GALAHAD ULS package#
purpose#
The uls
package
solves dense or sparse unsymmetric systems of linear equations
using variants of Gaussian elimination.
Given a sparse matrix \(A = \{ a_{ij} \}_{m \times n}\), and an
\(n\)-vector \(b\), this function solves the systems \(A x = b\) or \(A^T x = b\).
Both square (\(m=n\)) and rectangular (\(m\neq n\)) matrices are handled;
one of an infinite class of solutions for consistent systems will be returned
whenever \(A\) is not of full rank.
The method provides a common interface to a variety of well-known
solvers from HSL and elsewhere. Currently supported solvers include
MA28/GLS
and HSL_MA48
from {HSL},
as well as GETR
from LAPACK.
Note that, with the exception of he Netlib reference LAPACK code,
the solvers themselves do not form part of this package and
must be obtained/linked to separately.
Dummy instances are provided for solvers that are unavailable.
Also note that additional flexibility may be obtained by calling the
solvers directly rather that via this package.
terminology#
The solvers used each produce an \(L U\) factorization of \(A\), where \(L\) and U are permuted lower and upper triangular matrices (respectively). It is convenient to write this factorization in the form
supported solvers#
The key features of the external solvers supported by uls
are
given in the following table:
solver |
factorization |
out-of-core |
parallelised |
---|---|---|---|
|
sparse |
no |
no |
|
sparse |
no |
no |
|
dense |
no |
with parallel LAPACK |
method#
Variants of sparse Gaussian elimination are used. See Section 4 of $GALAHAD/doc/uls.pdf for a brief description of the method employed and other details.
The solver GLS
is available as part of GALAHAD and relies on
the HSL Archive package MA33
. To obtain HSL Archive packages, see
The solver HSL_MA48
is part of HSL 2011.
To obtain HSL 2011 packages, see
The solver GETR
is available as S/DGETRF/S
as part of LAPACK. Reference versions
are provided by GALAHAD, but for good performance
machined-tuned versions should be used.
The methods used are described in the user-documentation for
HSL 2011, A collection of Fortran codes for large-scale scientific computation (2011).
matrix storage#
The unsymmetric \(m\) by \(n\) matrix \(A\) may be presented and stored in a variety of convenient input formats.
Dense storage format: The matrix \(A\) is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are stored in order within an appropriate real one-dimensional array. In this case, component \(n \ast i + j\) of the storage array A_val will hold the value \(A_{ij}\) for \(0 \leq i \leq m-1\), \(0 \leq j \leq n-1\). The string A_type = ‘dense’ should be specified.
Dense by columns storage format: The matrix \(A\) is stored as a compact dense matrix by columns, that is, the values of the entries of each column in turn are stored in order within an appropriate real one-dimensional array. In this case, component \(m \ast j + i\) of the storage array A_val will hold the value \(A_{ij}\) for \(0 \leq i \leq m-1\), $0 \leq j \leq n-1 The string A_type = ‘dense_by_columns’ should be specified.
Sparse co-ordinate storage format: Only the nonzero entries of the matrices are stored. For the \(l\)-th entry, \(0 \leq l \leq ne-1\), of \(A\), its row index i, column index j and value \(A_{ij}\), \(0 \leq i \leq m-1\), \(0 \leq j \leq n-1\), are stored as the \(l\)-th components of the integer arrays A_row and A_col and real array A_val, respectively, while the number of nonzeros is recorded as A_ne = \(ne\). The string A_type = ‘coordinate’should be specified.
Sparse row-wise storage format: Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before those in row i+1. For the i-th row of \(A\) the i-th component of the integer array A_ptr holds the position of the first entry in this row, while A_ptr(m) holds the total number of entries. The column indices j, \(0 \leq j \leq n-1\), and values \(A_{ij}\) of the nonzero entries in the i-th row are stored in components l = A_ptr(i), \(\ldots\), A_ptr(i+1)-1, \(0 \leq i \leq m-1\), of the integer array A_col, and real array A_val, respectively. For sparse matrices, this scheme almost always requires less storage than its predecessor. The string A_type = ‘sparse_by_rows’ should be specified.
