The required solution x necessarily satisfies the primal optimality conditions

xl ≤ x ≤ xu, (4.1)

the dual optimality conditions

AT
o W(Aox−b)+σx= z and z = zl + zu, (4.2)

and

zl ≥ 0 and zu ≤ 0, (4.3)

and the complementary slackness conditions

(x− xl)T zl = 0 and (x− xu)T zu = 0, (4.4)

where the components of the vector z are known as the dual variables for the bounds, and where the vector inequalities

hold componentwise. Projected-gradient methods iterate towards a point that satisfies these conditions by ultimately

aiming to satisfy (4.2), while ensuring that (4.1), and (4.3) and (4.4) are satisfied at each stage. Appropriate norms of

the amounts by which (4.1), (4.2) and (4.4) fail to be satisfied are known as the primal and dual infeasibility, and the

violation of complementary slackness, respectively.

The method is iterative. Each iteration proceeds in two stages. Firstly, a search direction s from the current

estimate of the solution x is computed. This may be in a scaled steepest-descent direction, or, if the working set

of variables on bounds has not changed dramatically, in a direction that provides an approximate minimizer of the

objective over a subspace comprising the currently free-variables. The latter is computed either using an appropriate

sparse factorization by the package GALAHAD SBLS, or by the conjugate-gradient least-squares (CGLS) method; tt may

be necessary to regularize the subproblem very slightly to avoid a ill-posedness. Thereafter, a piecewise linesearch (arc

search) is carried out along the arc x(α) = P(x+αs) for α > 0, where the projection operator is defined component-

wise at any feasible point v to be

Pj(v) = min(max(x j,x
l
j),x

u
j);

thus this arc bends the search direction into the feasible region. The arc search is performed either exactly, by passing

through a set of increasing breakpoints at which it changes direction, or inexactly, by evaluating a sequence of different

α on the arc. All computation is designed to exploit sparsity in Ao.

References:

Full details are provided in

N. I. M. Gould, “A projection method for bound-constrained linear least-squares”. STFC-Rutherford Appleton Labo-

ratory Computational Mathematics Group Internal Report 2023-1 (2023).

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 17

BLLS GALAHAD

5 EXAMPLE OF USE

Suppose we wish to minimize

1
2

∥

∥

∥

∥

∥

∥

∥

∥









x1

x1 + x2 − 2

x3 − 1

x3 − 2









∥

∥

∥

∥

∥

∥

∥

∥

2

2

subject to the simple bounds −1 ≤ x1, x2 ≤ 1 and 0 ≤ x3 ≤ 2. Then, on writing the data for this problem as

Ao =









1

1 1

1

1









, b =









0

2

1

2









, xl =





−1

−∞

0



 and xu =





∞

1

2





in sparse coordinate format, we may use the following code:

! THIS VERSION: GALAHAD 4.3 - 2023-12-29 AT 13:50 GMT.

PROGRAM GALAHAD_BLLS_EXAMPLE

USE GALAHAD_BLLS_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (BLLS_data_type) :: data

TYPE (BLLS_control_type) :: control

TYPE (BLLS_inform_type) :: inform

TYPE (GALAHAD_userdata_type) :: userdata

INTEGER, ALLOCATABLE, DIMENSION(:) :: X_stat

INTEGER :: s

INTEGER, PARAMETER :: n = 3, o = 4, ao_ne = 5

! start problem data

ALLOCATE(p%B(o), p%X_l(n), p%X_u(n), p%X(n), X_stat(n))

p%n = n ; p%o = o ! dimensions

p%B = (/ 0.0_wp, 2.0_wp, 1.0_wp, 2.0_wp /) ! right-hand side

p%X_l = (/ - 1.0_wp, - infinity, 0.0_wp /) ! variable lower bound

p%X_u = (/ infinity, 1.0_wp, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ! start from zero

! sparse co-ordinate storage format

CALL SMT_put(p%Ao%type, ’COORDINATE’, s) ! Co-ordinate storage for A

ALLOCATE(p%Ao%val(ao_ne), p%Ao%row(ao_ne), p%Ao%col(Ao_ne))

p%Ao%m = o ; p%Ao%n = n

p%Ao%val = (/ 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A

p%Ao%row = (/ 1, 2, 2, 3, 4 /) !

p%Ao%col = (/ 1, 1, 2, 3, 3 /) ; p%Ao%ne = ao_ne

! problem data complete

CALL BLLS_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

control%print_level = 3 ! print one line/iteration

control%exact_arc_search = .FALSE.