Sparse column-wise storage format: Once again only the nonzero entries are stored, but this time they are ordered so that those in column j appear directly before those in column j+1. For the j-th column of \(A\) the j-th component of the integer array A_ptr holds the position of the first entry in this column, while A_ptr(n) holds the total number of entries. The row indices i, \(0 \leq i \leq m-1\), and values \(A_{ij}\) of the nonzero entries in the j-th columnsare stored in components l = A_ptr(j), \(\ldots\), A_ptr(j+1)-1, \(0 \leq j \leq n-1\), of the integer array A_row, and real array A_val, respectively. As before, for sparse matrices, this scheme almost always requires less storage than the co-ordinate format. The string A_type = ‘sparse_by_columns’ should be specified.
introduction to function calls#
To solve a given problem, functions from the uls package must be called in the following order:
uls_initialize - provide default control parameters and set up initial data structures
uls_read_specfile (optional) - override control values by reading replacement values from a file
uls_factorize_matrix - set up matrix data structures, analyse the structure to choose a suitable order for factorization, and then factorize the matrix \(A\)
uls_reset_control (optional) - possibly change control parameters if a sequence of problems are being solved
uls_solve_system - solve the linear system of equations \(Ax=b\) or \(A^Tx=b\)
uls_information (optional) - recover information about the solution and solution process
uls_terminate - deallocate data structures
See the examples section for illustrations of use.
callable functions#
overview of functions provided#
// typedefs typedef float spc_; typedef double rpc_; typedef int ipc_; // structs struct uls_control_type; struct uls_inform_type; // global functions void uls_initialize( const char solver[], void **data, struct uls_control_type* control, ipc_ *status ); void uls_read_specfile(struct uls_control_type* control, const char specfile[]); void uls_factorize_matrix( struct uls_control_type* control, void **data, ipc_ *status, ipc_ m, ipc_ n, const char type[], ipc_ ne, const rpc_ val[], const ipc_ row[], const ipc_ col[], const ipc_ ptr[] ); void uls_reset_control( struct uls_control_type* control, void **data, ipc_ *status ); void uls_solve_system( void **data, ipc_ *status, ipc_ m, ipc_ n, rpc_ sol[], bool trans ); void uls_information(void **data, struct uls_inform_type* inform, ipc_ *status); void uls_terminate( void **data, struct uls_control_type* control, struct uls_inform_type* inform );
typedefs#
typedef float spc_
spc_
is real single precision
typedef double rpc_
rpc_
is the real working precision used, but may be changed to float
by
defining the preprocessor variable REAL_32
or (if supported) to
__real128
using the variable REAL_128
.
typedef int ipc_
ipc_
is the default integer word length used, but may be changed to
int64_t
by defining the preprocessor variable INTEGER_64
.
function calls#
void uls_initialize( const char solver[], void **data, struct uls_control_type* control, ipc_ *status )
Set default control values and initialize private data
Select solver, set default control values and initialize private data
Parameters:
solver |
is a one-dimensional array of type char that specifies the solver package that should be used to factorize the matrix \(A\). It should be one of ‘gls’, ‘ma28’, ‘ma48 or ‘getr’; lower or upper case variants are allowed. Only ‘getr’ is available by default, but others are easily installed (see README.external). |
data |
holds private internal data |
control |
is a struct containing control information (see uls_control_type) |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
void uls_read_specfile(struct uls_control_type* control, const char specfile[])
Read the content of a specification file, and assign values associated with given keywords to the corresponding control parameters. An in-depth discussion of specification files is available, and a detailed list of keywords with associated default values is provided in $GALAHAD/src/uls/ULS.template. See also Table 2.1 in the Fortran documentation provided in $GALAHAD/doc/uls.pdf for a list of how these keywords relate to the components of the control structure.
Parameters:
control |
is a struct containing control information (see uls_control_type) |
specfile |
is a character string containing the name of the specification file |
void uls_factorize_matrix( struct uls_control_type* control, void **data, ipc_ *status, ipc_ m, ipc_ n, const char type[], ipc_ ne, const rpc_ val[], const ipc_ row[], const ipc_ col[], const ipc_ ptr[] )
Import matrix data into internal storage prior to solution, analyse the sparsity patern, and subsequently factorize the matrix
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see uls_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
m |
is a scalar variable of type ipc_, that holds the number of rows in the unsymmetric matrix \(A\). |
n |
is a scalar variable of type ipc_, that holds the number of columns in the unsymmetric matrix \(A\). |
type |
is a one-dimensional array of type char that specifies the unsymmetric storage scheme used for the matrix \(A\). It should be one of ‘coordinate’, ‘sparse_by_rows’ or ‘dense’; lower or upper case variants are allowed. |
ne |
is a scalar variable of type ipc_, that holds the number of entries in \(A\) in the sparse co-ordinate storage scheme. It need not be set for any of the other schemes. |
val |
is a one-dimensional array of size ne and type rpc_, that holds the values of the entries of the matrix \(A\) in any of the supported storage schemes. |
row |
is a one-dimensional array of size ne and type ipc_, that holds the row indices of the matrix \(A\) in the sparse co-ordinate storage scheme. It need not be set for any of the other three schemes, and in this case can be NULL. |
col |
is a one-dimensional array of size ne and type ipc_, that holds the column indices of the matrix \(A\) in either the sparse co-ordinate, or the sparse row-wise storage scheme. It need not be set when the dense storage schemes is used, and in this case can be NULL. |
ptr |
is a one-dimensional array of size m+1 and type ipc_, that holds the starting position of each row of the matrix \(A\), as well as the total number of entries, in the sparse row-wise storage scheme. It need not be set when the other schemes are used, and in this case can be NULL. |
void uls_reset_control( struct uls_control_type* control, void **data, ipc_ *status )
Reset control parameters after import if required.
Parameters:
control |
is a struct whose members provide control paramters for the remaining prcedures (see uls_control_type) |
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
void uls_solve_system( void **data, ipc_ *status, ipc_ m, ipc_ n, rpc_ sol[], bool trans )
Solve the linear system \(Ax=b\) or \(A^Tx=b\).
Parameters:
data |
holds private internal data |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are:
|
m |
is a scalar variable of type ipc_, that holds the number of rows in the unsymmetric matrix \(A\). |
n |
is a scalar variable of type ipc_, that holds the number of columns in the unsymmetric matrix \(A\). |
sol |
is a one-dimensional array of size n and type double. On entry, it must hold the vector \(b\). On a successful exit, its contains the solution \(x\). |
trans |
is a scalar variable of type bool, that specifies whether to solve the equation \(A^Tx=b\) (trans=true) or \(Ax=b\) (trans=false). |
void uls_information(void **data, struct uls_inform_type* inform, ipc_ *status)
Provides output information
Parameters:
data |
holds private internal data |
inform |
is a struct containing output information (see uls_inform_type) |
status |
is a scalar variable of type ipc_, that gives the exit status from the package. Possible values are (currently):
|
void uls_terminate( void **data, struct uls_control_type* control, struct uls_inform_type* inform )
Deallocate all internal private storage
Parameters:
data |
holds private internal data |
control |
is a struct containing control information (see uls_control_type) |
inform |
is a struct containing output information (see uls_inform_type) |
available structures#
uls_control_type structure#