! control%CONVERT_control%print_level = 3

control%SBLS_control%symmetric_linear_solver = ’sytr’ ! non-default solver

control%SBLS_control%definite_linear_solver = ’potr’ ! non-default solver

inform%status = 1

CALL BLLS_solve(p, X_stat, data, control, inform, userdata)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

18 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(/, ’ BLLS: ’, I0, ’ iterations ’, /, &

& ’ Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, p%X

ELSE ! Error returns

WRITE(6, "(/, ’ BLLS_solve exit status = ’, I0) ") inform%status

WRITE(6, *) inform%alloc_status, inform%bad_alloc

END IF

CALL BLLS_terminate(data, control, inform) ! delete workspace

DEALLOCATE(p%B, p%X, p%X_l, p%X_u, p%Z, p%R, p%G, X_stat)

DEALLOCATE(p%Ao%val, p%Ao%row, p%Ao%col, p%Ao%type)

END PROGRAM GALAHAD_BLLS_EXAMPLE

This produces the following output:
Input Error: Incorrect nseps.

Input Error: Incorrect nseps.

diagonal preconditioner, min, max = 1.0000E+00 2.0000E+00

S=steepest descent, F=factorization used

#its #cg f proj gr step #free change time

0 - 4.50000000000000E+00 7.276E-01 - - - 0.0

steepest descent search direction

** inexact arc search entered (m = 4, n = 3) **

3 variables free from their bounds and 0 variables remain fixed,

step fixed length objective target

0 0 0.00000000E+00 0.00000000000000E+00

gamma_a, alpha, gamma_f -8.0000000000000000 1.0000000000000000 -2.8284271247461898

f_s, eta, gamma 4.5000000000000000 1.0000000000000000E-002 -10.828427124746190

1 2 1.00000000E+00 1.58578643762690E+00 4.39171572875254E+00

Function value at the arc minimizer 1.58578643762690E+00

#its #cg f proj gr step #free change time

1 S 1.58578643762690E+00 8.605E-01 2.000E+00 1 - 0.0

steepest descent search direction

** inexact arc search entered (m = 4, n = 3) **

3 variables free from their bounds and 0 variables remain fixed,

step fixed length objective target

0 0 0.00000000E+00 4.50000000000000E+00

gamma_a, alpha, gamma_f 0.0000000000000000 1.0000000000000000 -3.2426406871192843

f_s, eta, gamma 1.5857864376269046 1.0000000000000000E-002 -3.2426406871192843

1 0 1.00000000E+00 1.13603896932107E+00 1.55336003075571E+00

Function value at the arc minimizer 1.13603896932107E+00

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 19

BLLS GALAHAD

#its #cg f proj gr step #free change time

2 S 1.13603896932107E+00 6.533E-01 1.293E+00 3 2 0.0

stg, sts = -1.7721E+00 2.0576E+00

** inexact arc search entered (m = 4, n = 3) **

3 variables free from their bounds and 0 variables remain fixed,

step fixed length objective target

0 0 0.00000000E+00 1.58578643762690E+00

gamma_a, alpha, gamma_f -0.53553390593273742 1.0000000000000000 5.6349186102013116E-002