#include <galahad_uls.h> struct uls_control_type { // fields bool f_indexing; ipc_ error; ipc_ warning; ipc_ out; ipc_ print_level; ipc_ print_level_solver; ipc_ initial_fill_in_factor; ipc_ min_real_factor_size; ipc_ min_integer_factor_size; int64_t max_factor_size; ipc_ blas_block_size_factorize; ipc_ blas_block_size_solve; ipc_ pivot_control; ipc_ pivot_search_limit; ipc_ minimum_size_for_btf; ipc_ max_iterative_refinements; bool stop_if_singular; rpc_ array_increase_factor; rpc_ switch_to_full_code_density; rpc_ array_decrease_factor; rpc_ relative_pivot_tolerance; rpc_ absolute_pivot_tolerance; rpc_ zero_tolerance; rpc_ acceptable_residual_relative; rpc_ acceptable_residual_absolute; char prefix[31]; };
detailed documentation#
control derived type as a C struct
components#
bool f_indexing
use C or Fortran sparse matrix indexing
ipc_ error
unit for error messages
ipc_ warning
unit for warning messages
ipc_ out
unit for monitor output
ipc_ print_level
controls level of diagnostic output
ipc_ print_level_solver
controls level of diagnostic output from external solver
ipc_ initial_fill_in_factor
prediction of factor by which the fill-in will exceed the initial number of nonzeros in \(A\)
ipc_ min_real_factor_size
initial size for real array for the factors and other data
ipc_ min_integer_factor_size
initial size for integer array for the factors and other data
int64_t max_factor_size
maximum size for real array for the factors and other data
ipc_ blas_block_size_factorize
level 3 blocking in factorize
ipc_ blas_block_size_solve
level 2 and 3 blocking in solve
ipc_ pivot_control
pivot control:
1 Threshold Partial Pivoting is desired
2 Threshold Rook Pivoting is desired
3 Threshold Complete Pivoting is desired
4 Threshold Symmetric Pivoting is desired
5 Threshold Diagonal Pivoting is desired
ipc_ pivot_search_limit
number of rows/columns pivot selection restricted to (0 = no restriction)
ipc_ minimum_size_for_btf
the minimum permitted size of blocks within the block-triangular form
ipc_ max_iterative_refinements
maximum number of iterative refinements allowed
bool stop_if_singular
stop if the matrix is found to be structurally singular
rpc_ array_increase_factor
factor by which arrays sizes are to be increased if they are too small
rpc_ switch_to_full_code_density
switch to full code when the density exceeds this factor
rpc_ array_decrease_factor
if previously allocated internal workspace arrays are greater than array_decrease_factor times the currently required sizes, they are reset to current requirements
rpc_ relative_pivot_tolerance
pivot threshold
rpc_ absolute_pivot_tolerance
any pivot small than this is considered zero
rpc_ zero_tolerance
any entry smaller than this in modulus is reset to zero
rpc_ acceptable_residual_relative
refinement will cease as soon as the residual \(\|Ax-b\|\) falls below max( acceptable_residual_relative \* \(\|b\|\), acceptable_residual_absolute )
rpc_ acceptable_residual_absolute
see acceptable_residual_relative
char prefix[31]
all output lines will be prefixed by prefix(2:LEN(TRIM(.prefix))-1) where prefix contains the required string enclosed in quotes, e.g. “string” or ‘string’
uls_inform_type structure#
#include <galahad_uls.h> struct uls_inform_type { // fields ipc_ status; ipc_ alloc_status; char bad_alloc[81]; ipc_ more_info; int64_t out_of_range; int64_t duplicates; int64_t entries_dropped; int64_t workspace_factors; ipc_ compresses; int64_t entries_in_factors; ipc_ rank; ipc_ structural_rank; ipc_ pivot_control; ipc_ iterative_refinements; bool alternative; char solver[21]; struct gls_ainfo_type gls_ainfo; struct gls_finfo_type gls_finfo; struct gls_sinfo_type gls_sinfo; struct ma48_ainfo ma48_ainfo; struct ma48_finfo ma48_finfo; struct ma48_sinfo ma48_sinfo; ipc_ lapack_error; };
detailed documentation#
inform derived type as a C struct
components#
ipc_ status
reported return status:
0
success
-1
allocation error
-2
deallocation error
-3
matrix data faulty (m < 1, n < 1, ne < 0)
-26
unknown solver
-29
unavailable option
-31
input order is not a permutation or is faulty in some other way
-32
error with integer workspace
-33
error with real workspace
-50
solver-specific error; see the solver’s info parameter
ipc_ alloc_status
STAT value after allocate failure.
char bad_alloc[81]
name of array which provoked an allocate failure
ipc_ more_info
further information on failure
int64_t out_of_range
number of indices out-of-range
int64_t duplicates
number of duplicates
int64_t entries_dropped
number of entries dropped during the factorization
int64_t workspace_factors
predicted or actual number of reals and integers to hold factors
ipc_ compresses
number of compresses of data required
int64_t entries_in_factors
number of entries in factors
ipc_ rank
estimated rank of the matrix
ipc_ structural_rank
structural rank of the matrix
ipc_ pivot_control
pivot control:
1
Threshold Partial Pivoting has been used
2
Threshold Rook Pivoting has been used
3
Threshold Complete Pivoting has been desired
4
Threshold Symmetric Pivoting has been desired
5
Threshold Diagonal Pivoting has been desired
ipc_ iterative_refinements
number of iterative refinements performed
bool alternative
has an “alternative” y: A^T y = 0 and yT b > 0 been found when trying to solve A x = b ?
char solver[21]
name of external solver used to factorize and solve
struct gls_ainfo_type gls_ainfo
the output arrays from GLS
struct gls_finfo_type gls_finfo
see gls_ainfo
struct gls_sinfo_type gls_sinfo
see gls_ainfo
struct ma48_ainfo ma48_ainfo
the output arrays from HSL’s MA48
struct ma48_finfo ma48_finfo
see ma48_ainfo
struct ma48_sinfo ma48_sinfo
see ma48_ainfo
ipc_ lapack_error
the LAPACK error return code
example calls#
This is an example of how to use the package to solve a linear system; the code is available in $GALAHAD/src/uls/C/ulst.c . A variety of supported Hessian and constraint matrix storage formats are shown.
Notice that C-style indexing is used, and that this is flagged by setting
control.f_indexing
to false
. The floating-point type rpc_
is set in galahad_precision.h
to double
by default, but to float
if the preprocessor variable SINGLE
is defined. Similarly, the integer
type ipc_
from galahad_precision.h
is set to int
by default,
but to int64_t
if the preprocessor variable INTEGER_64
is defined.
/* ulst.c */
/* Full test for the ULS C interface using C sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <float.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_uls.h"
ipc_ maxabsarray(rpc_ a[], ipc_ n, rpc_ *maxabs);
int main(void) {
// Derived types
void *data;
struct uls_control_type control;
struct uls_inform_type inform;
// Set problem data
ipc_ m = 5; // column dimension of A
ipc_ n = 5; // column dimension of A
ipc_ ne = 7; // number of entries of A
ipc_ dense_ne = 25; // number of elements of A as a dense matrix
ipc_ row[] = {0, 1, 1, 2, 2, 3, 4}; // row indices
ipc_ col[] = {0, 0, 4, 1, 2, 2, 3}; // column indices
ipc_ ptr[] = {0, 1, 3, 5, 6, 7}; // pointers to indices
rpc_ val[] = {2.0, 3.0, 6.0, 4.0, 1.0, 5.0, 1.0}; // values
rpc_ dense[] = {2.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 6.0,
0.0, 4.0, 1.0, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0};
rpc_ rhs[] = {2.0, 33.0, 11.0, 15.0, 4.0};
rpc_ rhst[] = {8.0, 12.0, 23.0, 5.0, 12.0};
rpc_ sol[] = {1.0, 2.0, 3.0, 4.0, 5.0};
ipc_ i, status;
rpc_ x[n];
rpc_ error[n];
_Bool trans;
rpc_ norm_residual;
rpc_ good_x = pow( DBL_EPSILON, 0.3333 );
printf(" C sparse matrix indexing\n\n");
printf(" basic tests of storage formats\n\n");
printf(" storage RHS refine RHST refine\n");
for( ipc_ d=1; d <= 3; d++){
// Initialize ULS - use the gls solver
uls_initialize( "getr", &data, &control, &status );
// Set user-defined control options
control.f_indexing = false; // Fortran sparse matrix indexing
switch(d){ // import matrix data and factorize
case 1: // sparse co-ordinate storage