f_s, eta, gamma 1.1360389693210722 1.0000000000000000E-002 -0.47918471983072430

1 1 1.00000000E+00 7.49999999998000E-01 1.13124712212276E+00

2F 1 2.00000000E+00 9.28932188128933E-01 1.13181061398379E+00

Function value at the arc minimizer 9.28932188128933E-01

#its #cg f proj gr step #free change time

3 F 9.28932188128933E-01 7.207E-01 4.142E-01 2 1 0.0

stg, sts = -8.5786E-01 4.2893E-01

** inexact arc search entered (m = 4, n = 3) **

2 variables free from their bounds and 1 variable remains fixed,

step fixed length objective target

0 1 0.00000000E+00 1.13603896932107E+00

gamma_a, alpha, gamma_f 0.0000000000000000 1.0000000000000000 -0.85786437625786560

f_s, eta, gamma 0.92893218812893286 1.0000000000000000E-002 -0.85786437625786560

1 0 1.00000000E+00 5.00000000000000E-01 9.20353544366354E-01

Function value at the arc minimizer 5.00000000000000E-01

#its #cg f proj gr step #free change time

4 F 5.00000000000000E-01 1.500E-12 6.213E-01 2 0 0.0

BLLS: 4 iterations

Optimal objective value = 5.0000E-01

Optimal solution = 5.0000E-01 1.0000E+00 1.5000E+00

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse coordinate storage format

...

! problem data complete

by

! sparse row-wise storage format

CALL SMT_put(p%Ao%type, ’SPARSE_BY_ROWS’, s) ! Specify sparse-by-rows

ALLOCATE(p%Ao%val(a_ne), p%Ao%col(a_ne), p%Ao%ptr(o + 1))

p%Ao%val = (/ 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Design matrix Ao

p%Ao%col = (/ 1, 1, 2, 3, 3 /) ! Column indices

p%Ao%ptr = (/ 1, 2, 4, 5, 6 /) ! Set row pointers

! problem data complete

a sparse column-wise storage format by replacing the lines

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

20 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

! sparse column-wise storage format

CALL SMT_put(p%Ao%type, ’SPARSE_BY_COLUMNS’, s) ! Specify sparse-by-columns

ALLOCATE(p%Ao%val(a_ne), p%Ao%row(a_ne), p%Ao%ptr(n + 1))

p%Ao%val = (/ 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Design matrix Ao

p%Ao%row = (/ 1, 2, 2, 3, 4 /) ! Row indices

p%Ao%ptr = (/ 1, 3, 4, 6 /) ! Set column pointers

! problem data complete

a dense-by-rows storage format with the replacement lines

! dense storage format

CALL SMT_put(p%Ao%type, ’DENSE_BY_ROWS’, s) ! Specify dense-by-rows

ALLOCATE(p%Ao%val(m * n)

p%Ao%val = (/ 1.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, &

1.0_wp, 0.0_wp, 01.0_wp, 1.0_wp /)

! problem data complete

or a dense-by-columns storage format using the replacement

! dense storage format

CALL SMT_put(p%Ao%type, ’DENSE_BY_COLUMS’, s) ! Specify dense-by-columns

ALLOCATE(p%Ao%val(m * n)

p%Ao%val = (/ 1.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 1.0_wp, 0.0_wp, 0.0_wp, &

0.0_wp, 0.0_wp, 1.0_wp, 1.0_wp /)

! problem data complete

respectively.

The same problem may be solved using reverse communication with the following code:

! THIS VERSION: GALAHAD 4.3 - 2023-12-29 AT 13:50 GMT.

PROGRAM GALAHAD_BLLS_SECOND_EXAMPLE ! reverse commmunication interface

USE GALAHAD_BLLS_double ! double precision version

IMPLICIT NONE

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (BLLS_data_type) :: data

TYPE (BLLS_control_type) :: control

TYPE (BLLS_inform_type) :: inform

TYPE (BLLS_reverse_type) :: reverse

TYPE (GALAHAD_userdata_type) :: userdata

INTEGER, ALLOCATABLE, DIMENSION(:) :: X_stat

INTEGER :: i, j, k, l, nflag

REAL (KIND = wp) :: val

INTEGER, PARAMETER :: n = 3, o = 4, ao_ne = 5

INTEGER, ALLOCATABLE, DIMENSION(:) :: Ao_row, Ao_ptr, FLAG

REAL (KIND = wp), ALLOCATABLE, DIMENSION(:) :: Ao_val

! start problem data

ALLOCATE(p%B(o), p%X_l(n), p%X_u(n), p%X(n), X_stat(n))