printf(" coordinate ");
uls_factorize_matrix( &control, &data, &status, m, n,
"coordinate", ne, val, row, col, NULL );
break;
case 2: // sparse by rows
printf(" sparse by rows ");
uls_factorize_matrix( &control, &data, &status, m, n,
"sparse_by_rows", ne, val, NULL, col, ptr );
break;
case 3: // dense
printf(" dense ");
uls_factorize_matrix( &control, &data, &status, m, n, "dense",
dense_ne, dense, NULL, NULL, NULL );
break;
}
// Set right-hand side and solve the system A x = b
for(i=0; i<n; i++) x[i] = rhs[i];
trans = false;
uls_solve_system( &data, &status, m, n, x, trans );
uls_information( &data, &inform, &status );
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray( error, n, &norm_residual );
if(norm_residual < good_x){
printf(" ok ");
}else{
printf(" fail ");
}
}else{
printf(" ULS_solve exit status = %1" i_ipc_ "\n", inform.status);
}
// printf("sol: ");
// for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
// resolve, this time using iterative refinement
control.max_iterative_refinements = 1;
uls_reset_control( &control, &data, &status );
for(i=0; i<n; i++) x[i] = rhs[i];
uls_solve_system( &data, &status, m, n, x, trans );
uls_information( &data, &inform, &status );
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray( error, n, &norm_residual );
if(norm_residual < good_x){
printf(" ok ");
}else{
printf(" fail ");
}
}else{
printf(" ULS_solve exit status = %1" i_ipc_ "\n", inform.status);
}
// Set right-hand side and solve the system A^T x = b
for(i=0; i<n; i++) x[i] = rhst[i];
trans = true;
uls_solve_system( &data, &status, m, n, x, trans );
uls_information( &data, &inform, &status );
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray( error, n, &norm_residual );
if(norm_residual < good_x){
printf(" ok ");
}else{
printf(" fail ");
}
}else{
printf(" ULS_solve exit status = %1" i_ipc_ "\n", inform.status);
}
// printf("sol: ");
// for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
// resolve, this time using iterative refinement
control.max_iterative_refinements = 1;
uls_reset_control( &control, &data, &status );
for(i=0; i<n; i++) x[i] = rhst[i];
uls_solve_system( &data, &status, m, n, x, trans );
uls_information( &data, &inform, &status );
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray( error, n, &norm_residual );
if(norm_residual < good_x){
printf(" ok ");
}else{
printf(" fail ");
}
}else{
printf(" ULS_solve exit status = %1" i_ipc_ "\n", inform.status);
}
// Delete internal workspace
uls_terminate( &data, &control, &inform );
printf("\n");
}
}
ipc_ maxabsarray(rpc_ a[], ipc_ n, rpc_ *maxabs)
{
ipc_ i;
rpc_ b, max;
max=abs(a[0]);
for(i=1; i<n; i++)
{
b = fabs(a[i]);
if(max<b)
max=b;
}
*maxabs=max;
return 0;
}
This is the same example, but now fortran-style indexing is used; the code is available in $GALAHAD/src/uls/C/ulstf.c .
/* ulstf.c */
/* Full test for the ULS C interface using Fortran sparse matrix indexing */
#include <stdio.h>
#include <math.h>
#include <stdlib.h>
#include <float.h>
#include "galahad_precision.h"
#include "galahad_cfunctions.h"
#include "galahad_uls.h"
ipc_ maxabsarray(rpc_ a[], ipc_ n, rpc_ *maxabs);
int main(void) {
// Derived types
void *data;
struct uls_control_type control;
struct uls_inform_type inform;
// Set problem data
ipc_ m = 5; // column dimension of A
ipc_ n = 5; // column dimension of A
ipc_ ne = 7; // number of entries of A
ipc_ dense_ne = 25; // number of elements of A as a dense matrix
ipc_ row[] = {1, 2, 2, 3, 3, 4, 5}; // row indices
ipc_ col[] = {1, 1, 5, 2, 3, 3, 4}; // column indices
ipc_ ptr[] = {1, 2, 4, 6, 7, 8}; // pointers to indices