p%n = n ; p%o = o ! dimensions

p%B = (/ 0.0_wp, 2.0_wp, 1.0_wp, 2.0_wp /) ! right-hand side

p%X_l = (/ - 1.0_wp, - infinity, 0.0_wp /) ! variable lower bound

p%X_u = (/ infinity, 1.0_wp, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ! start from zero

! sparse column storage format

ALLOCATE(Ao_val(ao_ne), Ao_row(ao_ne), Ao_ptr(n + 1))

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 21

BLLS GALAHAD

Ao_val = (/ 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /) ! Jacobian A by columns

Ao_row = (/ 1, 2, 2, 3, 4 /) ! row indices

Ao_ptr = (/ 1, 3, 4, 6 /) ! pointers to column starts

! problem data complete

CALL BLLS_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

control%print_level = 1 ! print one line/iteration

control%exact_arc_search = .FALSE.

ALLOCATE(FLAG(n))

nflag = 0 ; FLAG = 0 ! Flag if index already used in current (nflag) product

inform%status = 1

10 CONTINUE ! Solve problem - reverse commmunication loop

CALL BLLS_solve(p, X_stat, data, control, inform, userdata, &

reverse = reverse)

SELECT CASE (inform%status)

CASE (0) ! successful return

WRITE(6, "(/, ’ BLLS: ’, I0, ’ iterations ’, /, &

& ’ Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, p%X

CASE (2) ! compute A * v

reverse%P(: o) = 0.0_wp

DO j = 1, n

val = reverse%V(j)

DO k = Ao_ptr(j), Ao_ptr(j + 1) - 1

i = Ao_row(k)

reverse%P(i) = reverse%P(i) + Ao_val(k) * val

END DO

END DO

GO TO 10

CASE (3) ! compute AˆT * v

reverse%P(: n) = 0.0_wp

DO j = 1, n

val = 0.0_wp

DO k = Ao_ptr(j), Ao_ptr(j + 1) - 1

val = val + Ao_val(k) * reverse%V(Ao_row(k))

END DO

reverse%P(j) = val

END DO

GO TO 10

CASE (4) ! compute A * sparse v

reverse%P(: o) = 0.0_wp

DO l = reverse%nz_in_start, reverse%nz_in_end

j = reverse%NZ_in(l)

val = reverse%V(j)

DO k = Ao_ptr(j), Ao_ptr(j + 1) - 1

i = Ao_row(k)

reverse%P(i) = reverse%P(i) + Ao_val(k) * val

END DO

END DO

GO TO 10

CASE (5) ! compute sparse(A * sparse v)

nflag = nflag + 1

reverse%nz_out_end = 0

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

22 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

DO l = reverse%nz_in_start, reverse%nz_in_end

j = reverse%NZ_in(l)

val = reverse%V(j)

DO k = Ao_ptr(j), Ao_ptr(j + 1) - 1

i = Ao_row(k)

IF (FLAG(i) < nflag) THEN

FLAG(i) = nflag

reverse%P(i) = Ao_val(k) * val

reverse%nz_out_end = reverse%nz_out_end + 1

reverse%NZ_out(reverse%nz_out_end) = i

ELSE

reverse%P(i) = reverse%P(i) + Ao_val(k) * val

END IF

END DO

END DO

GO TO 10

CASE (6) ! compute sparse(AˆT * v)

reverse%P(: n) = 0.0_wp

DO l = reverse%nz_in_start, reverse%nz_in_end

j = reverse%NZ_in(l)

val = 0.0_wp

DO k = Ao_ptr(j), Ao_ptr(j + 1) - 1

val = val + Ao_val(k) * reverse%V(Ao_row(k))

END DO

reverse%P(j) = val

END DO

GO TO 10

CASE DEFAULT ! error returns

WRITE(6, "(/, ’ BLLS_solve exit status = ’, I0) ") inform%status

END SELECT

CALL BLLS_terminate(data, control, inform) ! delete workspace

DEALLOCATE(p%B, p%X, p%X_l, p%X_u, p%Z, p%R, p%G, X_stat, FLAG)

DEALLOCATE(Ao_val, Ao_row, Ao_ptr)

END PROGRAM GALAHAD_BLLS_SECOND_EXAMPLE

This produces the following output:

S=steepest descent, F=factorization used

#its #cg f proj gr step #free change time

0 - 4.50000000000000E+00 7.276E-01 - - - 0.0

1 S 3.00000000000000E+00 9.045E-01 2.000E+00 1 - 0.0

2 S 8.75000000000000E-01 5.000E-01 1.500E+00 3 2 0.0

3 2 7.50000000000000E-01 7.071E-01 5.000E-01 2 1 0.0

4 1 5.00000000000000E-01 1.110E-16 5.000E-01 2 0 0.0

BLLS: 4 iterations

Optimal objective value = 5.0000E-01

Optimal solution = 5.0000E-01 1.0000E+00 1.5000E+00

The same problem may also be solved by user-provided matrix-vector products as follows:

! THIS VERSION: GALAHAD 4.3 - 2023-12-29 AT 13:50 GMT.

PROGRAM GALAHAD_BLLS_THIRD_EXAMPLE ! subroutine evaluation interface

USE GALAHAD_BLLS_double ! double precision version

IMPLICIT NONE

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 23

BLLS GALAHAD

INTEGER, PARAMETER :: wp = KIND(1.0D+0) ! set precision

REAL (KIND = wp), PARAMETER :: infinity = 10.0_wp ** 20

TYPE (QPT_problem_type) :: p

TYPE (BLLS_data_type) :: data

TYPE (BLLS_control_type) :: control

TYPE (BLLS_inform_type) :: inform

TYPE (GALAHAD_userdata_type) :: userdata

INTEGER, ALLOCATABLE, DIMENSION(:) :: X_stat

INTEGER, PARAMETER :: n = 3, o = 4, ao_ne = 5

! partition userdata%integer so that it holds

! o n nflag flag ao_ptr ao_row

! |1|2| 3 |4 to n+3 |n+4 to 2n+4|2n+5 to 2n+4+a_ne|

! partition userdata%real so that it holds

! ao_val

! |1 to ao_ne|

INTEGER, PARAMETER :: on = MAX(o, n)

INTEGER, PARAMETER :: nflag = 3, st_flag = 3, st_ptr = st_flag + on

INTEGER, PARAMETER :: st_row = st_ptr + n + 1, st_val = 0

INTEGER, PARAMETER :: len_integer = st_row + ao_ne + 1, len_real = ao_ne

EXTERNAL :: APROD, ASPROD, AFPROD

! start problem data

ALLOCATE(p%B(o), p%X_l(n), p%X_u(n), p%X(n), X_stat(n))

p%n = n ; p%o = o ! dimensions

p%B = (/ 0.0_wp, 2.0_wp, 1.0_wp, 2.0_wp /) ! right-hand side

p%X_l = (/ - 1.0_wp, - infinity, 0.0_wp /) ! variable lower bound

p%X_u = (/ infinity, 1.0_wp, 2.0_wp /) ! variable upper bound

p%X = 0.0_wp ! start from zero

! sparse co-ordinate storage format

ALLOCATE(userdata%integer(len_integer), userdata%real(len_real))

userdata%integer(1) = o ! load Jacobian data into userdata

userdata%integer(2) = n

userdata%integer(st_ptr + 1 : st_ptr + n + 1) = (/ 1, 3, 4, 6 /)

userdata%integer(st_row + 1 : st_row + ao_ne) = (/ 1, 2, 2, 3, 4 /)

userdata%real(st_val + 1 : st_val + ao_ne) &

= (/ 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp, 1.0_wp /)

! problem data complete

CALL BLLS_initialize(data, control, inform) ! Initialize control parameters

control%infinity = infinity ! Set infinity

control%print_level = 1 ! print one line/iteration

control%exact_arc_search = .FALSE.