rpc_ val[] = {2.0, 3.0, 6.0, 4.0, 1.0, 5.0, 1.0}; // values
rpc_ dense[] = {2.0, 0.0, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 6.0,
0.0, 4.0, 1.0, 0.0, 0.0, 0.0, 0.0, 5.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0, 0.0};
rpc_ rhs[] = {2.0, 33.0, 11.0, 15.0, 4.0};
rpc_ rhst[] = {8.0, 12.0, 23.0, 5.0, 12.0};
rpc_ sol[] = {1.0, 2.0, 3.0, 4.0, 5.0};
ipc_ i, status;
rpc_ x[n];
rpc_ error[n];
_Bool trans;
rpc_ norm_residual;
rpc_ good_x = pow( DBL_EPSILON, 0.3333 );
printf(" Fortran sparse matrix indexing\n\n");
printf(" basic tests of storage formats\n\n");
printf(" storage RHS refine RHST refine\n");
for( ipc_ d=1; d <= 3; d++){
// Initialize ULS - use the gls solver
uls_initialize( "getr", &data, &control, &status );
// Set user-defined control options
control.f_indexing = true; // Fortran sparse matrix indexing
switch(d){ // import matrix data and factorize
case 1: // sparse co-ordinate storage
printf(" coordinate ");
uls_factorize_matrix( &control, &data, &status, m, n,
"coordinate", ne, val, row, col, NULL );
break;
case 2: // sparse by rows
printf(" sparse by rows ");
uls_factorize_matrix( &control, &data, &status, m, n,
"sparse_by_rows", ne, val, NULL, col, ptr );
break;
case 3: // dense
printf(" dense ");
uls_factorize_matrix( &control, &data, &status, m, n,
"dense", dense_ne, dense, NULL, NULL, NULL );
break;
}
// Set right-hand side and solve the system A x = b
for(i=0; i<n; i++) x[i] = rhs[i];
trans = false;
uls_solve_system( &data, &status, m, n, x, trans );
uls_information( &data, &inform, &status );
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray( error, n, &norm_residual );
if(norm_residual < good_x){
printf(" ok ");
}else{
printf(" fail ");
}
}else{
printf(" ULS_solve exit status = %1" i_ipc_ "\n", inform.status);
}
// printf("sol: ");
// for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
// resolve, this time using iterative refinement
control.max_iterative_refinements = 1;
uls_reset_control( &control, &data, &status );
for(i=0; i<n; i++) x[i] = rhs[i];
uls_solve_system( &data, &status, m, n, x, trans );
uls_information( &data, &inform, &status );
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray( error, n, &norm_residual );
if(norm_residual < good_x){
printf(" ok ");
}else{
printf(" fail ");
}
}else{
printf(" ULS_solve exit status = %1" i_ipc_ "\n", inform.status);
}
// Set right-hand side and solve the system A^T x = b
for(i=0; i<n; i++) x[i] = rhst[i];
trans = true;
uls_solve_system( &data, &status, m, n, x, trans );
uls_information( &data, &inform, &status );
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray( error, n, &norm_residual );
if(norm_residual < good_x){
printf(" ok ");
}else{
printf(" fail ");
}
}else{
printf(" ULS_solve exit status = %1" i_ipc_ "\n", inform.status);
}
// printf("sol: ");
// for( ipc_ i = 0; i < n; i++) printf("%f ", x[i]);
// resolve, this time using iterative refinement
control.max_iterative_refinements = 1;
uls_reset_control( &control, &data, &status );
for(i=0; i<n; i++) x[i] = rhst[i];
uls_solve_system( &data, &status, m, n, x, trans );
uls_information( &data, &inform, &status );
if(inform.status == 0){
for(i=0; i<n; i++) error[i] = x[i]-sol[i];
status = maxabsarray( error, n, &norm_residual );
if(norm_residual < good_x){
printf(" ok ");
}else{
printf(" fail ");
}
}else{
printf(" ULS_solve exit status = %1" i_ipc_ "\n", inform.status);
}
// Delete internal workspace
uls_terminate( &data, &control, &inform );
printf("\n");
}
}
ipc_ maxabsarray(rpc_ a[], ipc_ n, rpc_ *maxabs)
{
ipc_ i;
rpc_ b, max;
max=abs(a[0]);
for(i=1; i<n; i++)
{
b = fabs(a[i]);
if(max<b)
max=b;
}
*maxabs=max;
return 0;
}