! load workspace into userdata

userdata%integer(nflag) = 0

userdata%integer(st_flag + 1 : st_flag + on) = 0

inform%status = 1

CALL BLLS_solve(p, X_stat, data, control, inform, userdata, &

eval_APROD = APROD, eval_ASPROD = ASPROD, &

eval_AFPROD = AFPROD)

IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(/, ’ BLLS: ’, I0, ’ iterations ’, /, &

& ’ Optimal objective value =’, &

& ES12.4, /, ’ Optimal solution = ’, (5ES12.4))") &

inform%iter, inform%obj, p%X

ELSE ! Error returns

WRITE(6, "(/, ’ BLLS_solve exit status = ’, I0) ") inform%status

END IF

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

24 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

CALL BLLS_terminate(data, control, inform) ! delete workspace

DEALLOCATE(p%B, p%X, p%X_l, p%X_u, p%Z, p%R, p%G, X_stat)

DEALLOCATE(userdata%integer, userdata%real)

END PROGRAM GALAHAD_BLLS_THIRD_EXAMPLE

SUBROUTINE APROD(status, userdata, transpose, V, P)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

LOGICAL, INTENT(IN) :: transpose

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: V

REAL (KIND = wp), DIMENSION(:), INTENT(INOUT) :: P

INTEGER :: i, j, k

REAL (KIND = wp) :: val

! recover problem data from userdata

INTEGER :: o, n, nflag, st_flag, st_ptr, st_row, st_val

o = userdata%integer(1)

n = userdata%integer(2)

nflag = 3

st_flag = 3

st_ptr = st_flag + MAX(o, n)

st_row = st_ptr + n + 1

st_val = 0

IF (transpose) THEN

DO j = 1, n

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

P(j) = P(j) + userdata%real(st_val + k) * &

V(userdata%integer(st_row + k))

END DO

END DO

ELSE

DO j = 1, n

val = V(j)

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

i = userdata%integer(st_row + k)

P(i) = P(i) + userdata%real(st_val + k) * val

END DO

END DO

END IF

status = 0

RETURN

END SUBROUTINE APROD

SUBROUTINE ASPROD(status, userdata, V, P, NZ_in, nz_in_start, nz_in_end, &

NZ_out, nz_out_end)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: V

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: P

INTEGER, OPTIONAL, INTENT(IN) :: nz_in_start, nz_in_end

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 25

BLLS GALAHAD

INTEGER, OPTIONAL, INTENT(INOUT) :: nz_out_end

INTEGER, DIMENSION(:), OPTIONAL, INTENT(IN) :: NZ_in

INTEGER, DIMENSION(:), OPTIONAL, INTENT(INOUT) :: NZ_out

INTEGER :: i, j, k, l

REAL (KIND = wp) :: val

! recover problem data from userdata

INTEGER :: o, n, nflag, st_flag, st_ptr, st_row, st_val

IF (PRESENT(NZ_in)) THEN

IF (.NOT. (PRESENT(nz_in_start) .AND. PRESENT(nz_in_end))) THEN

status = - 1 ; RETURN

END IF

END IF

o = userdata%integer(1)

n = userdata%integer(2)

nflag = 3

st_flag = 3

st_ptr = st_flag + MAX(o, n)

st_row = st_ptr + n + 1

st_val = 0

IF (PRESENT(NZ_in)) THEN

IF (PRESENT(NZ_out)) THEN

IF (.NOT. PRESENT(nz_out_end)) THEN

status = - 1 ; RETURN

END IF

userdata%integer(nflag) = userdata%integer(nflag) + 1

nz_out_end = 0

DO l = nz_in_start, nz_in_end

j = NZ_in(l)

val = V(j)

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

i = userdata%integer(st_row + k)

IF (userdata%integer(st_flag + i) < &

userdata%integer(nflag)) THEN

userdata%integer(st_flag + i) = userdata%integer(nflag)

P(i) = userdata%real(st_val + k) * val

nz_out_end = nz_out_end + 1

NZ_out(nz_out_end) = i

ELSE

P(i) = P(i) + userdata%real(st_val + k) * val

END IF

END DO

END DO

ELSE

P(: o) = 0.0_wp

DO l = nz_in_start, nz_in_end

j = NZ_in(l)

val = V(j)

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

i = userdata%integer(st_row + k)

P(i) = P(i) + userdata%real(st_val + k) * val

END DO

END DO

END IF

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

26 BLLS (May 24, 2024) GALAHAD

GALAHAD BLLS

ELSE

IF (PRESENT(NZ_out)) THEN

IF (.NOT. PRESENT(nz_out_end)) THEN

status = - 1 ; RETURN

END IF

userdata%integer(nflag) = userdata%integer(nflag) + 1

nz_out_end = 0

DO j = 1, n

val = V(j)

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

i = userdata%integer(st_row + k)

IF (userdata%integer(st_flag + i) < &

userdata%integer(nflag)) THEN

userdata%integer(st_flag + i) = userdata%integer(nflag)

P(i) = userdata%real(st_val + k) * val

nz_out_end = nz_out_end + 1

NZ_out(nz_out_end) = i

ELSE

P(i) = P(i) + userdata%real(st_val + k) * val

END IF

END DO

END DO

ELSE

P(: o) = 0.0_wp

DO j = 1, n

val = V(j)

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

i = userdata%integer(st_row + k)

P(i) = P(i) + userdata%real(st_val + k) * val

END DO

END DO

END IF

END IF

status = 0

RETURN

END SUBROUTINE ASPROD

SUBROUTINE AFPROD(status, userdata, transpose, V, P, FREE, n_free)

USE GALAHAD_USERDATA_double

INTEGER, PARAMETER :: wp = KIND(1.0D+0)

INTEGER, INTENT(OUT) :: status

TYPE (GALAHAD_userdata_type), INTENT(INOUT) :: userdata

LOGICAL, INTENT(IN) :: transpose

INTEGER, INTENT(IN) :: n_free

INTEGER, INTENT(IN), DIMENSION(:) :: FREE

REAL (KIND = wp), DIMENSION(:), INTENT(IN) :: V

REAL (KIND = wp), DIMENSION(:), INTENT(OUT) :: P

INTEGER :: i, j, k, l

REAL (KIND = wp) :: val

! recover problem data from userdata

INTEGER :: o, n, nflag, st_flag, st_ptr, st_row, st_val

o = userdata%integer(1)

n = userdata%integer(2)

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

GALAHAD BLLS (May 24, 2024) 27

BLLS GALAHAD

nflag = 3

st_flag = 3

st_ptr = st_flag + MAX(o, n)

st_row = st_ptr + n + 1

st_val = 0

IF (transpose) THEN

DO l = 1, n_free

j = FREE(l)

val = 0.0_wp

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

val = val + userdata%real(st_val + k) * &

V(userdata%integer(st_row + k))

END DO

P(j) = val

END DO

ELSE

P(: o) = 0.0_wp

DO l = 1, n_free

j = FREE(l)

val = V(j)

DO k = userdata%integer(st_ptr + j), &

userdata%integer(st_ptr + j + 1) - 1

i = userdata%integer(st_row + k)

P(i) = P(i) + userdata%real(st_val + k) * val

END DO

END DO

END IF

status = 0

RETURN

END SUBROUTINE AFPROD

This produces the same output. Now notice how the matrix Ao is passed to the matrix-vector product evaluation

routines via the integer and real components of the derived type userdata.

All use is subject to the conditions of a BSD-3-Clause License.
See http://galahad.rl.ac.uk/galahad-www/cou.html for full details.

28 BLLS (May 24, 2024) GALAHAD

